
GLOBAL SEARCH METHODS FOR SOLVING
NONLINEAR OPTIMIZATION PROBLEMS

BY

YI SHANG

B�Engr�� University of Science and Technology of China� ����
M�Engr�� Academia Sinica� ����

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana�Champaign� ���	

Urbana� Illinois



c� Copyright by Yi Shang� ���	



GLOBAL SEARCH METHODS FOR SOLVING
NONLINEAR OPTIMIZATION PROBLEMS

Yi Shang� Ph�D�
Department of Computer Science

University of Illinois at Urbana�Champaign� ���	
Benjamin W� Wah� Advisor

In this thesis� we present new methods for solving nonlinear optimization problems� These

problems are di
cult to solve because the nonlinear constraints form feasible regions that

are di
cult to �nd� and the nonlinear objectives contain local minima that trap descent�type

search methods� In order to �nd good solutions in nonlinear optimization� we focus on the

following two key issues� how to handle nonlinear constraints and how to escape from local

minima� We use a Lagrange�multiplier�based formulation to handle nonlinear constraints�

and develop Lagrangian methods with dynamic control to provide faster and more robust

convergence� We extend the traditional Lagrangian theory for the continuous space to the

discrete space and develop e
cient discrete Lagrangian methods� To overcome local minima�

we design a new trace�based global�search method that relies on an external traveling trace

to pull a search trajectory out of a local optimum in a continuous fashion without having to

restart the search from a new starting point� Good starting points identi�ed in the global

search are used in the local search to identify true local optima� By combining these new

methods� we develop a prototype� called Novel �Nonlinear Optimization Via External Lead�

that solves nonlinear constrained and unconstrained problems in a uni�ed framework�

We show experimental results in applying Novel to solve nonlinear optimization problems�

including �a the learning of feedforward neural networks� �b the design of quadrature�

mirror��lter digital �lter banks� �c the satis�ability problem� �d the maximum satis�ability

problem� and �e the design of multiplierless quadrature�mirror��lter digital �lter banks� Our

method achieves better solutions than existing methods� or achieves solutions of the same

quality but at a lower cost�
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�� INTRODUCTION

Many application problems in engineering� decision sciences� and operations research

are formulated as optimization problems� Such applications include digital signal process�

ing� structural optimization� engineering design� neural networks� computer aided design for

VLSI� database design and processing� nuclear power plant design and operation� mechan�

ical engineering� and chemical process control ���� ��� ���� ����� Optimal solutions in these

applications have signi�cant economical and social impact� Better engineering designs often

result in lower implementation and maintenance costs� faster execution� and more robust

operation under a variety of operating conditions�

Optimization problems are made up of three basic components� a set of unknowns or

variables� an objective function to be minimized or maximized� and a set of constraints that

specify feasible values of the variables� The optimization problem entails �nding values of

the variables that optimize minimize or maximize� the objective function while satisfying

the constraints�

There are many types of optimization problems� Variables can take on continuous� dis�

crete� or symbolic values� The objective function can be continuous or discrete and have

linear or nonlinear forms� Constraints can also have linear or nonlinear forms and be de�ned

implicitly or explicitly� or may not even exist�

In this chapter� we �rst formally de�ne optimization problems and identify the classes

of problems addressed in this thesis� We then summarize the characteristics of nonlinear

�



optimization problems and solution methods� Finally� we present the goals and approaches

of this research� outline the organization of this thesis� and summarize our contributions�

��� Optimization Problems

A general minimization problem is de�ned as follows�

Given a set D and a function f � D � P � �nd at least one point x� � D that satis�es

f�x� � f�x for all x � D� or show the non�existence of such a point�

A mathematical formulation of a minimization problem is as follows�

minimize f�x ����

subject to x � D�

In this formulation� x � �x�� x�� � � � � xn is an n�dimensional vector of unknowns� The

function f is the objective function of the problem� and D is the feasible domain of x speci�ed

by constraints�

A vector� x� � D� satisfying f�x� � f�x for all x � D is called a global minimizer of f

over D� The corresponding value of f is called a global minimum� A vector x� � D is called

a local minimizer of f over D if f�x� � f�x for all x � D close to x�� The corresponding

value of f is called a local minimum� Note that since max f�D � �min��f�D� maxi�

mization problems can be transformed into minimization problems shown in ����� We use

optimization and minimization interchangeably in this thesis�

Optimization problems occur in two levels� the problem�instance level and the meta level�

In the problem�instance level� each problem instance is solved independently to obtain its

optimal solution� In contrast� in the meta level� heuristics and algorithms are designed to

solve a class of problems� The optimal solution in this case should generalize well to the

whole group of problems� even if it is obtained based on one or a subset of problem instances�

Consider supervised learning of feedforward arti�cial neural networks �ANNs� to be stud�

ied in Chapter � as an example to illustrate these two levels of optimization� ANNs consist

of a large number of interconnected simple processing units �neurons� Each processing unit

�



is an elementary processor performing some primitive operations� like summing the weighted

inputs coming to it and then amplifying or thresholding the sum� The output of each neu�

ron is fed into neurons through connections� and weighted by connection weights� Hence� in

ANNs� information is stored in synaptic connections and represented as connection weights�

Generally speaking� a neural network performs a mapping from an input space to an out�

put space� In supervised learning� the target outputs are known ahead of time� and neural

networks are trained to perform the desired mapping functions�

Problem�instance�level optimization occurs when the architecture of a neural network�

such as the number of neurons� activation function of each neuron� and connection pattern� is

�xed� and only the values of connection weights are adjustable� In this optimization problem�

the connection weights are variables� and the objective is to minimize the di�erence between

the output of the neural network and the desired output�

Meta�level optimization occurs� on the other hand� when the architecture of a neural

network is not �xed� For example� the neural network can be a feedforward or a feedback

network� a multi�layer network with or without shortcuts� or a pyramid network� The acti�

vation function of each neuron can be a step function� a sigmoidal function� or a radial basis

function� An appropriate architecture needs to be chosen in order to solve a class of problems

well� The solution of meta�level optimization is a set of heuristics that produce appropriate

network architectures based on the characteristics of application�speci�c training patterns�

The variables of a nonlinear problem can take on various values� such as discrete� continu�

ous� or mixed values� In most problems� variables have well�de�ned physical meaning� How�

ever� it is not rare that variables are not well�de�ned or even unde�ned in many real�world

applications� In those circumstances� variables take on noisy� approximate� or imprecise

values�

Consider the previous example on supervised learning of neural networks� In most

problem�instance�level optimization problems� the variables � connection weights � take on

continuous real numbers� However� for �nite�precision and multiplierless neural networks�

connection weights are restricted to take on values from a discrete set� such as f��� �� or

�g� The meaning of variables in a problem�instance�level learning problem is well�de�ned�

�



It represents the exhilarating or inhibiting relationship between neurons and take continu�

ous� discrete� or mixed values� On the other hand� the variables in meta�level learning are

not well�de�ned� There are a large number of di�erent architectures� and their performance

measures on classes of tasks are usually noisy and inaccurate�

The search space of an optimization problem can be �nite or in�nite� Continuous op�

timization problems consist of real�value variables� and the search space is usually in�nite�

For instance� when the connection weights take on real values� supervised learning of neural

networks have in�nite search space�

Many discrete optimization problems have �nite search spaces whose complexity can be

polynomial or exponential as a function of the number of inputs� For example� the search

space of �nding the shortest path between two nodes in a graph is polynomial with respect

to the number of nodes� However� the search space of a maximum satis�ability problem �to

be studied in Chapter � is exponential with respect to the number of literals� Search spaces

with exponential complexity can be enormously large when the problem size is large� For

example� a maximum satis�ability problem with ���� variables has ����� � ����� possible

assignments� although variables only take value � or ��

The objective function of an optimization problem may or may not have a closed�form

formula� Some objectives are evaluated deterministically and return the same value for the

same set of variables every time� Other objectives are evaluated probabilistically� and could

have di�erent values every time they are evaluated�

Again� in the example on supervised neural�network learning� a problem instance�level

optimization problem usually has a closed�form nonlinear objective function that is computed

deterministically� A meta�level optimization problem often does not have a closed�form

objective function and is evaluated through a procedure� Due to the randomness involved

in evaluating noisy and limited training patterns� the results may be probabilistic�

Similar to objective functions� constraints may or may not have a closed�form formula�

For example� in the QMF �lter�bank design problem �to be studied in Chapter �� some

constraints� such as stopband and passband energy� have a closed�form formula� Other
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constraints� including stopband ripple� passband ripple and transition bandwidth� do not

have a closed�form formula and have to be evaluated numerically�

In constrained optimization problems� some constraints are hard constraints� meaning

that they must be satis�ed by solutions� Others are soft constraints� for which some degree of

violation is acceptable� In satis�ability problems �to be studied in Chapter �� all constraints

are hard constraints and must not be violated� In contrast� in neural�network learning

problems� soft constraints are sometimes used to specify the desirable ranges of connection�

weight values� In this case� some degree of violations are acceptable as long as the violations

result in better neural networks�

In addition to constraints specifying the feasible domain of an optimization problem� con�

straints on computational resources are also important for solving real�world applications�

For the application problems studied in Chapters �� �� and � �including feedforward neural�

network learning� digital �lter�bank design� satis�ability� maximum satis�ability� and multi�

plierless �lter�bank design� constraints on computational resources� speci�cally� CPU�time

constraints� are usually imposed in our experiments� Since it can be very time�consuming

to solve large nonlinear optimization problems� time constraints are used to make sure that

the solution process �nishes in a reasonable amount of time�

As we have seen� there are many types of optimization problems with distinctive char�

acteristics� In this thesis� we focus on problem�instance�level optimization problems whose

objective and constraints are evaluated deterministically�

��� A Taxonomy of Optimization Problems

Figure ��� shows a taxonomy of optimization problems and the classes of problems ad�

dressed in this thesis� In this �gure� optimization and decision problems are classi�ed ac�

cording to the attributes of variable type� presence of constraints� and complexity�

Although our focus is on optimization problems� decision problems are closely related to

optimization problems� especially constrained optimization problems� In our research� we
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Figure ���� A classi�cation of optimization and decision problems� The classes of problems
addressed in this thesis are shaded�

solve decision problems through optimization approaches� Therefore� we show a classi�cation

of decision problems in Figure ����

����� Continuous Optimization Problems

Optimization problems are classi�ed into continuous and discrete problems� A problem

is continuous if the unknowns �variables take on continuous real values� i�e�� D in ����

consists of real numbers� A problem is discrete if the unknowns take on discrete� usually

integer values�

Continuous optimization problems are further classi�ed into constrained optimization

and unconstrained optimization based on the presence of constraints� Problems without

constraints fall into the class of unconstrained optimization�

minimize f�x ����

subject to x � Rn

There are two types of optimal points of an optimization problem� local minima and

global minima� A local minimum has the smallest value in a local feasible region surrounding

itself� whereas a global minimum has the smallest value in the whole feasible domain� In a

continuous unconstrained optimization problem� an objective function is minimized in the
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real domain� An unconstrained optimization problem is uni�modal if its objective function

is convex� A uni�modal problem has one local minimum� which is the global minimum at

the same time� A problem is multi�modal if its objective function has more than one local

minimum� General nonlinear functions are multi�modal and may have many local minima

that are not global minima�

When each dimension of D in ���� consists of real values constrained by simple lower

and�or upper bounds� the corresponding optimization problem is called a simple�bounded

continuous optimization problem�

minimize f�x ����

subject to l � x � u

x � Rn

where l and u are constants�

We put simple�bounded constrained problems in the class of unconstrained optimiza�

tion because simple�bound constraints �for example� � � x � � are easy to handle� and

algorithms for problems without constraints and with simple�bound constraints are similar�

Although variables in unconstrained optimization problems can be any real numbers� the

search for global optima of multi�modal functions often takes place in some limited regions

of interests� Hence� unconstrained nonlinear optimization problems and simple�bounded con�

strained problems are usually solved in similar ways� The remaining problems with nontrivial

constraints belong to the class of constrained optimization�

The Rastrigin function from optimal control application is an example of a simple�

bounded optimization problem ������ The minimization problem is formulated as follows�

min
x�R�

f�x � x�� � x�� � cos ��x� � cos ��x�

�� � xi � �� i � �� �

Its global minimum is equal to �� and the minimum point is at ��� �� There are approxi�

mately �� local minima in the region bounded by the two constraints�

	



As shown in Figure ���� constrained continuous problems are classi�ed into linear and

nonlinear depending on the form of constraint functions� When D in ���� is bounded

by linear functions� the corresponding optimization problem is called a linear constrained

problem� This class of problems is relatively easy to solve� Among these problems� two types

of problems that have been studied extensively and solved well are linear programming and

quadratic programming problems� If the objective f is a linear function of the unknowns

and the constraints are linear equalities or inequalities in the unknowns� the corresponding

optimization problem is called a linear programming problem�

minimize
nX
i��

cixi ����

s�t�
nX
i��

aijxi � bj for j � �� �� � � � �m

x � �

x � Rn

where ci� aij� and bj are constant real coe
cients� A linear programming problem has one

local minimum� which is also the global minimum�

If the objective f is a quadratic function and the constraints are linear functions� the

corresponding optimization problem is called a quadratic programming problem� As an

example�

minimize
nX
i��

cixi �
nX
i��

nX
j��

dijxixj ����

s�t�
nX
i��

aijxi � bj for j � �� �� � � � �m

x � �

x � Rn

where ci� dij � aij and bj are constant real coe
cients� Linear constrained problems� including

linear programming and quadratic programming problems� have been studied extensively�

E
cient algorithms have been developed to solve them very well ����������������
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When D is characterized by nonlinear functions� the optimization problem is called a

nonlinear optimization or a nonlinear programming problem�

minimize f�x ����

subject to h�x � �

g�x � �

x � Rn

where h�x represents a set of equality constraints� and g�x� a set of inequality constraints�

In a nonlinear optimization problem� the objective function as well as the constraint func�

tions are nonlinear� Nonlinear constrained problems are di
cult to solve because nonlinear

constraints may constitute feasible regions that are di
cult to �nd� and nonlinear objectives

may have many local minima� Many application problems fall into this class ���������

In this thesis� we focus on general multi�modal nonlinear optimization problems and

propose some new methods� Uni�modal problems are relatively easy to solve� They have been

studied extensively for decades� Many algorithms have been developed� including gradient

descent� Newton�s method� quasi Newton�s methods� and conjugate gradient methods ����

	�� ��� ����� These algorithms are very e
cient and can solve optimization problems with

tens of thousands of variables within seconds�

Multi�modal problems are much more di
cult and yet plentiful in real applications�

Although many methods have been developed for multi�modal problems� most of them are

e
cient only for subclasses of problems with speci�c characteristics� Methods for general

multi�modal problems are far from optimal �����������������

����� Discrete Optimization Problems

When the feasible setD in ���� consists of discrete values� the problem is called a discrete

optimization problem� Discrete optimization is a �eld of study in combinatorics� as well as

in mathematical programming� A classi�cation of combinatorial problems consists of four

categories� �a evaluation of required arrangements� �b enumeration of counting of possible

arrangements� �c extremization of some measure over arrangements� and �d existence of
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speci�c arrangements ������ Discrete optimization usually refers to the third category� In

our study� we also consider the last category a special case of discrete optimization after

introducing an arti�cial objective function�

Some famous examples of discrete optimization problems are as follows�

	 Knapsack Problem� Determine a set of integer values xi� i � �� �� � � � � n� that minimize

f�x�� x�� � � � � xn� subject to the restriction g�x�� x�� � � � � xn � b where b is a constant�

	 Traveling Salesman Problem� Given a graph �directed or undirected with speci�ed

weights on its edges� determine a tour that visits every vertex of the graph exactly

once and that has minimum total weight�

	 Bin Packing� Given a set of weights� wi� � � i � n� and a set of bins� each with

�xed capacityW � �nd a feasible assignment of weights to bins that minimizes the total

number of bins used�

Discrete optimization problems� including the above examples� can be expressed in the

following integer programming �IP formulation�

minimize f�x ���	

subject to h�x � �

g�x � �

x � In

where I represents the integer space� Variable domain D consists of integers and is charac�

terized by equality constraints h�x and inequality constraints g�x� Notice the similarity of

���	 to the formulation of continuous constrained optimization problem in �����

As shown in Figure ���� we classify discrete optimization problems according to the

existence of constraints and their computational complexity� When there is no constraint

besides integral requirements of variables� the problem is called an unconstrained problem�

With additional constraints� the problem is called a constrained problem� An unconstrained
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discrete optimization problem has the following form�

minimize f�x ����

subject to x � In

When D consists of integer values constrained by simple lower and�or upper bounds� the

optimization problem is called a simple�bounded discrete optimization problem�

minimize f�x ����

subject to l � x � u

x � In

As in the continuous case� we associate simple�bounded discrete optimization problems

with the class of unconstrained problems� Algorithms for these problems are similar� The

majority of discrete optimization problems have some constraints� and few are unconstrained

optimization problems�

When domain D and objective f are characterized by linear functions� the optimization

problem is called an integer linear programming �ILP problem� Here� the objective function

is linear in the unknowns� and the constraints are linear equalities or inequalities in the

unknowns�

minimize
nX
i��

cixi �����

subject to
nX
i��

aijxi � bj for j � �� �� � � � �m

x � �

x � In

where ci� aij and bj are constant real�integer coe
cients� Many discrete optimization prob�

lems can be formulated as ILPs by introducing additional variables and constraints�
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An example of ILP problems is the following inequality�form knapsack problem�

minimize
nX
i��

cixi

subject to
nX
i��

aixi � bj

xi � � or �� ai and ci are integers i � �� �� � � � � n

Discrete constrained optimization problems have been studied extensively in computer

science and operations research �������������������� Based on their computational complex�

ity� there are two important classes of discrete optimization problems� Class P and Class NP�

Class P contains all problems that can be solved by algorithms of polynomial�time complex�

ity� where P stands for polynomial� Examples of Class P problems are matching� spanning

trees� network �ows� and shortest path problems� Class P problems have been well studied�

Many discrete problems in real�world applications do not have polynomial�time algo�

rithms and are more di
cult to solve than those in Class P� Among them� one important

class is NP� Class NP includes all those problems that are solvable in polynomial time if

correct polynomial�length guesses are provided� Examples are knapsack� traveling�salesman�

and bin�packing problems� Problems to which all members of NP polynomially reduce are

called NP�hard� The Class NP contains the Class P as well as a great many problems not

belonging to P� The focus of this thesis is on NP�hard problems that are not polynomial�time

solvable�

����� Decision Problems

A decision problem di�ers from a constrained optimization problem in the way that it

has no objective function� Usually� a decision problem is speci�ed by a set of constraints�

and a feasible solution that satis�es all the constraints is desired� or infeasibility is derived�

Decision problems are classi�ed as continuous or discrete according to their variable

domains� In a continuous decision problem� each variable is associated with a continuous
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domain� There are not many continuous decision problems in real applications� In this

thesis� we focus on NP�hard discrete decision problems�

In a discrete decision problem� each variable is associated with a discrete� �nite domain�

Discrete decision problems are referred to as constraint satisfaction problems �CSPs in arti��

cial intelligence� There has been extensive research on CSPs in arti�cial intelligence� resource

scheduling� temporal reasoning� and many other areas ������������������	��������	����������

An example of CSP is the well�known N�queen problem that is de�ned as follows� Given

an integer N� place N queens on N distinct squares in an N 
 N chess board so that no two

queens are on the same row� column� or diagonal�

Decision problems can be solved as optimization problems� For example� an algorithm

that �nds the minimal tour length in a traveling salesman problem will also determine

whether there is a tour with a speci�c threshold for every possible threshold�

On the other hand� optimization problems can also be solved through one or a series of

decision problems� For example� the minimal tour length in a traveling salesman problem

can be found by solving a sequence of decision problems� In each decision problem� the

existence of a tour within a speci�ed length is solved� As the length decreases gradually� the

minimal tour length can be found�

��� Challenges in Solving Nonlinear Optimization Problems

Except for trivial cases� nonlinear optimization problems do not have closed�form solu�

tions and cannot be solved analytically� Numerical methods have been developed to search

for optimal solutions of these problems� The process of solving an optimization problem

becomes a process of searching for optimal solutions in the corresponding search space�

Finding global minima of a nonlinear optimization problem is a challenging task� Non�

linear constraints form feasible regions that are hard to �nd and di
cult to deal with� and

nonlinear objectives have many local minima that make global minima hard to �nd and

verify�
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Tall hills that are difficult to overcome

Deep valleys with steep slopes

Shallow basins with small slopes

Gradients vary by many orders of magnitude

Figure ���� Illustration of di
culties in optimizing a nonlinear function� There may exist
local minima in a multi�modal nonlinear function with di�erent characteristics�
shallow or deep� wide or narrow�

In solving nonlinear constrained optimization problems� there may not be enough time

to �nd a feasible solution when nonlinear constraints constitute small feasible regions that

are di
cult to locate� For example� in our study of designing digital �lter banks in Chapter

�� the feasible regions are small� and random searches like genetic algorithms can hardly �nd

a feasible solution� Also� in satis�ability problems �studied in Chapter �� feasible solutions

can be very few and di
cult to �nd due to the large number of constraints�

Second� nonlinear objective functions in both constrained and unconstrained optimization

problems make global minima di
cult to �nd� Figure ��� illustrates the challenges of a multi�

modal nonlinear function� The terrains have di�erent characteristics and cause problems for

search algorithms that adapt to only a subset of the characteristics� Because of large slopes�

tall hills are di
cult to overcome in gradient�based search methods� In the search space�

gradients can vary by many orders of magnitude� which make the selection of appropriate

step�size di
cult� Large shallow basins and �at plateaus provide little information for search

direction� and may take a long time for a search algorithm to pass these regions if the step�size

is small� Further� small local minima are di
cult to �nd�

These di
culties happen in real�world applications� such as neural�network learning� In

supervised learning of feedforward arti�cial neural networks �studied in Chapter �� arti�cial

neural networks are trained to perform desired mapping functions� The di�erence of desired

outputs and actual outputs of a neural network forms an error function to be minimized� The
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Figure ���� Two�dimensional projections of the ���dimensional error surface for a �ve
hidden�unit ���weight feed�forward neural network with sigmoidal activation
function� The terrain is around a solution found by our new global search
method� Novel� to solve the two�spiral problem� These two graphs are plotted
along two di�erent pairs of dimensions�

neural�network learning problem is solved as an unconstrained optimization problem with

the error function as the objective� Objective functions in neural�network learning problems

are usually highly nonlinear and have many local minima�

Figure ��� shows the error function of a feedforward neural network trained to solve the

two�spiral problem �to be discussed in Chapter �� The ���dimensional error function is

projected to two di�erent pairs of dimensions� The plots are around a solution found by our

new global search method� Novel�

Figure ��� shows that the terrains have many di�erent features� The left plot shows a

large number of small and shallow local minima� The global minimum is in the middle� and

its attraction region is small� The right graph shows a terrain divided into four parts by two

narrow valleys� Two of them consist of large �at regions with gradients close to �� whereas

the other two of them have many local minima� There are also two long and narrow valleys

across the terrain� On the edge of these valleys� steep slopes have very large gradients�

Values at the bottom of these valleys changes gradually�

��



In nonlinear optimization problems� global optimal solutions are not only di
cult to �nd�

but also di
cult to verify� There is no local criterion for deciding whether a local optimal

solution is a global optimum� Therefore� nonlinear optimization methods cannot guarantee

solution qualities for general nonlinear problems�

To summarize� the challenges of general nonlinear optimization include the following�

	 Feasible regions bounded by nonlinear constraints may be di
cult to �nd�

	 The objective�function terrain of search space may be very rugged with many sub�

optima�

	 There may exist terrains with large shallow basins and small but deep basins�

	 The dimension of optimization problems is large in many interesting applications�

	 The objective and constraints are expensive to evaluate�

��� Characteristics of Nonlinear Optimization Algorithms

A large number of optimization methods have been developed to solve nonlinear opti�

mization problems� Nonlinear optimization methods are classi�ed into local optimization and

global optimization methods� Global optimization methods have the ability to �nd global

optimal solutions given long enough time� while local optimization methods do not�

Local�optimization methods include gradient descent� Newton�s method� quasi Newton�s

method� and conjugate gradient methods �	� ��� �	� ��	� ���� �	�� ��	�� They converge to a

local minimum from some initial points� Such a local minimum is globally optimal only

when the objective is quasi�convex and the feasible region is convex� which rarely happens

in practice ����� For nonlinear optimization problems� a local minimum can be much worse

than the global minimum� To overcome local minima and search for global minima� global

optimization methods have been developed�

Global optimization methods look for globally optimal solutions ���� ���� ���� ����� As

stated by Griewank ����� global optimization for nonlinear problems is mathematically ill�

posed in the sense that a lower bound for the global optima of the objective function cannot

��



be given after any �nite number of evaluations of the objective function� unless the objective

satis�es certain conditions� such as the Lipschitz condition� and the search space is bounded�

Global optimization methods perform global and local searches in regions of attraction

and balancing the computation between global and local exploration� A global search method

has the mechanism to escape from local minima� while a local search method does not� In

an optimization problem� a region of attraction de�nes the region inside which there is

a local minimum and the constraints are satis�ed� The regions of attraction trap local

search methods� In the general black�box model� global optimization is performed without

a priori knowledge of the terrain de�ned by the objective and the constraints ����� ����

���� ����� Therefore� global optimization algorithms use heuristic global measures to search

for new regions of attraction� Promising regions identi�ed are further optimized by local

re�nement procedures� such as gradient descent and Newton�s methods� In many real�world

applications� the computational complexity of �nding global optima is prohibitive� Global

optimization methods usually resort to �nding good sub�optimal solutions�

Nonlinear optimization methods employ various search algorithms to escape from local

minima and search for global optima� The characteristics of search algorithms are summa�

rized as follows�

�a� Representation of search space� A search space speci�es the range of variable

assignments that are probed during the process of searching for optimal solutions� The

search space may contain only feasible regions speci�ed by constraints� or may contain some

infeasible regions as well� The search space of an optimization problem can be �nite or

in�nite� which directly a�ects the computational complexity of the corresponding search

algorithms� For example� the search space is �nite in a traveling salesman problem with

a �nite number of cities and in a knapsack problem with �nite number of objects� For

continuous optimization problems in which variables take on real values� the search space is

in�nite ����������������������

The search space can have structural representations� For example� in a ��� binary integer

programming problem� the search space can be represented as a binary search tree� Each

node of the search tree represents the resolution of a variable� and the two branches coming
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from it represent the two alternative values of the variable� In another representation� the

space space can be represented based on the permutation of variable values� All possible

permutations constitute the search space�

The representation of the search space a�ects the complexity of a search problem� Struc�

tural representations can sometimes reduce the complexity signi�cantly� For example� in

solving a ��� integer programming problem� a representation based on a binary search tree

provides the basis for branch�and�bound methods� which use e
cient algorithms to �nd

tight lower and upper bounds of search nodes and can prune the search tree signi�cantly�

The search space becomes much smaller than that in a representation based on permuta�

tions ���	��������������

�b� Decomposition strategies� Some search algorithms work on the whole search

space directly� while others decompose the large search space into smaller ones and then

work on them separately� Divide�and�conquer and branch�and�bound are two decomposition

strategies that have been applied in many search algorithms for both continuous and discrete

problems ���	������������������ Unpromising sub�spaces are excluded from further search�

and promising ones are recursively decomposed and evaluated�

�c� Heuristic predictor or direction 	nder� During a search process� search

algorithms have used many di�erent heuristics to guide the search to globally optimal solu�

tions� In branch�and�bound methods� heuristic lower bounds are associated with decomposed

smaller sub�spaces to indicate their goodness� For example� in interval methods� interval

analyses are used to estimate the lower bounds of a continuous region� Similarly� in solving

integer programming problems� discrete problems are relaxed into continuous linear pro�

gramming problems to obtain a lower bound ���	���������� The lower�bound information is

further used to guide the search� In simulated annealing� the objective values of neighbor�

hood points provide a direction for the search to proceed ����� ����� In genetic algorithms�

search directions are obtained from �tness values of individuals in a population ���� �����

Components of individuals with high �tness are reinforced� and the search moves in direc�

tions formed by good building blocks�
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�d� Mechanisms to help escape from local minima� To �nd globally optimal

solutions� a search algorithm has to be able to escape from local minima� In discrete opti�

mization� a back�tracking mechanism has been used extensively� A similar mechanism has

also been applied in covering methods to solve continuous optimization problems ����������

Probabilistic methods ��������� get out of local minima based on probabilistic decisions� For

example� simulated annealing methods can move in a direction with worse solutions using

adaptive probabilities ���������� Genetic algorithms escape from local minima through prob�

abilistic recombination of individuals and random perturbation of existing solutions ���������

�e� Mechanisms to handle constraints� To solve constrained optimization problems�

search algorithms have to handle constraints e
ciently� Simple constraints� including simple

bound and linear constraints� are relatively easy to handle� For example� variable substitu�

tion can eliminate linear constraints ������ Two major classes of techniques� transformational

and non�transformational approaches� have been developed to handle nonlinear constraints�

In transformational approaches� the constraints and objectives are combined to form a single

function ���������� Hence� constrained problems are converted into another form� usually an

unconstrained form� before being solved� In non�transformational approaches� the search is

performed in a relaxed search space that contains an infeasible region ����� ����� Infeasible

solutions along a search path are either discarded or repaired to become feasible solutions�

�f� Stopping conditions� Some optimization problems can be solved optimally in a

short amount of time� Unfortunately� most real�world applications are large and have high

computational complexity� which makes optimal solutions impossible to �nd or verify� Hence�

search algorithms have to terminate in a reasonable amount of time and settle on approxi�

mation solutions� The degree of approximation is usually proportional to the amount of time

available� Better solutions can be found given more execution time� Pruning mechanisms

have also been used to reduce the search space and �nd approximation solutions� For ex�

ample� a search algorithm stops when all nodes of a search tree are pruned based on certain

conditions� Many stopping criteria have been used to deal with the time�quality tradeo��

Some widely used stopping conditions include resource limit� e�g� physical time limit� of

computer program execution� and degree of solution improvement �	����	�����������	������
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�g� Resource scheduling strategies� To execute an optimization program on a com�

puter system� resource scheduling determines the allocation of computer resources� includ�

ing CPU and memory� which in turn a�ects resource utilization� Scheduling issues are

especially important for parallel computer systems� Large optimization problems are com�

putationally intensive and may require the most powerful computer systems� such as parallel

processing systems� Good resource scheduling strategies make good use of the complex

parallel systems� Many parallel search algorithms have been developed and studied theoret�

ically and empirically� Signi�cant speedups have been achieved on existing parallel comput�

ers �����	�������	���	���	���

Among the seven issues of search algorithms� we identify the two most critical ones for

nonlinear optimization� handling nonlinear constraints and escaping from local minima�

The representation of a search space is derived from the feasible domain of an optimization

problem� and is usually straightforward� For unconstrained or simple�bounded constrained

problems� their search space corresponds to feasible regions� For nonlinear constrained prob�

lems� their search space is relaxed to contain infeasible regions as well�

Decomposition strategies have been studied extensively for both continuous and discrete

nonlinear problems� They are e�ective to help reduce the complexity of relatively small

problems� However� their computational complexity increases exponentially with problem

size� which renders them not very helpful for larger problems�

Heuristic predictors are very useful when problem�speci�c characteristics are available

and ready to be exploited� For general black�box nonlinear optimization� only limited infor�

mation� such as gradient� is available� Few heuristic predictors work well in this situation�

For real�world applications� stopping conditions are usually derived from physical limi�

tations� such as computation resources and time available� Good stopping conditions make

better usage of limited resources and prevent unnecessary computation� They do not help

in �nding good optimal solutions�

Similarly� resource scheduling strategies schedule tasks to be executed in a computer

system� They try to make high utilization of limited computational resources and �nish

the search tasks as fast as possible� For optimization problems� good resource scheduling
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strategies can help reduce the time to �nd solutions of the same quality� However� they are

not helpful to improve the solution if the problem has exponential complexity�

In short� handling nonlinear constraints and escaping from local minima are the two key

issues in nonlinear optimization� Any good nonlinear optimization method has to have good

strategies to address them�

Nonlinear constraints make problems di
cult by forming small� irregular� and hard�to�

�nd feasible regions� Nonlinear functions may be complex and do not have obvious features to

aid the search� Methods based on easy�to��nd feasible regions do not work in this situation�

Constraint handling techniques need to be robust and able to deal with general complex

nonlinear constraints�

Local minima of nonlinear objective functions make local searches more di
cult� General

nonlinear optimization problems have many local minima� Search methods that are trapped

by local minima are incapable of obtaining good solutions� The mechanism of escaping from

local minima determines the e
ciency of a global search algorithm and the solution quality

it obtains� and has long been the central issue in developing global search methods�

��
 Goals and Approaches of This Research

The goals of this research are to address the two key issues in nonlinear optimization�

handling nonlinear constraints and escaping from local minima� and to develop e
cient

and robust global search methods� We develop methods to solve nonlinear continuous and

discrete optimization problems that �a achieve better solution quality than existing methods

in a reasonable amount of time� or �b execute faster for the same solution quality�

��
�� Approaches to Handle Nonlinear Constraints

To deal with general nonlinear constraints� we have developed adaptive Lagrangian meth�

ods �Chapter �� A constrained optimization problem is �rst transformed into a Lagrangian

function� Then gradient descents in the original variable space and gradient ascents in the

Lagrange�multiplier space are performed� Eventually� the search process converges to a
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saddle point that corresponds to a local minimum of the original constrained optimization

problem�

Adaptive control of relative weights between the objective and the constraints can speed

up convergence� The process of searching for saddle points is governed by the combination of

the two counteracting descent and ascent forces� Descents try to reduce the objective value

whereas ascents try to satisfy the constraints� At a saddle point� the descent and ascent

forces reach a balance through appropriate Lagrange�multiplier values�

The speed of convergence to a saddle point varies a lot depending on the relative mag�

nitudes of the objective function and the constraints� When the objective value is too large

as compared to the constraint values� descents in the original�variable space dominate the

search process� and the Lagrange multipliers have to become very large in order to overcome

the descent force and pull the search back to a feasible region� Since the Lagrange multipliers

are updated according to constraint violations� it may take a very long time for the Lagrange

multipliers to become large enough� which slows down the convergence to saddle points�

On the other hand� when the objective has little weight and the force due to descents

is very small� constraint satisfaction dominates the search� Hence� the search process visits

many feasible points� but improvements of objective values are slow� and so is convergence

to a saddle point�

In order to improve convergence speed� we have developed mechanisms to adaptively

control the relative weight of descent and ascent forces �Section ���� A weight coe
cient is

assigned to the objective function� and is adjusted adaptively during the search�

For example� in one of our adaptive methods� the initial values of weights are selected

based on the gradient of the objective function at the starting point� The search is then

performed for a small amount of time� The ratio of the change in the objective value to

the time interval gives the speed of descent in the objective function� This ratio is used as

the normalization factor to adjust the initial weight� Next� the search is re�started from the

original starting point with the adjusted initial weight on the objective� As the search goes

on� the weight is adaptively adjusted based on the magnitude of the maximum violation of

the constraints and the change of the objective function�
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The general control strategy is to use the constraint violation as the primary indicator

and the change of the objective value as the secondary indicator� If any constraint is violated�

the weight on the objective is reduced� otherwise� if the objective value is changing� then

the weight on the objective is increased� The weight on the objective is adjusted adaptively

so that convergence is more robust and faster when the objective and the constraints have

di�erent magnitude�

To handle constraints in discrete constrained optimization problems� we extend the La�

grangian theory for continuous problems to discrete problems� and develop the discrete

Lagrangian method to solve discrete constrained problems �Section ����

Similar to the continuous case� a Lagrangian function of discrete variables is formed by

combining the objective and the constraints using Lagrange multipliers� Then� descents in

the original�variable space and ascents in the Lagrange�multiplier space are performed to seek

saddle points� In the continuous case� descents are based on continuous gradients� Variables

in discrete optimization problems take on discrete values� therefore� the traditional de�nition

of gradient cannot be used� We propose to use discrete gradients instead� A point in the

neighborhood of the current point that has the most reduction in function value gives the

discrete gradient�descent direction of the function at that point� We show that by using the

discrete gradient descent� the search based on the Lagrangian function converges to a saddle

point corresponding to a local minimum of the original discrete optimization problem� Also�

adaptive control of objective weight can speed up convergence�

��
�� Approaches to Overcome Local Minima

Nonlinear optimization problems usually have many local minima in their search space�

In unconstrained problems� the nonlinear objective function has many local minima� In

constrained problems� the Lagrangian function formed by the combination of the objective

and the constraints has many local minima� In order to �nd global optima� it is necessary

for search methods to escape from local minima�

To overcome local minima� we have developed a new deterministic global search method�

called the trace�based method �Chapter �� Our trace�based method consists of a global
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search phase and a local search phase� The global search phase is further divided into a

coarse�level and a �ne�level global search� In the coarse�level global search� methods that

explore the whole search space e
ciently are applied to �nd promising regions� The output

of the coarse�level global search is one or a set of starting points for the �ne�level global

search�

In the �ne�level global search� the trace�based method uses a combined force of an external

guidance and the local gradient to form the search trajectory� An external trace function is

designed to lead the search trajectory around the search space and to pull the search out of

local minima once it gets there� In the meantime� local gradient attracts the search towards

a local minimum� The smaller the local minimum is� the larger the gradient force becomes�

In other words� the trace force emphasizes exploration of the search space� while the gradient

force detects local minima� The search trajectory formed by the combination of these two

forces traverses the search space continuously� and reveals promising local minimal regions

on the way� Good initial points for the local�search phase are identi�ed along the search

trajectory�

In the local�search phase� local�descent methods are started from the initial points gen�

erated from the �ne�level global search� The local minimum corresponding to each initial

point is located� The best ones among them are output as the �nal solution�

��
�� A Uni	ed Framework to Solve Nonlinear Optimization Problems

Combining our methods of handing constraints and overcoming local minima� we can

solve general nonlinear optimization problems� Figure ��� shows how various types of prob�

lems are solved in a uni�ed framework�

Unconstrained optimization problems are solved directly by trace�based global optimiza�

tion methods� Constrained problems� whether continuous or discrete� are �rst transformed

into Lagrangian formulations� in which constraints are combined with the objective function

using Lagrange multipliers�

Decision problems� including constraint satisfaction problems �CSPs� do not have ob�

jective functions� They are solved as optimization problems by �rst introducing arti�cial
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Figure ���� Transformation of various forms of nonlinear optimization problems into a uni�
�ed formulation that is further solved by global search methods�

objectives� These objectives are helpful in providing guidance toward feasible solutions� For

example� given a CSP as follows�

Find a feasible solution that satis�es h�x � � �����

The problem can be transformed into a constrained optimization problem by adding a merit

function that measures the norm of the constraint set�

minimize N�h�x �����

subject to h�x � �

where N�� is a scalar function such that N�h�x � � i� h�x � �� Although ����� is

equivalent to the original constraint�only formulation ������ the objective �merit function

indicates how close the constraints are being satis�ed� hence providing additional guidance

in leading the search to a satis�able assignment�

Note that a su
cient condition for solving the CSP de�ned in ����� is when there is

an assignment such that the objective function in ����� is zero� However� optimizing the

objective function in ����� alone without the constraints is less e�ective� as there may exist

many local minima in the space of N��� Strictly following a descent path of N�� often ends

up in a dent where N�� is not �� but its value cannot be improved by local re�nement�

After a constrained problem is transformed into a Lagrangian formulation� our trace�

based global search is performed based on the Lagrangian function to �nd good solutions�
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��
�� Applications of Proposed Methods

We have applied our Lagrangian methods for handling nonlinear constraints and our

trace�based global search method for overcoming local minima to several applications� These

include arti�cial neural�network learning� digital �lter�bank design� satis�ability and maxi�

mum satis�ability� and multiplierless �lter�bank design�

We have applied our trace�based global search method to learn the weights of a feedfor�

ward neural network � a nonlinear unconstrained optimization problem �Chapter �� Arti�

�cial neural networks have been used in many applications in recent years� However� the

learning and design method is far from optimal� In our experiments� we formulate the

supervised learning of feedforward neural networks as an unconstrained optimization prob�

lem� The objective function is highly nonlinear with many local minima� We compare our

trace�based method with other global search methods and existing results in solving a set of

benchmark problems� Our trace�based method improves the designs signi�cantly� resulting

in much smaller neural networks with better qualities�

We have applied our Lagrangian method with adaptive control to solve constrained op�

timization applications� speci�cally the design of digital �lter banks �Chapter �� Starting

with a multiple�objective design problem� we formulate it into a constrained formulation

constraining all objectives but one� The constrained continuous problem is then solved by

our adaptive Lagrangian method and trace�based global�search method� Our experiments

show that our method converges faster� is more robust� and improves existing solutions on

all test problems�

We have applied our discrete Lagrangian method to solve several discrete optimization

problems� including the satis�ability problem� the maximum satis�ability problem� and the

design of a multiplierless digital �lter bank �Chapter �� These problems are formulated

as discrete constrained optimization problems and solved by discrete Lagrangian methods�

Using a large number of benchmark and test problems� we show very promising results of the

discrete Lagrangian method� It either improves existing solutions� or �nds optimal solutions

much faster than other methods�
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To summarize� we address two important issues of nonlinear optimization in this research�

the handling of nonlinear constraints and methods to help escape from local minima� We

use a Lagrange�multiplier�based formulation to handle nonlinear continuous and discrete

constraints� and develop e
cient Lagrangian methods to search for saddle points� To over�

come local minima� we develop a new global search method that uses an external force to

lead the search continuously across the search space and perform a combination of local and

global searches� These methods have been applied to a large number of unconstrained and

constrained application problems and have obtained very promising results�

��� Outline of Thesis

This thesis is divided into two parts� In the �rst part� which consists of Chapters �

and �� we review existing methods for handling nonlinear constraints and overcoming local

minima and present our new methods� In the second part� which consists of Chapters �� ��

and �� our proposed methods are applied to solve some application problems formulated as

unconstrained and constrained continuous and discrete optimization problems� Figure ���

shows the organization of this thesis�

Many problems in engineering can be formulated as optimization problems� Most op�

timization problems have multi�modal objective functions� i�e�� there exists more than one

local optimum� and possibly nonlinear constraints� Local optimization techniques� which

stop at identifying local optima� are not suitable for such problems� Mechanisms of handling

nonlinear constraints and overcoming local minima are two important aspects of solving

nonlinear optimization problems�

In Chapter �� we address issues in handling nonlinear constraints� We �rst review existing

methods to deal with nonlinear constraints in continuous and discrete problems� and intro�

duce the classical Lagrangian theory� Then� we propose a new method based on Lagrange

multipliers� which employs adaptive control of relative weights between the objective and

the constraints to achieve faster and more robust convergence� To solve discrete constrained

problems� we extend Lagrangian theory for continuous problems to discrete problems� and

present a new discrete Lagrangian method� For both continuous and discrete problems� we
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transform constrained problems into unconstrained problems based on Lagrange multipli�

ers� The transformed unconstrained problems are further solved by local� and global�search

methods�

In Chapter �� we address issues in overcoming local minima� We �rst review existing

nonlinear optimization techniques� including local� and global�search methods� and iden�

tify advantages and disadvantages of these optimization methods� Then� we present a new

deterministic global search method� our proposed trace�based method� Beginning with an

example� we introduce the overall framework of the method� We then present each com�

ponent of the method and discuss them in detail� Our trace�based method employs an

innovative global search strategy that combines global search and local search e
ciently� Its

unique trace�based global search techniques make it stand out among existing global search

techniques and pose great potential in generating improved performance on real�world ap�

plications� An implementation of the trace�based method� Novel �an acronym for Nonlinear

Optimization Via External Lead� is then presented�

In Chapter �� we present the application of Novel to solve non�trivial unconstrained

nonlinear optimization problems� The application is neural network learning� First� we

describe the neural network learning problem and survey existing learning methods� The

learning problem of many types of neural network can be formulated as an optimization

problem� Also� many neural network learning algorithms can be traced back to optimization

methods� Then� we present experimental results of Novel in solving some neural�network

benchmark problems� and compare the results with those of other global search methods�

The results obtained by Novel are phenomenal and show signi�cant improvement in terms

of learning error and network size�

In Chapter �� we apply our adaptive Lagrangian method and Novel to solve nonlinear

constrained optimization problems� The application is the design of quadrature�mirror��lter

�QMF digital �lter banks� We �rst introduce the �lter�bank design problem� which has mul�

tiple objectives to be optimized� Then� we summarize existing approaches and present our

nonlinear constrained optimization formulation� which is solved by our adaptive Lagrangian

method and Novel� In our experiments� we solve a set of QMF �lter�bank design problems�

For all the test problems� our results improve previous results� and are also better than
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those obtained by other methods� Using our constrained formulation� we have also studied

performance tradeo�s among di�erent design objectives�

In Chapter �� we present the application of our discrete Lagrangian methods �DLM to

solve discrete optimization problems� including satis�ability �SAT� maximum satis�ability

�MAX�SAT� and the design of multiplierless QMF �lter bank problems� The satis�ability

problem is the core of NP�complete problems and is signi�cant in computer science research�

We �rst summarize various formulations and the corresponding methods for solving this

problem� Then we present three versions of DLM to solve SAT problems� A large number of

SAT benchmark problems are used in our experiments� Our experimental results show that

DLM usually performs better than the best existing methods and can achieve � to � order�

of�magnitude speedup for many problems� MAX�SAT is a general case of SAT� We have

also applied DLM to solve MAX�SAT test problems� In our experiments� DLM generally

�nds better solutions and is usually two orders of magnitude faster than competing methods�

Finally� we apply DLM to design multiplierless QMF �lter banks� DLM has obtained high�

quality designs with less computation and hardware implementation costs than real�value

designs�

Finally� in Chapter 	� we summarize the work we have presented in this thesis and propose

future directions to extend and enhance this research�

��� Contributions of This Research

The following are the main contributions of this thesis�

	 Adaptive Strategy to Handle Nonlinear Constraints Chapter ��� We have proposed

Lagrange�multiplier�based methods to handle nonlinear constraints� and have devel�

oped an adaptive and robust strategy to speed up the search for saddle points�

	 Discrete Lagrangian Method Section ����� We have extended the classical Lagrangian

theory to discrete problems and have developed the discrete Lagrangian method �DLM

that works on discrete optimization problems directly and e
ciently�
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	 Innovative Trace�based Global Search to Overcome Local Minima Chapter ��� We

have proposed a trace�based global search method consisting of a coarse�level and �ne�

level global�search phase and a local�search phase� Each phase addresses a di�erent

aspect of the global search� Collectively� they constitute a powerful method that �nds

global optima faster� or �nds good solutions in a short amount of time� Our unique

trace�based global search strategy overcomes local minima in a continuous fashion�

	 Global Search Approach for Neural�Network Learning Chapter ��� We have applied

the new trace�based global search method to neural�network learning� The method

has shown substantial performance advantage over existing neural�network learning

algorithms and other global search methods�

	 Global Search Approach for Digital Filter�Bank Design Chapter ��� We have ap�

plied our adaptive Lagrangian method and trace�based global search to the design of

quadrature�mirror��lter digital �lter banks� We have found designs that are better

than previous results� as well as better than those obtained by simulated annealing

and genetic algorithms�

	 Discrete Lagrangian Method for Solving Discrete Problems Chapter ��� We have ap�

plied our discrete Lagrangian method� DLM� to solve a large number of satis�ability

and maximum satis�ability problems� We have obtained signi�cant performance im�

provement over the best existing methods� DLM has also been applied to the design of

multiplierless QMF �lter banks �mainly by Mr� Zhe Wu� another student in the group�

We have found high�quality designs with a fraction of computation and implementation

costs�
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�� HANDLING NONLINEAR CONSTRAINTS

A nonlinear constrained optimization problem consists of a nonlinear objective function

and a set of possibly nonlinear constraints� Compared with unconstrained optimization

problems� constrained problems have the additional requirement of satisfying constraints�

Naturally� how to handle constraints is the �rst issue to be addressed�

Constrained problems are continuous or discrete depending on their variable domains�

Continuous problems are de�ned over continuous variables� while discrete problems are de�

�ned over discrete variables� Continuous and discrete problems have di�erent characteristics�

and their solution methods are also di�erent�

Constraints in continuous constrained problems have linear or nonlinear forms� Linear

constraints are relatively easy to handle� For example� variable substitution and other trans�

formation methods can be used to eliminate linear constraints as well as some variables ������

Some linear constrained optimization problems� including linear programming and quadratic

programming� have been studied extensively and can be solved by e
cient algorithms devel�

oped in the past ���������������� General nonlinear constrained problems are more di
cult

and have been an active research topic in recent years �������������

Discrete constrained problems can have linear or nonlinear constraints� In contrast to

continuous problems� linear constrained discrete problems can have high computational com�

plexity and be expensive to solve due to their large search space� Nonlinear constraints can

be transformed into linear constraints after introducing dummy variables ������
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In this chapter� we focus on issues in handling nonlinear constraints� We �rst review ex�

isting methods for constrained continuous and discrete problems� and introduce classical La�

grangian theory for handling nonlinear constraints� Then� we propose a Lagrange�multiplier�

based method with adaptive control� This method dynamically adjusts the relative weights

between the objective and the constraints to achieve faster and more robust convergence to

saddle points� To solve discrete problems� we extend Lagrangian theory from the continuous

domain to the discrete domain� and present a new discrete Lagrangian method�

In general� our approach of handling nonlinear constraints is to transform both con�

tinuous and discrete constrained problems into unconstrained formulations using Lagrange

multipliers� and solve them using local� and global�search methods�

��� Previous Work

Methods to handle nonlinear constraints take one of the two approaches� transformational

or non�transformational� In non�transformational approaches� optimal solutions are searched

directly based on the objective and the constraints� Examples are rejecting�discarding meth�

ods� repairing methods and reduced�gradient methods� In transformational approaches� the

original constrained problem is transformed into another� usually a simple form� before being

solved� Figure ��� shows a classi�cation of nonlinear constrained methods�

����� Nontransformational Approaches

Non�transformational approaches work on the original problem directly by searching

through its feasible regions for the optimal solutions� They stay within the feasible re�

gions and try to improve the objective values� Methods in this category include reject�

ing�discarding methods� repairing methods� and reduce�gradient methods ��� ���� ���� ����

���������	��� The advantages of these methods are �a their feasible termination points and

�b their convergence to a local constrained minimum� Their disadvantages are �a their re�

quirement of an initial feasible point and �b the di
culty to remain within a feasible region

when constraints are nonlinear�
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Figure ���� Classi�cation of methods to handle nonlinear constraints� Our new method
presented in this chapter is a variation of the Lagrangian method�

Rejecting�discarding methods take the general strategy that infeasible solutions are

dropped during the search process for optimal solutions� and only feasible solutions are

accepted ���������� This strategy is simple� easy to understand� and easy to implement� Its

disadvantage is that it is ine
cient if a feasible region is di
cult to �nd� which happens

when the optimization problem is highly constrained and the feasible region is irregular�

When a feasible region is small and not easy to �nd� these methods spend most of the time

in generating and rejecting infeasible candidate solutions�

Repairing methods ����� attempt to maintain feasibility by repairing moves that go o�

a feasible region� Infeasible solutions are transformed into feasible ones with some repair�

Usually� repairing methods are problem�speci�c� Restoring feasibility may be as di
cult as

the original optimization problem�

Reduced�gradient methods search along gradient or projected gradient directions within

feasible regions ������������	��� They perform well if constraints are �nearly linear�� When

possible� these methods �rst eliminate equality constraints and some variables� The original

problem is reduced to a bound�constrained problem in the space of the remaining variables�

Variables are divided into two categories� �xed and superbasic� Fixed variables are those that

are at either upper or lower bounds� and that are to be held constant� Superbasic variables
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are free to move� A standard reduced�gradient algorithm searches along the steepest�descent

direction in the superbasic variable space�

In short� non�transformational methods work directly on constraints of the constrained

optimization problem� They explicitly handle infeasible points during the search and do not

transform the original constrained problem� These methods do not work well if a feasible

starting point is di
cult to �nd and the feasible region is nonlinear and irregular�

����� Transformational Approaches

Transformational approaches convert a constrained problem into another form before

solving it� Well�known methods include penalty methods� barrier methods� Lagrangian

methods� and sequential quadratic programming methods �������������������������

Penalty methods approximate a constrained problem by an unconstrained problem that

assigns high cost to points far from the feasible region� Barrier methods� on the other hand�

approximate a constrained problem by an unconstrained problem that assigns high cost to

being near the boundary of the feasible region� Unlike penalty methods� these methods are

applicable only to problems having a robust feasible region�

Penalty methods handle constraints based on penalty functions ����� ���� ���� ����� A

penalty term that re�ects the violation of the constraints is added to the objective function

to form a penalty function� A constrained optimization problem is transformed into a single

or a sequence of unconstrained optimization problems minimizing penalty functions� Un�

constrained optimization methods are used to �nd optimal solutions of the unconstrained

problem� As the penalty parameter on each constraint is made large enough� the uncon�

strained problem has the same optimal solution as the original constrained problem�

Penalty methods are simple and easy to implement� However� �nding the appropriate

penalty parameters for a speci�c problem instance is not trivial� If the penalty parameters

are too large� constraint satisfaction dominates the search� which converges to any feasible

point that may be far from the optimum� Also� large penalty terms make the penalty

function space very rugged and di
cult to search for good solutions� On the other hand�

if the penalty parameters are too small and constraint violations do not have large enough
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weights� the optimal solution based on the penalty function may not be feasible� Usually�

penalty methods require tuning penalty coe
cients either before or during the optimization

process�

Barrier functions are similar to penalty functions except that barriers are set up to

avoid solutions from going out of feasible regions ���� ���� ����� Barriers are derived from

constraints� Examples of barrier functions are those that introduce logarithms of the in�

equalities in the objective function� Barrier methods transform constrained problems into

unconstrained problems and minimize barrier functions� Basically� they work inside feasible

regions and search for optimal feasible points� Barrier methods usually require a feasible

starting point and have di
culty in situations in which feasible regions of a set of nonlinear

constraints are hard to identify�

Lagrangian and augmented Lagrangian methods use Lagrange multipliers to combine

constraints with the objective function to form a Lagrangian function� The original con�

strained problem is transformed into an unconstrained problem based on the Lagrangian

function� By introducing Lagrange multipliers� constraints can be gradually resolved through

iterative updates� Lagrangian and augmented Lagrangian methods manage numerical sta�

bility and achieve high accuracy at a price of an increased number of problem dimen�

sions �����������������

Penalty� barrier� and Lagrangian methods transform a constrained problem into an un�

constrained form before solving it� In contrast� sequential quadratic programming �SQP

methods approximate the original problem using quadratic programming problems ���������

They solve a series of successive quadratic approximations of a nonlinear constrained prob�

lem� In its purest form� SQP methods replace the objective function by a quadratic approx�

imation and replace the constraint functions by linear approximations� A set of quadratic

subprograms is solved� If the starting point is su
ciently close to the local minimum� SQP

methods converge at a second�order rate�

Feasible sequential quadratic programming methods are variations of SQP methods in

which all iterations work on feasible points ����� ����� They are more expensive than stan�

dard SQP methods� but are useful when the objective function is di
cult or impossible to
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calculate outside the feasible set� or when termination of the algorithm at an infeasible point

is undesirable�

Among these transformational approaches of handling nonlinear constraints� Lagrangian

methods are general� robust� and can achieve high degrees of precision� Penalty methods

have di
culty in choosing appropriate penalty coe
cients� Barrier methods do not work well

when the feasible region is small and hard to �nd� SQP methods have to start close to local

minima to perform well� Therefore� we use Lagrange multipliers for constraint relaxation in

developing our algorithm� In the next section� we brie�y introduce Lagrangian theory for

continuous constrained problems and Lagrangian methods�

����� Existing Lagrangian Theory and Methods

Lagrangian methods are classical methods for solving continuous constrained optimiza�

tion problems �������������� The basic form of the Lagrangian method works with equality

constraints� while inequality constraints are �rst transformed into equality constraints� In

this section� we �rst introduce Lagrangian theory for equality constrained problems and re�

lated Lagrangian methods� Then� we present methods that transform inequality constraints

into equality ones�

Given an equality constrained optimization problem as follows�

minx�Rn f�x ����

subject to h�x � �

where x � �x�� x�� � � � � xn� and h�x � �h��x� h��x� � � � � hm�x are m constraints� The

corresponding Lagrangian function L�x� � is de�ned by

L�x� � � f�x �
mX
i��

�ihi�x ����

where � � ���� � � � � �m are Lagrange multipliers� The augmented Lagrangian function is a

combination of Lagrangian and penalty function as follows�

L�x� � � f�x �
mX
i��

�ihi�x �
�

�
jjh�xjj�� ����
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The augmented Lagrangian function often provides better numerical stability and conver�

gence�

De	nition ����� A point x� satisfying the constraints h�x� � � is said to be a regular point

of the constraints if the gradient vectors rhi�x�� i � �� � � � �m are linearly independent�

The tangent plane at regular points can be characterized in terms of the gradients of the

constraint functions�

Firstorder necessary conditions� Let x� be a local minimum of f subject to constraints

h�x � �� and x� be a regular point of these constraints� Then there exists � � Rm such

that

rxL�x
�� � � � and r�L�x

�� � � � ����

The conditions in ���� are not su
cient to have the existence of a constrained local mini�

mum of f�x unless second� or higher�order derivatives of f�x also satisfy certain conditions�

An example of second�order su
cient conditions is as follows ������

Secondorder su�cient conditions� Suppose there exist points x� and �� � Rm such

that

rxL�x
�� �� � � and r�L�x

�� �� � � ����

Suppose also that matrix r�
x
L�x�� �� is positive de�nite on the tangent plane M � fz �

rh�x�z � �g� that is� ytr�
x
�x�� ��y 	 � for all y �M and y �� �� Then x� is a strict local

minimum of f�x� � subject to h�x � ��

The necessary conditions in ���� form a system of n�m equations with n�m unknowns�

When the equations are nonlinear� it is di
cult to solve them analytically� Numerical meth�

ods �nd solutions satisfying the necessary conditions through the search of saddle points�

De	nition ����� A saddle�point �x�� �� of Lagrangian function L�x� � is de�ned as one

that satis�es the following condition�

L�x�� � � L�x�� �� � L�x� �� ����

��



for all �x�� � and all �x� �� su�ciently close to �x�� ���

The following theorem states the relationship between local minima and saddle points�

Here� we present the proof for equality�constrained problems� Similar proofs have been

derived for continuous problems with inequality constraints ����� ���� ����� This proof will

be used when we extend Lagrangian theory to discrete optimization problems in Section ������

SaddlePoint Theorem� x� is a local minimum to the original problem de�ned in ����

if there exists �� such that �x�� �� constitutes a saddle point of the associated Lagrangian

function L�x� ��

Proof� Since �x�� �� is a saddle point� L�x�� � � L�x�� �� for � su
ciently close to ���

From the de�nition of the Lagrangian function� this implies

mX
i��

�ihi�x
� �

mX
i��

��i hi�x
��

Our proof is by contradiction� Suppose there exists some k� � � k � m� hk�x� �� ��

If hk�x� 	 �� then vector � � ����� � � � � ��k � �� � � � � ��m would violate the inequality for

a positive �� If hk�x� 
 �� then vector � � ����� � � � � ��k � �� � � � � ��m would violate the

inequality for a positive �� Therefore� h�x� � �� and x� is a feasible solution to the problem�

Since �x�� �� is a saddle point� L�x�� �� � L�x� �� for x su
ciently close to x�� From

the de�nition of Lagrangian function�

f�x� � f�x �
mX
i��

��ihi�x�

Thus� for any feasible x� h�x � �� and we have

f�x� � f�x�

So x� is a local minimum�
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A saddle�point is a local minimum of Lagrangian function L�x� � in the x space and a

local maximum of L�x� � in the � space� One typical way to �nd saddle points is to descend

in the x space and ascend in the � space�

Lagrange multipliers � can also be viewed as penalties associated with constraints� and

Lagrangian function L corresponds to a penalty function� When some constraints are not

satis�ed� the sum of unsatis�ed constraints� weighted by the corresponding Lagrange mul�

tipliers� are added to the objective function to form a penalty function� Ascents of L in

the � space� therefore� correspond to increasing the penalties associated with unsatis�ed

constraints� As L is minimized� the penalties will eventually increase to a point that pushes

the constraints to be satis�ed� Likewise� descents of L in the x space �nd a local minimum

when all the constraints are satis�ed�

Based on the Saddle�Point Theorem� numerical algorithms have been developed to look

for saddle points that correspond to local minima in the corresponding search space� One

typical method is to do descents in the original variable space of x and ascents in the

Lagrange�multiplier space of � �	� ��� ���� ����� This method can be written as a system of

ordinary di�erential equations �ODEs as follows�

dx

dt
� �rxL�x� � and

d�

dt
� r�L�x� � ���	

where t is an autonomous time variable� This dynamic system evolves over time t and

performs gradient descents in the original variable space of x and gradient ascents in the

Lagrange�multiplier space of �� When the system reaches an equilibrium point where all

the gradients vanish� a saddle point of Lagrangian function L is found� In other words�

given an initial point� the system will not stop until a saddle point �a local minimum of the

constrained optimization problem is reached�

Methods based on solving ���	 are local search methods� When applied� an initial

assignment to x and � are �rst given� and the local solution will be the very saddle point

reached from this initial point� After reaching the saddle point� the solution will not improve

unless a new starting point is selected� Note that nonlinearity can cause chaos in which a

small variation in the initial point can lead to a completely di�erent solution� This happens
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when ���	 are solved using �nite�step discrete methods� In this case� over�shoots and under�

shoots can lead to unpredictable and perhaps undesirable solutions�

Besides the method that solves ���	 as a system of ordinary di�erential equations� other

Lagrangian methods are based on successive minimization of the Lagrangian function with

respect to the original variables� with updates of the Lagrange multipliers between iterations�

max
��Rm

min
x�Rn

L�x� � ����

Unconstrained optimization methods� such as Newton�s method� are applied to solve the

minimization problem with �xed �� These methods are approximation of the approach to

solve a system of ODEs� They are faster but not as accurate�

Lagrangian methods �nd local minima in the constrained space� From an initial assign�

ment to x and �� the search converges to a saddle point corresponding to a local solution�

After reaching the saddle point� the solution will not change unless restarted from a new

initial point� Note that nonlinearity can cause chaos in which a small variation in the initial

point can lead to a completely di�erent �nal solution�

We have discussed Lagrangian theory and methods that work on equality constraints�

Inequality constraints are transformed into equality constraints to be solved� One trans�

formation method� the slack�variable method� introduces slack variables for inequality con�

straints ������ For example� an inequality constraint� g�x � �� is transformed into equality

constraint g�x � z� � � with the addition of slack variable z � R�

For an inequality�constrained problem�

min
x�Rn

f�x ����

s�t� gj�x � � j � �� � � � �m�

after introducing slack variables z � �z�� z�� � � � � zm� the corresponding augmented La�

grangian function is

Lz�x� z� � � f�x �
mX
j��

�
�j�gj�x � z�j  �

�

�
jgj�x � z�j j�

�
� �����

��



At a saddle point� Lz�x� z� � is at a local minimum with respect to x and z and at a local

maximum with respect to �� From the local minimum condition of Lz with respect to z at

a saddle point� the following solution can be derived�

z�j � max����gj�x� �j �����

After substituting ����� into ������ we have

Lz�x� � � f�x �
�

�

mX
j��

�max���� �j � gj�x� ��j  �����

In this augmented Lagrangian function� slack variables z have been removed� Lagrangian

methods �nd saddle points of this function by doing descents in the x space and ascents in

the � space�

����� Discrete Optimization

Discrete optimization problems usually have �nite search spaces� However� they are

di
cult to solve due to the enormous size of their search spaces� which grow explosively

with the number of discrete variables� The immense size of the search space rules out the

possibility of completely enumerating all solutions� except for trivial problems� Often� only

a small fraction of the search space can be enumerated�

Some discrete problems can be solved without enumeration at all� Unfortunately� the

state of our present knowledge leaves most discrete optimization problems in the enumeration�

required category ������

The di
culty of discrete problems is addressed in complexity theory� Mathematicians

and computer scientists have studied complexity for many years� In early ��	�s� the seminal

papers of Cook ���� and Karp ����� profoundly a�ected the research of complexity� Complex�

ity theory tries to classify problems in terms of the mathematical order of the computational

resources required to solve a problem� Categories of computational orders include �� compu�

tation that grows logarithmically �or better with problem size� �� computation that grows

polynomially� and �� computation that grows worse than polynomially� e�g� exponentially�
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Many complexity theories for discrete problems were developed on a class of succinctly

de�ned problems called decision problems� Decision problems are solved by a yes or no answer

to all input� rather than by a solution or an optimal value� Discrete optimization problems

are converted to their decision�problem counterparts by asking the question of whether there

is a feasible solution to a given problem with the value of the objective function equal to or

smaller than a speci�ed threshold�

The di
culty of decision problems ranges from the best solved Class P� to undecidable

ones that are proved not solvable by any algorithm� Class P contains the set of all problems

solved by polynomial�time complexity algorithms� Class NP �which stands for nondeter�

ministic polynomial contains more di
cult problems� NP includes all decision problems

that can be answered in polynomial time if the right polynomial�length guess is provided�

Problems in NP can be solved by total enumeration of polynomial�length solutions� It is

widely believed that P �� NP�

Class NP contains Class P� and also includes many problems not in P� Problems to which

all members of NP polynomially reduce are called NP�hard� The �rst NP�hard problem is

the satis�ability problem found by Cook in ��	�� This is followed by the discovery of a rich

family of NP�hard problems� NP�hard problems are as di
cult to solve as any problem of NP�

Problems that are both NP�hard and members of NP are called NP�complete� NP�complete

problems form an equivalence class� if any NP�complete problem has a polynomial�time

algorithm� then all NP�complete problems are solvable in polynomial time� The satis�ability

problem is the �rst NP�complete problem�

NP�complete problems only contain decision problems� Many discrete optimization prob�

lems have an NP�complete threshold decision counterpart� For example� a traveling salesman

problem is an optimization problem that �nds the minimal tour length in a graph� Its corre�

sponding decision problem is whether there exists a tour with a speci�c length in the graph�

This decision problem is NP�complete� The original optimization problem is harder than

the decision problem� If there is an algorithm that solves the original optimization problem

in polynomial time� the decision problem can also be solved in polynomial time� Hence�

optimization problems are NP�hard� In this thesis� we focus on NP�hard problems�
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Discrete Optimization Methods

Local Stochastic
improvement methods

Cutting
plane

Partial-
enumeration

Exact

Tabu search

Inexact

Figure ���� Classi�cation of discrete optimization methods�

Methods to solve NP�hard problems are either exact or inexact� Exact methods guarantee

solution quality ���� ��� ��	� ���� ��	�� while inexact approaches return suboptimal solutions

with no optimality guarantee �������������� NP�hard problems have exponential time com�

plexity in the worst case� Figure ��� shows a classi�cation of discrete optimization methods

discussed in this section�

Two main classes of exact methods are partial enumeration and cutting�plane methods�

Partial enumeration methods systematically decompose a large search space into smaller

tractable ones� When feasible regions are easy to identify� each search space consists of

only feasible points� On the other hand� when feasible points are not obvious� each search

space often consists of infeasible points� and a sequence of infeasible points are enumerated to

approach feasible and minimal solutions� Branch�and�bound methods are well�known partial

enumeration methods �������������	���

Cutting plane and polyhedral description methods proceed by re�de�ning the given prob�

lem better and better until it becomes tractable �����	������ More constraints� usually linear

constraints� are introduced to re�de�ne the feasible region� Regions containing the optimal

solution are re�ned� and unpromising regions are excluded from further search�

Almost all discrete optimization problems can be expressed in the form of integer linear

programs �ILP� General discrete models are transformed into the ILP format at the cost

of introducing a large number of variables and constraints� Therefore� the transformed ILP
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formulations could be more expensive to solve than the original problems� Many discrete

problems have been solved e
ciently by problem�speci�c algorithms that exploit the under�

lying combinatorial structure� which is not present in general ILP formulations and thus not

addressed by general algorithms�

Although exact methods solve many practical problems� NP�hard problems eventually

reach sizes where exact methods are impractical� and inexact approaches are the only choice�

Inexact approaches settle for suboptimal solutions� A basic requirement of an inexact method

is e
ciency� which means stopping the method in polynomially�bounded time�

Inexact �heuristic or approximation methods have been increasingly applied to solve

real�world discrete optimization problems� Examples of inexact search methods are local im�

provement �������������	��	������������	������ stochastic methods �������������������� and

tabu search ���� ���� ����� They work with both transformational and non�transformational

approaches to handle constraints�

In local improvement �neighborhood search� a search proceeds by sequential improve�

ment of problem solutions� advancing at each step from a current solution to a superior

neighbor� For constrained problems with unknown feasible solutions� a two�phase approach

is applied� Beginning with an infeasible solution� local improvement �rst minimizes the in�

feasibility of the solution� If a feasible solution is discovered� the search is switched to an

optimizing phase starting from the feasible solution�

In local improvement� a search is trapped by a local minimum when all neighbors are

worse than the current point� Global search strategies have been developed in order to get

out of local minima� Examples are multi�start �or random restart� simulated annealing

�SA� genetic algorithms �GAs� tabu search� and other variations of randomized adaptive

search methods�

In multi�start� the search escapes from a local minimum by jumping to a new� randomly

generated starting point� Local improvement is performed until a local minimum is reached�

Then� a new initial point is generated from which local improvement starts again� The best

solution found is remembered and reported when the search terminates�
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SA and GA use more sophisticated probabilistic mechanisms to escape from local minima�

SA adds a stochastic mechanism to local improvement ������������������� Starting from an

initial point� SA probes nearby points whose objective value� or possibly constraint values�

is evaluated� When minimizing a function� any down�hill movement is accepted� and the

process is repeated from this new point� An uphill movement may be accepted� and by

doing so SA escapes from a local minimum� Uphill decisions are made according to the

Metropolis criteria� As the minimization process proceeds� the distance between the probed

point and the current point decreases� and the probability of accepting uphill movements

decreases as well� The search converges to a local �sometimes global minimum at the end�

GA is based on the computational model of evolution ���� ��� ���� ����� GAs maintain a

population of individual points in the search space� and the performance of the population

evolves to be better through selection� recombination� mutation� and reproduction� The

�ttest individual has the largest probability of survival� The population evolves to contain

better and better individuals and eventually converges to a local �sometimes global minimum

at the end�

SA and GA have been widely used to solve NP�hard problems� SA and GA achieve

more success in solving discrete problems than continuous problems� They perform a search

based on the objective �or �tness function values� which makes them work well for discrete

problems that do not have gradient information�

Tabu search was �rst introduced by Glover ����� In tabu search� a tabu list containing

historical information is maintained during the search� In each iteration� a local improvement

is performed� However� moves that lead to solutions on the tabu list are forbidden� or are

tabu� If there are no better solutions in the neighborhood� the tabu search moves to the best

neighboring solution� The tabu list prevents returning to the local optimum from which the

search has recently escaped� Tabu search has obtained good results in solving some large

discrete optimization problems �������������������
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��� Proposed Methods for Handling Nonlinear Constraints

In this section� we present a new Lagrangian formulation to handle inequality constraints

and propose new methods to search for saddle points of Lagrangian functions more e
ciently�

Our method employs adaptive control of relative weights between the objective and the

constraints to achieve faster and more robust convergence� We� then� extend Lagrangian

theory to discrete problems� and present a new discrete Lagrangian method to solve discrete

constrained problems� Our approach of solving continuous and discrete constrained problems

is to transform them into Lagrangian formulations� and then search for the corresponding

saddle points�

����� Handling Continuous Constraints

We use Lagrange multipliers to handle nonlinear constraints� Lagrange�multiplier theory

works well on equality constraints� but cannot directly deal with inequality constraints�

Often� inequality constraints are �rst converted to equality constraints before Lagrange�

multiplier methods are applied�

We have applied two methods to convert inequality constraints to equality constraints�

the slack�variable method and the MaxQ method� Recall the general constrained problem as

follows�

min
x�Rn

f�x �����

s�t� hi�x � � i � �� � � � �m�

gj�x � � j � �� � � � �m�

In the slack�variable method introduced in the last section� inequality constraints are

transformed to equality constraints by introducing Lagrange multipliers

� � ���� � � � � �m�
� �m�	�� � � � � �m�	m�

�

�	



The augmented Lagrangian function of ����� is

Lz�x� � � f�x � ���� � � � � �m�
Th�x �

�

�
jjh�xjj�� �����

�
�

�

m�X
j��

�max���� �m�	j � gj�x� ��m�	j
�

The �rst�order derivatives of Lz�x� � with respect to x and � are

�Lz�x� �

�xi
�

�f�x

�xi
�

m�X
k��

��k � hk�x
�hk�x

�xi
�

m�X
k��

�
max��� �m�	k � gk�x

�gk�x

�xi

�

�Lz�x� �

��j
� hj�x� j � �� � � � �m�

�Lz�x� �

��m�	j
� max��� �m�	j � gj�x� �m�	j � j � �� � � � �m�

The other method we have applied to convert inequality constraints is the MaxQ method

developed by Mr� Tao Wang� another student in our group ��	���	��� In the MaxQ method�

the maximum function is used to convert an inequality constraint into an equality constraint�

i�e��

gj�x � � � max��� gj�x
qj � �

where� qj 	 �� �j � �� �� � � � �m� are control parameters� Inside the feasible region� constraint

gj�x � �� hence� max��� gj�xqj � �� In contrast to that in the slack�variable method�

constraints have no e�ect inside feasible regions�

In the MaxQ method� the augmented Lagrangian function of ����� is

Lq�x� � � f�x � ���� � � � � �m�
Th�x �

�

�
jjh�xjj�� �����

�
m�X
j��

�m�	jmaxqj��� gj�x �
�

�

m�X
j��

max�qj��� gj�x
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When the qjs are constant� the �rst�order derivatives of Lq�x� � with respect to x and � are

�Lq�x� �

�xi
�

�f�x

�xi
�

m�X
j��

�m�	jqj
�gj�x

�xi
maxqj����� gj�x

�
m�X
j��

qj
�gj�x

�xi
max�qj����� gj�x �

m�X
k��

��k � hk�x
�hk�x

�xi

�Lq�x� �

��j
� hj�x� j � �� � � � �m�

�Lq�x� �

��m�	j
� maxqj��� gj�x� j � �� � � � �m�

qj must be larger than � in order for the term maxqj����� gj�x to exist�

Based on the Lagrangian function and its gradients� we search for saddle points by

performing gradient descents in the original variable x space and ascents in the Lagrange�

multiplier � space� The search is modeled by the following system of ordinary di�erential

equations �ODEs�

dx�t

dt
� �rxLz�x�t� ��t �����

d��t

dt
� r�Lz�x�t� ��t

This system of ODEs is solved as an initial�value problem� which converges to a saddle point

corresponding to a local minimum of the original constrained optimization problem�

The convergence behavior of the slack�variable method is di�erent from that of the MaxQ

method when the saddle point is on the boundary of a feasible region� When a saddle point is

inside a feasible region� and the initial point of the search is also inside the feasible region and

close to the saddle point� the search trajectories of both methods can be similar� However�

when a saddle point is on the boundary� the search trajectories of these two methods are

usually di�erent� even when they start from the same initial point�

When a saddle point is on the boundary of a feasible region� the slack�variable method

approaches the saddle point from both inside and outside the feasible region� The search
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(b) Oscillation around a saddle point (c) Divergence to infinity(a) Convergence to a saddle point 

Figure ���� Illustration of the search trajectories using the slack�variable method when the
saddle point is on the boundary of a feasible region� f�x is an objective function
of variable x� The search can �a converge to a saddle point� �b oscillate around
a saddle point� or �c diverge to in�nity�

trajectory oscillates around the saddle point and converges when the magnitude of oscillations

goes to �� In some situations� the magnitude of oscillations does not reduce� or even increases�

causing the search to diverge eventually� Depending on the initial point and the relative

magnitude of the objective function and the constraints� the search trajectory could end up

in one of three di�erent states as illustrated in Figure ����

	 convergence to a saddle point�

	 oscillations around a saddle point� and

	 divergence to large values and eventually to in�nity�

The �rst state is desirable� while the other two states should be avoided� Oscillations

and divergence happen when the accumulated force of the constraints becomes too large�

The constraints accumulate momentum during the search in infeasible regions� which is

represented as the values of corresponding Lagrange multipliers� When the search enters a

feasible region� the momentum of the constraint force makes the search to go way deep into

the feasible region� At this point� the objective and the corresponding gradient can become

large� Eventually� the descent force on the objective dominates the constraint force� and
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(a) Starting from inside the feasible region (b) Starting from outside the feasible region

Figure ���� Illustration of the search trajectory using the MaxQ method when the saddle
point is on the boundary of a feasible region� f�x is the objective function�
The search starts from inside �left or outside �right the feasible region� In
both cases� the search trajectory eventually approaches the saddle point from
outside the feasible region�

the search trajectory follows gradient descent on the objective function and goes outside the

feasible region again�

We have found that by appropriate scaling the relative weights between the objective

function and the constraints� oscillations and divergence can be reduced or eliminated� Usu�

ally� when constraints have large weights� the search can successfully converge to a saddle

point� Scaling can also speed up convergence�

Comparing to the slack�variable method� the MaxQmethod does not have the problems of

oscillations and divergence when the saddle point is on the boundary of a feasible region� The

MaxQ method approaches the convergence point on the boundary asymptotically from the

outside the feasible region� The closer it gets to the boundary� the slower it goes� Figure ���

illustrates the situations when the search starts from either inside or outside a feasible region�

In both cases� the search trajectory eventually approaches the saddle point from outside the

feasible region� The MaxQ method converges slowly when the search approaches a saddle

point on the boundary of a feasible region�

There are two ways to speed up the convergence of the MaxQ method� The �rst one is to

scale the weights between the objective function and the constraints in a way similar to that
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in the slack�variable method� Another way is to convert inequality constraints to equality

constraints based on certain convergence conditions� After the conversion� convergence is

usually much faster�

In both the slack�variable and the MaxQ methods� saddle points are searched by doing

descents in the original�variable space and ascents in the Lagrange�multiplier space� For

continuous problems whose �rst�order derivatives of the objective and the constraints exist�

gradient descents and ascents are modeled by a system of ODEs and solved by an ODE solver�

For discrete problems� derivatives of the objective function and the constraints do not exist�

Therefore� descents are performed by some heuristic local search� e�g�� hill�climbing� Ascents

do not need derivatives and are only based on the values of constraint functions�

����� Convergence Speed of Lagrangian Methods

Lagrangian methods rely on two counteracting forces to resolve constraints and �nd

high�quality solutions� When constraints are satis�ed� Lagrangian methods rely on gradient

descents in the objective space to �nd high�quality solutions� On the other hand� when

constraints are not satis�ed� they rely on gradient ascents in the Lagrange�multiplier space

in order to increase the penalties on unsatis�ed constraints and to force the constraints into

satisfaction� The balance between gradient descents and gradient ascents depends on the

relative magnitudes of the Lagrange multipliers �� which play a role in balancing objective

f�x and constraints h�x and g�x and in controlling indirectly the convergence speed and

solution quality of the Lagrangian method� At a saddle point� the forces due to descent and

ascent reach a balance through appropriate Lagrange�multiplier values�

We show in this section that the convergence speed and�or the solution quality can be

a�ected by an additional weight w in the objective part of the Lagrangian function� This

results in a new Lagrangian function of the slack�variable method as follows�

Lo�x� � � w f�x � ���� � � � � �m�
Th�x �

�

�
jjh�xjj�� ����	

�
�

�

m�X
j��

h
max���� �m�	j � gj�x� ��m�	j

i
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where w 	 � is a static weight on the objective� When w � �� Lo�x� � � Lz�x� �� which is

the original Lagrangian function�

In general� adding a weight to the objective changes the Lagrangian function� which

in turn may cause the dynamic system to settle at a di�erent saddle point with di�erent

solution quality� This is especially true when the saddle point is on the boundary of a feasible

region� In this section we only show that the convergence time can be in�uenced greatly by

the choice of the initial weight when the Lagrangian method converges to the same saddle

points�

Starting from an initial point �x��� ���� the dynamic system to �nd saddle points is

based on ����� in which Lz is replaced by Lo�

dx�t

dt
� �rxLo�x�t� ��t �����

d��t

dt
� r�Lo�x�t� ��t

We solve this dynamic system using an ordinary di�erential equation solver LSODE� and

observe a search trajectory �x�t� ��t� When a saddle point is on the boundary of the

feasible region �which is true for most problems studied� the dynamic equation approaches

it from both inside and outside the feasible region�

Depending on the weights between the objective and the constraints� the convergence

speeds of Lagrangian methods can vary signi�cantly� There is no good method in selecting

the appropriate weights for a given problem� Our proposed dynamic weight�adaptation

algorithm adjusts the weights between the objective and the constraints dynamically based

on the search pro�le� It avoids selecting appropriate weights in the beginning� and achieves

faster and robust convergence than using static weights�

We use the ��e QMF �lter�bank design problem ����� to illustrate the convergence speed

of Lagrangian methods using static weights� Depending on the weight� w� of the objective

function� the convergence time of Lagrangian methods in solving the QMF design problem

�
LSODE is a solver for �rst�order ordinary di�erential equations� a public�domain package available from

http���www�netlib�org�

��



vary greatly� ranging from minutes to hours� even days� We use Johnston�s solution as our

starting point� This point is feasible as we use its performance measures as our constraints�

However� it is not a local minimum of the objective function� Experimentally� using static w

of ����� ����� and ���� represents the three convergence behaviors� objective over�weighted�

balanced objective and constraints� and constraint over�weighted�

For static weight w � ����� Figure ��� shows the dynamic changes of the objective�

the Lagrangian�function value� and the maximum violation as the search progresses� Note

that the trajectories of the objective and the Lagrangian�function values are overlapped

because constraint violations are small� As the starting point is not a local minimum of

the objective� the search descends in the original�variable x space as the objective value

decreases� In the meantime� the constraints are getting violated� As constraint violations

become large� the Lagrangian part slowly gains ground and pushes the search back toward

the feasible region� leading to increases in the objective value and decreases in the constraint

violation� Eventually� the constraint violation becomes �� and the objective value stabilizes�

The overall convergence speed to the saddle point is slow ������ CPU minutes at t � ������

Note that �uctuations of the maximum violation as well as the objective is due to inaccuracy

in numerical estimation of the function values and gradients�

Figure ��� shows the search pro�le using static weight w � ����� The objective and the

constraints are more balanced in this case� and the convergence time to the saddle point is

shorter �����	 CPU minutes at t � ���		 time units�

Figure ��	 shows the search pro�le using static weight w � ����� The constraints are

over�weighted in this case� and constraint satisfaction dominates the search process� The

trajectory is kept inside or very close to the feasible region� However� due to the small weight

on the objective� improvements of the objective are slow� causing slow overall convergence

to the saddle point ������ CPU minutes at t � 	�����

����� Dynamic Weight Adaptation

In this section� we propose a strategy to adapt weight w based on the behavior of the

dynamic system ����� in order to obtain high�quality solutions with short convergence

��
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Figure ���� Search pro�le with static weight w � ���� in designing a ��e QMF �lter bank�
The objective is over�weighted� and its values are reduced quickly in the begin�
ning� Later� the Lagrangian part slowly gains ground and pushes the search
back into the feasible region� The convergence time to the saddle point is long
������ CPU minutes at t � ������
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Figure ���� Search pro�le with static weight w � ���� in designing a ��e QMF �lter bank�
The objective and the constraints are balanced� and the convergence speed to
the saddle point is faster �����	 CPU minutes at t � ���		�
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Figure ��	� Search pro�le with static weight w � ���� in designing a ��e QMF �lter bank�
The constraints are over�weighted� and constraint satisfaction dominates the
search process� The trajectory is kept inside or very close to the feasible region�
However� the improvement of the objective value is slow� causing slow overall
convergence to the saddle point ������ CPU minutes at t � 	�����
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�� Select control parameters�
time interval �t
initial weight w�t � �
maximum number of iterations imax

�� Set window size Nw � ���� t or ��� t
�� j �� � � j is the iteration number  �
�� while j � imax and stopping condition is not satis�ed do
�� advance search trajectory by �t time unit to get to �xj� �j
�� if trajectory diverges then

reduce w� restart the algorithm by going to Step �
end if

	� record useful information for calculating performance metrics
�� if �mod�j�Nw �� � then

� Test whether w should be modi�ed at the end of a window  �
�� compute performance metrics based on data collected
��� change w if some conditions hold �see Figure ���

end if
��� end while

Figure ���� Framework of the dynamic weight�adaptation algorithm

times ������ In general� before a trajectory reaches a saddle point� changing the weight of

the objective may speed up or delay convergence� Further� when the trajectory is at a saddle

point� changing the weight of the objective may bring the trajectory out of the saddle point

into another� In this section� we exploit the �rst property by designing weight�adaptation

algorithms so that we can speed up convergence without a�ecting solution quality� We plan

to exploit the second property to bring a trajectory out from a saddle point in our future

work� We show in Chapter � a trace�based approach to bring the search trajectory out of

saddle points�

Figure ��� outlines the general strategy� Its basic idea is to �rst estimate the initial weight

w�t � � �Step �� measure the performance metrics of the search trajectory �x�t� ��t

periodically� and adapt w�t to improve convergence time or solution quality�

Let tmax be the total �logical time for the search� and tmax be divided into small units of

time �t so that the maximum number of iterations is tmax�� t� Further� assume a stopping
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condition if the search were to stop before tmax �Step �� Given a starting point x�t � �� we

set the initial Lagrange multipliers to be zero� i�e�� ��t � � � �� Let �xi� �i be the point of

the ith iteration�

To monitor the progress of the search trajectory� we divide time into non�overlapping

windows of size Nw iterations each �Step �� In each window� we compute some metrics to

measure the progress of the search relative to that of previous windows� Let vmax�i be the

maximum constraint violation and fi�x be the objective function value at the ith iteration�

For the mth window �m � �� �� � � � � we calculate the average �or median of vmax�i over all

the iterations in the window�

!vm �
�

Nw

mNwX
j�
m���Nw	�

vmax�j or !vm � median
m���Nw	� � j � mNwfvmax�jg �����

and the average �or median of the objective fi�x�

!fm �
�

Nw

mNwX
j�
m���Nw	�

fj�x or !fm � median
m���Nw	� � j � mNw
ffj�xg �����

During the search� we apply LSODE to solve the dynamic system ����� and advance the

trajectory by time interval �t in each iteration in order to arrive at point �xj� �j �Step ��

At this point� we test whether the trajectory diverges or not �Step �� Divergence happens

when the maximum violation vmax�j is larger than an extremely large value �e�g� ����� If

it happens� we reduce w by a large amount� say w �� w���� and restart the algorithm� In

each iteration� we also record some statistics� such as vmax�j and fj�x� that will be used to

calculate the performance metrics for each window �Step 	�

At the end of each window or everyNw iterations �Step �� we decide whether to update w

based on the performance metrics ����� and ����� �Step �� In our current implementation�

we use the averages �or medians of maximum violation vmax�i and objective fj�x� In

general� other application�speci�c metrics can be used� such as the number of oscillations of

the trajectory in nonlinear continuous problems� Based on these measurements� we adjust

w accordingly �Step ���

�	



Given performance measurements for the mth window
average �or median of the maximum violation� !vm
average �or median of the objective� !fm
number of oscillations� NOm

and application�speci�c constants ��� ��� ��� ��� �� 
�� Increase weight w�� w��� if

�c��� !vm��� !vm 
 �
�c��� ��jfm��j 	 fm�� � fm 	 ��jfm��j

�� Decrease weight w �� ��w if
�c��� !vm � �
�c��� !vm�� � !vm � ��!vm��

�c���

��
�NOm 
  �for continuous QMF design problems

NOm �  �for other continuous and discrete problems

Figure ���� Weight�adaptation rules for continuous and discrete problems �Step �� of Figure
����

Figure ��� shows a comprehensive weight�adaptation algorithm �Step ��� Scaling factors

� 
 ��� �� 
 � represent how fast w is updated� Because we use numerical methods to solve

the dynamic system de�ned in ������ a trajectory in window m is said to satisfy all the

constraints when vm 
 �� where � is related to the convergence condition and the required

precision� Parameters � 
 ��� �� 
 � control� respectively� the degrees of improvement over

the objective and the reduction of the maximum violation� Note that when comparing values

between two successive windows m� � and m� both must use the same weight w� otherwise�

the comparison is not meaningful because the terrain may be totally di�erent� Hence� after

adapting w� we should wait at least two windows before changing it again�

Weight w should be increased �Rule � when we observe the third convergence behavior�

In this case� the trajectory is within a feasible region� and the objective is improved in

successive windows� Weight w will be increased when the improvement of the objective in a

feasible region is not fast enough� but will not be increased when the improvement is beyond

an upper bound�

Weight w should be decreased �Rule � when we observe the second convergence behavior

�the trajectory oscillating around a saddle point or the fourth convergence behavior �the
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trajectory moving slowly back to the feasible region� Weight w will be decreased when the

trajectory oscillates� and the trend of the maximum violation does not decrease� We have

also de�ned two cases in condition c��� of Rule �� the �rst case applies to the continuous QMF

design problems that do not exhibit oscillatory behavior� whereas the second case applies to

the rest of the problems�

We use the ��e QMF �lter�bank design problem ����� to illustrate the improvement of

our dynamic weight�adaptation method as compared to that of using static weights� We

use Johnston�s solution as our starting point� To avoid the di
culty in choosing the initial

weight� we choose the starting weight w�t � � using a two�step method�

�� Set the initial weight based on the maximum�gradient component of the starting point

and the number of variables� w�t � � � ���n max��i�nf d
dxi
Lz�x�t � �� � � �g�

�� Perform the Lagrangian search for a small amount of time� e�g�� �t � ����� Adjust the

weight w�t � � based on the decrement �f of the objective�function value� w�t �

��� w
t��� �t
�f

�

Figure ���� shows the search pro�le of our Lagrangian method with adaptive weight

control in solving the ��e QMF �lter bank problem� We have used a time interval �t � �����

window size Nw � ��� �� � �� � ���� � � ����� �� � ����� and �� � ����� As shown in

the search pro�les� the objective value was improved fairly quickly in the beginning� and the

trajectory was then pushed into a feasible region quickly� Our dynamic method converges

at t � ����� ����� CPU minutes� much faster than the static�weight Lagrangian method�

����� Discrete Constraint Handling Method

Discrete constraints are handled based on the Lagrange multipliers in a way similar to

how we handle continuous constraints� We extend the traditional Lagrangian theory to

discrete problems� and develop a new discrete optimization method based on the Lagrangian

formulation� called the discrete Lagrangian method �DLM�

��
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Figure ����� Pro�le with adaptive changes of w in designing a ��e QMF �lter bank� The
search converges much faster ����� CPU minutes in t � ����� than those using
static weights�

Lagrangian methods have been used to solve discrete optimization problems whose dis�

crete variables have been relaxed into continuous ones� However� little work has been done

in applying Lagrangian methods to work on discrete problems directly ��	��������� The di
�

culty in traditional Lagrangian methods lies in the requirement of a di�erentiable continuous

space� In order to apply Lagrangian methods to discrete optimization problems� we need to

develop a new Lagrange�multiplier�based search method that works in discrete space�

Consider the following equality�constrained optimization problem in discrete space� which

is similar to the continuous version in �����

minx�Dn f�x �����

subject to h�x � �

where x � �x�� x�� � � � � xn� h�x � �h��x� h��x� � � � � hm�x and D is a subset of integers�

i�e� Dn � In�

De	nition ����� A local minimum x� to problem ����� is de�ned as h�x� � � and f�x� �
f�x for any feasible x� and x� and x di�er in only one dimension by a magnitude of ��

For example� if x di�ers from x� in the kth dimension by �� then jx�k � xkj � �� A

local minimum is de�ned with respect to a certain neighborhood� In this de�nition� the

neighborhood is within � of one dimension� Note that this de�nition can be extended to the

case in which two points di�er by more than one dimension�
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Discrete Lagrangian function F has the same form as in the continuous case and is de�ned

as follows�

F �x� � � f�x �
mX
i��

�ihi�x �����

where � � ���� ��� � � � � �m are Lagrange multipliers that have real values�

A saddle point �x�� �� of F �x� � is reached when the following condition is satis�ed�

F �x�� � � F �x�� �� � F �x� �� �����

for all � su
ciently close to �� and all x that di�er from x� in only one dimension by a

magnitude ��

In a way similar to the continuous case� we derive the following theorem specifying the

relation between local minima and saddle points�

Discrete SaddlePoint Theorem for Discrete Problems� x� is a local minimum so�

lution to the discrete constrained problem in ����� if there exists �� such that �x�� ��

constitutes a saddle point of the associated Lagrangian function F �x� ��

Proof� The proof is similar to that of the continuous case�

In the continuous case� methods that look for saddle points utilize gradient information�

In order for these methods to work in the discrete variable space x of discrete problems�

we need to de�ne the counterpart of the gradient operator� Note that � can remain to be

continuous even in the discrete case� In the following� we de�ne a discrete di�erence gradient

descent operator "x� �Note that this operator is not unique� and other operators can be

de�ned to work in a similar way�

De	nition ����� Di�erence gradient descent operator"x is de�ned with respect to x in such

a way that "xF �x� � � ���� ��� � � � � �n � f��� �� �gn� Pn
i�� j�ij � �� and �x�"xF �x� � �

Dn� For any x� such that
Pn

i�� jx�i � xij � ��

F �x�"xF �x� �� � � F �x�� ��

��



Further� if �x�� F �x� � � F �x�� �� then "xF �x� � � ��

A more general discrete descent operator #x is de�ned as follows�

De	nition ����� Discrete descent operator #x is de�ned with respect to x in such a way

that #xF �x� � � ���� ��� � � � � �n � f��� �� �gn� Pn
i�� j�ij � �� �x� #xF �x� � � Dn� and

F �x� #xF �x� �� � � F �x� ��

Further� if �x� such that
Pn

i�� jx�i � xij � �� F �x� � � F �x�� �� then #xF �x� � � ��

Based on this de�nition� Lagrangian methods for continuous problems can be extended

to discrete problems� The basic idea is to descend in the original discrete variable space of x

and ascend in the Lagrange�multiplier space of �� We propose a generic discrete Lagrangian

method as follows�

Generic Discrete Lagrangian Method �DLM�

xk	� � xk � #x�x
k� �k �����

�k	� � �k � c h�xk �����

where #x�xk� �k is a discrete descent operator for updating x based on the Lagrangian

function F �x� �� c is a positive real number controlling how fast the Lagrange multipliers

change� and k is the iteration index�

FixedPoint Theorem of DLM� A saddle point �x�� �� of the Lagrangian function F �x� �

is found if and only if ����� and ����� terminate�

Proof� �� part� If ����� and ����� terminate at �x�� ��� then h�x� � � and #xF �x�� �� �

�� h�x� � � implies that F �x�� � � F �x�� �� for any �� #xF �x�� �� � � implies that

F �x�� �� � F �x� �� for all x that di�er from x� in only one dimension by a magnitude ��

Therefore� �x�� �� is a saddle point�

��� part� If �x�� �� is a saddle point� by the Discrete Saddle Point Theorem� x� is a

local minimum and satis�es the constraints� i�e�� h�x� � �� Also� because �x�� �� is a saddle
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point� we have F �x�� �� � F �x� �� for all x that di�er from x� in only one dimension by a

magnitude �� By the de�nition of #x� #xF �x�� �� � �� Hence� ����� and ����� terminates

at �x�� ���

#x�x� � is not unique and can be de�ned by either steepest descent or hill climbing� In

steepest�descent� #x�x� � � "xF �x� �� is the direction with the maximum improvement�

A hill�climbing approach� on the other hand� chooses the �rst point in the neighborhood

of the current x that reduces F � Thus� the descent direction #x�x� � �� "xF �x� � in this

case� Although both approaches have di�erent descent trajectories� they can both reach

equilibrium that satis�es the saddle�point condition� Consequently� they can be regarded as

alternative approaches to calculate "xF �x� ��

In solving discrete constrained problems with inequality constraints� we �rst transform

the inequality constraints to equality constraints using the maximum function� Consider the

following discrete constrained problem�

minx�Dn f�x �����

subject to h�x � �

g�x � �

where h�x � �h��x� � � � � hm�
�x� g�x � �g��x� � � � � gm�

�x� and D is a subset of integers�

i�e� Dn � In� This problem with inequality constraints is transformed into an optimization

problem with equality constraints as follows�

minx�Dn f�x ����	

subject to h�x � �

max�g�x� � � �

Obviously� the local minima of this equality constrained problem are one�to�one correspon�

dent with those of the original inequality constrained problem� Then� we apply our discrete

Lagrangian method �DLM to �nd the local minima of the transformed problem� which are

actually the local minima of the original problem�
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As in applying Lagrangian method to solve continuous constrained optimization prob�

lems� the relative weights between the objective and the constraints a�ect the performance

of the discrete Lagrangian method �DLM� too� Domination of either the objective or the

constraints can hinder the search of saddle points by DLM�

We have developed mechanisms to dynamically adjust the relative weights between the

objective and the constraints in DLM� In solving satis�ability problems using DLM �to be

discussed in Chapter �� we have applied a mechanism of periodic reduction of the val�

ues of the Lagrange multipliers to dynamically adjust the weights and to obtain improved

performance�

Consider the e�ect of dynamic weight scaling using a pro�le obtained from solving a

di
cult satis�ability benchmark problem �g�����	�cnf�� In our formulation of satis�ability

problems in Chapter �� the constraints have values of � or �� Accordingly� Lagrange mul�

tipliers � in DLM are associated with the constraints and are always nondecreasing� For

di
cult problems that require millions of iterations� � values can become very large as the

search progresses� Large ��s are generally undesirable because they put too much weight

on the constraints� causing large swings in the Lagrangian�function value� and making the

search of saddle points more di
cult�

Figure ���� shows the pro�les of DLM without dynamic scaling of Lagrange multipli�

ers on problem �g�����	� starting from a random initial point� Lagrange multipliers and

Lagrangian�function values can grow very large� The objective�part and constraint�part

�Lagrangian�part values of the Lagrangian function are shown in the lower two graphs� As

time goes on� the constraint�part becomes much larger than the objective�part� It takes a

very long time for DLM to �nd a solution from a randomly generated initial point� or it may

not �nd one in a reasonable amount of time�

We have introduced periodic scale�downs of Lagrange multipliers to control the growth

of Lagrange multipliers as well as Lagrangian�function values� Figure ���� shows the result

when all the Lagrange multipliers are scaled down by a factor of ��� every ������ iterations�

These graphs indicate that periodic scaling leads to bounded values of Lagrange multipli�

ers and Lagrangian�function values� The objective�part and constraint�part values of the

��
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Figure ����� Execution pro�les of DLM A� without dynamic scaling of Lagrange multipli�
ers � on problem �g�����	� starting from a random initial point� The top
left graph plots the Lagrangian�function values and the number of unsatis�ed
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Figure ����� Execution pro�les ofA� with periodic scaling of � by a factor of ��� every ������
iterations on problem �g�����	� starting from a random initial point� Note that
the average Lagrange�multiplier values are very close to �� See Figure ���� for
further explanation�

Lagrangian function are more balanced and have about the same magnitude� Using this

dynamic scaling method� we can solve some of the more di
cult satis�ability benchmark

problems�

��� Summary

In this chapter� we have addressed issues in handling nonlinear constraints� Existing

methods that handle nonlinear constraints are either transformational or non�transformational�

In non�transformational approaches� the search works on the constraints directly� and tries

to stay within feasible regions� Such methods have di
culty when the nonlinear constraints

form feasible regions that are irregular and are di
cult to �nd�
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Transformational approaches� on the other hand� are more popular in dealing with non�

linear constraints� Constrained optimization problems are transformed into unconstrained

problems to be solved� Widely used methods include penalty methods� barrier methods�

sequential quadratic methods� and Lagrangian methods� Among these methods� Lagrangian

methods are general� robust� and can achieve high precision of solutions� Due to these ad�

vantages� we use a variation of Lagrangian methods to handle nonlinear constraints in this

thesis�

In our Lagrangian methods� we �rst convert inequality constraints to equality constraints�

and then search for saddle points of the Lagrangian function by performing descents in the

original variable space and ascents in the Lagrange�multiplier space� There are two methods

to convert inequalities� the slack variable methods and the MaxQ method� They derive

di�erent Lagrangian formulations� The convergence speed of the slack�variable method is

usually faster than that of the MaxQ method� However� the slack�variable method may

oscillate or diverge under certain conditions� and may not converge to a saddle point� The

MaxQ method does not have this problem� but its convergence may be slow�

We have discovered that through dynamic control of the relative weights of the objective

and the constraints� we can reduce or eliminate oscillations and divergence of the slack�

variable method� We have developed various mechanisms to control the relative weight

adaptively during a search� In applying the Lagrangian method with adaptive control to

application problems� we are able to achieve faster and more robust convergence�

Discrete optimization problems can be solved by either exact or inexact methods� For NP�

hard problems� exact methods such as branch�and�bound are computationally intractable for

large discrete problems� Inexact methods use heuristics to search for solutions and o�er no

optimality guarantee� However� inexact methods have been applied to much larger problems

than what exact methods can handle� and have found good solutions�

We have taken the inexact approach in solving large problems� and have developed the

discrete Lagrangian method �DLM� a Lagrange multiplier�based optimization method� to

solve discrete constrained optimization problems� A Lagrangian function of discrete variables

are formed by combining the objectives and the constraints using Lagrange multipliers� Then�
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saddle points are searched by doing descents in the original variable space and ascents in

the Lagrange multiplier space� In contrast to solving continuous problems in which descents

are based on continuous gradients� heuristic discrete descents are performed by using hill�

climbing�

The relative magnitude of the objective and the constraints a�ects the performance of

the discrete Lagrangian method� We control their relative magnitude by associating weight

coe
cients with them� and adjust the weights dynamically during the search� In our experi�

ments of solving di
cult discrete problems� we have found that appropriate dynamic control

of the relative weights can improve the performance of the discrete Lagrangian method by

signi�cantly reducing the time to �nd saddle points�
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�� OVERCOMING LOCAL MINIMA

General nonlinear optimization problems are di
cult to solve due to the large number

of local minima in the search space� Good local minima are di
cult to be found by local

search methods because they stop at every local minimum� Hence� to obtain globally optimal

solutions� global search methods have been developed to escape from local minima once the

search gets there� and continue the search�

In this chapter� we address an important issue in solving nonlinear optimization problems

� overcoming local minima� We �rst review existing nonlinear local and global optimization

methods� and identify their advantages and disadvantages� Then� we propose a new multi�

level global search method that combines global and local searches� We present the overall

framework of this method and discuss each component in details� Our method employs

an innovative trace�based global�search method that searches the space continuously and

escapes from local minima without restarts� In the end� we present Novel� a prototype

implementing our proposed methods for nonlinear continuous and discrete optimization�

��� Previous Work on Global Optimization

Due to the importance of optimal solutions for engineering� economical and social sci�

ences applications� many optimization methods have been developed� In recent decades� as

computers become more powerful� numerical optimization algorithms have been developed

for many applications�
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Nonlinear Unconstrained Optimization Methods

Local optimization (descent) methods

First-order methods Second-order methods

Simplex search Gradient descent 
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Conjugate-direction method
Quasi-Newton’s method
Conjugate gradient method

Newton’s method
Trust-region method

Zero-order methods

Global optimization methods

Levenberg-Marquardt’s method

Figure ���� Classi�cation of local optimization methods for unconstrained nonlinear opti�
mization problems�

Solution methods for nonlinear optimization problems can be classi�ed into local and

global methods� Local optimization methods� such as gradient�descent and Newton�s meth�

ods� use local information �gradient or Hessian to perform descents and converge to a local

minimum� They can �nd local minima e
ciently and work best in uni�modal problems�

Global methods� in contrast� employ heuristic strategies to look for global minima and do

not stop after �nding a local minimum ���	�� A taxonomy on global optimization methods

can be found in ��������������������� Note that gradients and Hessians can be used in both

local and global methods�

Figure ��� shows a classi�cation of local optimization methods for unconstrained nonlin�

ear optimization problems� The methods can be broadly classi�ed as zero�order� �rst�order�

and second�order methods based on the derivative information used during the search� Gen�

erally� higher�order methods converge to local minima faster�

Zero�order methods do not use derivatives of objective functions during optimization�

Examples are the simplex search method� the Hooke and Jeeves method� the Rosenbrock

method� and the conjugate direction method ������	��	�����������	���

First�order methods use �rst�order derivatives of the objective function during the search�

Examples are the gradient�descent method� the discrete Newton�s method� the quasi�Newton
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methods� and the conjugate gradient methods� The gradient�descent method performs a

linear search along the direction of the negative gradient of the minimized function ���	����

������	��		�� The discrete Newton�s method approximates the Hessian matrix by the �nite

di�erence of the gradient� Quasi�Newton methods approximate the curvature of the nonlinear

function using information of the function and its gradient only� and avoid the explicit

evaluation of the Hessian matrix ��� ��� ��� ����� Conjugate gradient methods combine the

current gradient with the gradients of previous iterations and the previous search direction to

form the new search direction� They generate search directions without storing a matrix �	��

�	���	���	����������	���

Second�order methods make use of second�order derivatives� They include Newton�s

method� Levenberg�Marquardt�s method� and trust region methods ��� ��� ���� ���� �	��� In

Newton�s method� the inverse of the Hessian matrix multiplies the gradient� and a suitable

search direction is found based on a quadratic approximation of the function� Newton�s

method converge quadratically if the initial point is close to a local minimum� Levenberg�

Marquardt�s method and trust region methods are modi�cations of Newton�s method� By

using either a line�search or a trust�region approach� these algorithms converge when their

starting point is not close to a minimum� Line�search and trust�region techniques are suitable

if the number of variables is not too large� Truncated Newton�s methods are more suitable

for problems with a large number of variables� They use iterative techniques to obtain a

direction in a line�search method or a step in a trust�region method� The iteration is stopped

�truncated as soon as a termination criterion is satis�ed�

Local optimization methods converge to local minima� For some applications� local op�

tima may be good enough� particularly when the user can draw on his�her own experience

and provide a good starting point for local optimization algorithms� However� for many

applications� globally optimal or near�optimal solutions are desired�

In nonlinear optimization� objective functions are multi�modal with many local minima�

Local search methods converge to local minima close to the initial points� Therefore� the

solution quality depends heavily on the initial point picked� When the objective function

is highly nonlinear� local�search methods may return solutions much worse than the global

optima when starting from a random initial point�
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Figure ���� Classi�cation of unconstrained nonlinear continuous global minimization meth�
ods�

To overcome the de�ciencies in local search methods� global search methods have been

developed with global search mechanisms� Global search methods use local search to deter�

mine local minima� and focus on bringing the search out of a local minimum once it gets

there�

Figure ��� shows a classi�cation of nonlinear global optimization methods� Methods to

solve global optimization problems have been classi�ed as either probabilistic or determinis�

tic� Probabilistic �stochastic methods evaluate the objective function at randomly sampled

points from the solution space� Deterministic methods� on the other hand� involve no element

of randomness�

Alternatively� global optimization algorithms can also be classi�ed as reliable and unre�

liable� Reliable methods guarantee solution quality while unreliable methods do not� Prob�

abilistic methods� including simulated annealing� clustering� and random searching� fall into

the unreliable category� Unreliable methods usually have the strength of e
ciency and better

performance in solving large�scale problems�
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Table ���� Global and local search components used in existing global optimization methods�

Method Global Component Local Component
Random Search Uniform Sampling Any Available Local Method
Genetic Algorithm Selective Recombination Optional
Simulated Annealing Boltzmann Motion Optional
Clustering Method Cluster Analysis Any Available Local Method
Bayesian Method Bayesian Decision Optional
Interval Method Interval Calculation Rarely Used
Covering Method Informed Search with Rarely Used

Bound Approximation
Generalized Gradient Traveling Trajectory Rarely Used

The survey that follows focuses on features of methods for solving continuous� constrained

problems� Whenever it is possible� we analyze the balance that each algorithm strikes be�

tween global search and local re�nement� and relate this balance to its performance� Table ���

summarizes this balance for a number of popular global optimization methods ������

����� Deterministic Global Optimization Methods

Many deterministic methods have been developed in the past� Some of them apply

deterministic heuristics� such as modifying the search trajectory in trajectory methods and

adding penalties in penalty�based methods� to bring a search out of a local minimum� Other

methods� like branch�and�bound and interval methods� partition a search space recursively

into smaller subspaces and exclude regions containing no optimal solution� These methods

do not work well when the search space is too large for deterministic methods to cover

adequately�

�a Covering methods� Covering methods detect subregions not containing the global

minimum� and exclude them from further consideration� Covering methods provide guar�

antee of solution quality� and approximate the global solution by iteratively using tighter

bounds �	�� ���� ���� �	��� Obtaining a solution with guaranteed accuracy implies an ex�

haustive search of the solution space for the global minimum� Hence� these methods can
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be computationally expensive� with a computation time that increases dramatically as the

problem size increases ��������

Branch�and�bound methods� including interval methods� are examples of covering meth�

ods� Branch�and�bound methods evaluate lower bounds on the objective function of sub�

spaces� They allow an assessment of the quality of the local minima obtained� Combining

with computationally veri�able su
cient conditions for global optimality� they allow one to

actually prove global optimality of the best solution obtained�

Covering methods are reliable since� to the extent they work� they have built�in guarantees

of solution quality� However� they require some global properties of the optimization problem�

such as the Lipschitz condition� In the worst case� covering methods take an exponential

amount of work� Many of the heuristic techniques used for searching global solutions can be

adapted to or combined with branch�and�bound approach to take advantage of structural

insights of speci�c applications�

�b Generalized descent methods� These methods continue the search trajectory

every time a local solution is found� There are two approaches� First� trajectory methods

modify the di�erential equations describing the local�descent trajectory so that they can

escape from local minima ����������������	������ Their disadvantage is the large number of

function evaluations spent in unpromising regions� Second� penalty methods prevent multiple

determination of the same local minima by modifying the objective function� namely� by

introducing a penalty term on each local minimum ���� ���� Their problem is that as more

local minima are found� the modi�ed objective function becomes more di
cult to minimize�

In existing generalized descent methods� the descent trajectory is modi�ed using internal

function information� e�g� local minima along the search�

We propose a new global search method� the trace�based method� in this chapter� Our

trace�based method belongs to the class of generalized descent methods because it modi�es

the descent trajectory� The di�erence between it and existing trajectory methods is that our

trace�based method uses external information to modify the search trajectory� A function�

independent trace function is used to guide the search throughout the search space� and pull

the search out of local minima�
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Alternatively� deterministic methods can be classi�ed into two categories� �a point�based

methods � methods that compute function values at sampled points� such as generalized

descent methods� and �b region�based methods � methods that compute function bounds

over compact sets� such as covering methods� Point�based methods are unreliable� but usually

have less computational complexity� Region�based methods are expensive� but can produce

rigorous global optimization solutions when they are applicable�

����� Probabilistic Global Optimization Methods

Probabilistic global minimization methods rely on probability to make decisions� The

simplest probabilistic algorithm uses restarts to bring a search out of a local minimum when

little improvement can be made locally� Advanced methods use more elaborate techniques�

We classify probabilistic methods into clustering methods� random�search methods� and

methods based on stochastic models�

�a Clustering methods� Clustering analysis ���� ���� ���� is used to prevent the re�

determination of already known local minima� There are two strategies for grouping points

around a local minimum� �i retain only points with relatively low function values ������ �ii

push each point toward a local minimum by performing a few steps of a local search ������

They do not work well when the function terrain is very rugged or when the search gets

trapped in a deep but suboptimal valley ���	������

�bRandom search methods� These include pure random search� single�start ���������

����� multi�start ������������������ random line search� adaptive random search� partitioning

into subsets� replacing the worst point� evolutionary algorithms ���� ��� ����� and simulated

annealing �����������������������

Simulated annealing and genetic algorithms are two popular stochastic global optimiza�

tion methods� Simulated annealing takes its intuition from the fact that heating and slowly

cooling �annealing a piece of metal brings it into a more uniformly crystalline state� which

is believed to be the state where the free energy of bulk matter takes its global minimum�

The role of temperature is to allow the con�gurations to reach lower energy states with a
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probability given by Boltzmann�s exponential law� so that they can overcome energy bar�

riers that would otherwise force them into local minima� Simulated annealing is provably

convergent asymptotically in a probabilistic sense� but may be exceedingly slow� Various ad

hoc enhancements make it much faster� Simulated annealing has been successfully applied

to solve many nonlinear optimization problems �������������������

Genetic algorithms make use of analogies to biological evolution by allowing mutations

and crossovers between candidates of good local optima in the hope to derive even better

ones� At each stage� a whole population of con�gurations are stored� Mutations are per�

formed as local search� whereas crossover operators provide the ability to leave regions of

attraction of local minimizers� With high probability� the crossover rules produce o�springs

of similar or even better �tness� The e
ciency of a genetic algorithm depends on the proper

selection of crossover rules� The e�ect of interchanging coordinates is bene�cial mainly when

these coordinates have a nearly independent in�uence on the �tness� whereas if their in�u�

ence is highly correlated� such as for functions with deep and narrow valleys not parallel

to the coordinate axes� genetic algorithms have more di
culties� Successful tuning of ge�

netic algorithms requires a considerable amount of insight into the nature of the problem at

hand� Genetic algorithms have shown promising results in solving nonlinear optimization

problems ����������������

Random search methods are easy to understand and simple to realize� The simplest

random algorithm uses restarts to bring a search out of a local minimum� Others� like

simulated annealing� rely on probability to indicate whether a search should ascend from a

local minimum� Other stochastic methods rely on probability to decide which intermediate

points to interpolate as new starting points� like in random recombinations and mutations

in genetic algorithms� These algorithms are weak in either their local or their global search�

For instance� gradient information useful in local search is not used well in simulated anneal�

ing and genetic algorithms� In contrast� gradient�descent algorithms with multi�starts are

weak in global search� These methods perform well for some applications� However� they

usually have many problem�speci�c parameters� leading to low e
ciency when improperly

applied ��������������
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�c Methods based on stochastic models� Most of these methods use random vari�

ables to model unknown values of an objective function� One example is the Bayesian

method� which is based on a stochastic function and minimizes the expected deviation of

the estimate from the real global minimum ����� ���� ����� Bayesian methods do not work

well because most of the samples they collect randomly from the error surface are close to

the average error value� and these samples are inadequate to model the behavior at minimal

points� Other methods based on stochastic models include methods that approximate the

level sets� Although very attractive theoretically� this class of methods are too expensive to

be applied to problems with more than twenty variables ������

Up to today� general nonlinear optimization algorithms can at best �nd good local minima

of a multi�modal optimization problem� Only in cases with restrictive assumptions� such as

Lipschitz condition� algorithms with guaranteed accuracy can be constructed�

Existing global optimization methods are weak in either their local or their global search�

To address this problem� we have developed a new global search method consisting of a

combination of global and local searches� Our method has the following key features of a

good global search algorithm�

	 It identi�es promising regions e
ciently�

	 It uses gradient information to descend into local minima� and is able to adjust to

changing gradients�

	 It escapes from a local minimum once the search gets there� It leaves regions of

attraction of local minimizers in a continuous fashion without restarting from one

local minimum to another�

	 It avoids redetermination of the same local minima�

Our method is based on a new trace�based global�search method� in which a deterministic

external force guides the search throughout the space and pulls the search trajectory out of

local minima once it gets there� This method is presented in Section ��� of this chapter�

		



����� Global Search in Constrained Optimization

At the level of global search� strategies for solving constrained problems are similar to

those for solving unconstrained problems except in the handling of constraints� Deterministic

and probabilistic global search methods have been applied to solve constrained optimization

problems in conjunction with both non�transformational and transformational constraint�

handling approaches�

When constraints are handled using transformational approaches� constrained optimiza�

tion problems are transformed into one or a series of unconstrained optimization problems�

Global search methods� either deterministic or probabilistic� can then be applied to solve

the transformed problems� For example� multi�start of gradient descent� genetic algorithms

�GAs� and simulated annealing �SA have been applied to solve penalty or barrier func�

tions ���� ���� ���� ����� In Lagrangian methods� multi�starts of local searches �nd saddle

points from randomly generated initial points�

Many global search methods also work with non�transformational approaches of handling

constraints� For example� in pure random search with rejecting�discarding of infeasible

points� points in the search space are randomly generated according to some probability

distribution� and the best feasible point found is remembered� This method performs a blind

search through the search space with no local re�nement� In multi�starts� points �feasible

points if possible in the search space are randomly generated and are used as initial points

for local improvement� When working directly on constraints� GAs maintain a population

of sample points� and generate new sample points based on both constraint satisfaction and

objective values of existing sample points ������ SA performs an adaptive stochastic search�

and the acceptance rates of search points are determined by a combination of constraint

satisfaction and objective value �������������

Our new global search method handles constraints using the transformational approach�

Constrained optimization problems are transformed into Lagrangian functions using La�

grange multipliers� Saddle points of Lagrangian functions are� then� searched using local

and global search methods�
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��� Problem Speci	cation and Transformation

In the rest of this chapter� we present our new nonlinear global search method� This

method solves general nonlinear continuous and discrete� constrained and unconstrained

optimization problems� By �rst transforming nonlinear constrained optimization problems

using Lagrange multipliers into unconstrained optimization formulations� both constrained

and unconstrained problems are solved in a uni�ed framework�

As de�ned in Chapter �� an n�dimensional unconstrained optimization problem is

min
x�Rn

f�x� x � �x�� x�� � � � � xnT ����

while x is an n�dimensional vector� f�x is the objective function� and T stands for transpose�

The gradient of function f�x� rf�x� is an n�dimensional vector as follows�

rf�x �
	
�f�x

�x�
�
�f�x

�x�
� � � � � �f�x

�xn


T
����

An n�dimensional constrained optimization problem is de�ned as

min
x�Rn

f�x ����

s�t� hi�x � � i � �� � � � �m� ����

gj�x � � j � �� � � � �m� ����

where there are m� equality constraints and m� inequality constraints�

Constrained optimization problems are transformed into Lagrangian formulations� In�

equality constraints are handled using the slack�variable method or the MaxQ method as

discussed in Chapter �� Using the slack�variable method� the corresponding augmented

Lagrangian function is

L�x� � � f�x � ���� � � � � �m�
Th�x �

�

�
jjh�xjj�� ����

�
�

�

m�X
j��

�max���� �m�	j � gj�x� ��m�	j
�
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where � � Rm�m � m� � m�� are Lagrange multipliers� Using the MaxQ method� the

augmented Lagrangian function has the following form�

L�x� � � f�x � ���� � � � � �m�
Th�x �

�

�
jjh�xjj�� ���	

�
m�X
j��

�m�	jmaxqj��� gj�x �
�

�

m�X
j��

max�qj��� gj�x

Lagrangian function L�x� � is a scalar function with gradient rL�x� ��

rL�x� � � �rxL�x� ��r�L�x� � ����

�

	
�L�x� �

�xi
�
�L�x� �

��j



i � �� � � � � n and j � �� � � � �m

Our method is a �rst�order method because only �rst�order derivatives as well as the objective

and the Lagrangian�function value are used during the search�

In Figure ���� we have shown how various forms of nonlinear optimization problems are

solved in a uni�ed framework� Unconstrained optimization problems are solved directly by

our global search method without any transformation�

Constrained optimization problems� whether discrete or continuous� are �rst transformed

into Lagrangian formulations� in which the constraints are combined with the objective

function using Lagrange multipliers� For a decision problem without an objective function� an

arti�cial objective is introduced� Hence� our global search method works on the Lagrangian

function and �nds saddle points that correspond to globally optimal or near�optimal solutions

of the original constrained problems�

��� A New Multilevel Global Search Method

In this section� we propose a new global search method with the focus of overcoming

local minima in a unique� deterministic� and continuous fashion�

Our method employs a combination of global and local searches� A global search is

applied to locate promising regions in which local searches are invoked to �nd the local
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Figure ���� Framework of a new multi�level global search method� This method has a com�
bined global and local search phases�

minima� The global search is further divided into coarse�level and �ne�level global search� A

coarse�level global search quickly identi�es promising sub�spaces in a large high�dimensional

search space� Then� a �ne�level global search applies a trace�based method to perform

more detailed search� The trace�based global�search method uses a problem�independent

trace function to guide the search throughout the search space and pulls a search out of

a local optimum �a local saddle point in a constrained optimization and a local minimum

in an unconstrained optimization without having to restart it from a new starting point�

Promising local minimal regions are located by the �ne�level global search� Starting from

initial points provided by the �ne�level global search� a local search �nds local minima that

contain globally optimal or near�optimal solutions� Our method strives a balance between

global and local searches�

Figure ��� shows the overall framework of our global search method� It consists of a

global�search phase and a local�search phase� In the global�search phase� a coarse�level

global search is followed by a �ne�level global search� The search space of a high�dimensional

optimization problem can be enormous� making it impossible to examine the whole space

exhaustively� Usually� a small portion of the search space can be searched� given a reasonable
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amount of time� The task of coarse�level global search is to quickly identify promising sub�

regions in a large high�dimensional search space� Outputs of the coarse�level search are used

as initial points in the �ne�level global search�

Existing global search methods� such as simulated annealing �SA� genetic algorithms�

and multi�start of descents� are good at �nding promising sub�regions given a limited amount

of time� We apply them in the coarse�level search� In applying SA� we impose a fast annealing

scheme and a limited number of iterations in order for SA to converge quickly� In applying

GA� we set a limit on the number of generations and select the best solutions in the �nal

population as outputs� In applying multi�start of descents� we perform a limited number of

descent steps from randomly generated sample points and select the best descent results as

outputs�

As an alternative to random multi�starts� we have developed a trajectory�based method

to perform a coarse�level search� It is based on a ��D parametric function that traverses

inside the search space� Sample points along the trajectory with small objective values are

used as starting points to perform limited steps of descents� The best solutions after descents

are output�

Besides search methods� domain knowledge is another alternative to help identify promis�

ing search regions� For well understood problems� users may provide good initial points

directly for the �ne�level global search� Heuristic methods� such as greedy search methods�

can also be applied to generate initial points for the �ne�level global search�

Starting from the initial points provided by the coarse�level search� the �ne�level global

search examines sub�regions in more details� We apply an innovative trace�based global

search method �to be presented next that is a variation of the generalized descent method�

In contrast to existing trajectory�based global search methods� our trace�based method mod�

i�es the search trajectory using external information� The search trajectory is formed by a

combined force of a problem�independent trace function and local gradient� The trace func�

tion is used to guide the search throughout the search space and pulls the search out of a

local optimum without having to restart it from a new starting point� Thus� our trace�based

search method overcomes local minima in a continuous and deterministic manner� Along
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the search trajectory� points corresponding to promising local minimal regions are fed to the

local�search phase�

The local�search phase performs local descents starting from initial points provided by

the global�search phase� Existing local�descent methods� including gradient descent� quasi�

Newton�s methods� and conjugate gradient methods� are applied� The best solutions after

local descents are reported as the �nal solutions�

��� Tracebased Global Search

Our trace�based global search method relies on an external force to pull the search out

of a local minimum� and employs local descents to locate local minima� It has three fea�

tures� exploring the solution space� locating promising regions� and �nding local minima�

In exploring the solution space� the search is guided by a continuous terrain�independent

trace function that does not get trapped by local minima� This trace function is usually an

aperiodic continuous function that runs in a bounded space� In locating promising regions�

the trace�based method uses local gradient to attract the search to a local minimum but

relies on the trace to pull it out of the local minimum once little improvement can be found�

Finally� the trace�based method selects one initial point for each promising local region and

uses them as initial points for a descent algorithm to �nd local minima�

����� General Framework

Figure ��� illustrates the process of our trace�based global search� The search process

uncovers promising local optimal regions without going deep into each one� A problem�

independent trace function leads the search throughout the search space and is responsible

for pulling the search out of local minima once it gets there� Local minima unveil themselves

through gradients� The global search trajectory is formed by the combination of two forces�

a problem�independent force provided by the trace function and a problem�dependent force

provided by the local gradient� These two counteracting forces �descents into local minima

and attraction exerted by the trace form a composite vector that represents the route taken
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Figure ���� In the trace�based global search� the search trajectory shows a combined e�ect
of gradient descents and pull exerted by the moving trace� Three cascaded
global search stages are shown in this �gure that generate trajectory �� �� and
�� respectively�

by the trajectory� Figure ��� shows on the left side how these two forces are combined to

form the search trajectory�

Generally� there could be a number of bootstrapping stages in a trace�based global search�

One stage is coupled to the next stage by feeding its output trajectory as the trace of the

next stage� The problem�independent trace is fed into the �rst stage� Three cascaded global�

search stages are shown in Figure ���� The trace and the local gradient generate trajectory

�� Then trajectory � and the local gradient generate trajectory �� and so on�

In the trace�based global search� the dynamics of each stage in the global�search phase

is characterized by a system of ordinary di�erential equations �ODEs� which contain both

problem�dependent information of local gradient and problem�independent information of a

trace function�

Consider the optimization problem speci�ed in ����� The system of ODEs that charac�

terize each stage of the trace�based global search has the following general form�

$x�t � P �rxf�x�t �Q�T �t�x�t ����

where t is the only independent variable in the systems of ODEs� T �t� the trace function� is

a function of t� and P and Q are some nonlinear functions� P �rxf�x enables the gradient

��



to attract the trajectory to a local minimum� Q�T �t�x�t allows the trace function to lead

the trajectory� Solving the system of ODEs as an initial�value problem from a given set of

initial values of x generates a search trajectory x�t � �x��t� � � � � xn�t�
P and Q can have various forms� A simple form used in our experiments is

dx�t

dt
� ��grxf�x�t� �t �x�t� T �t �����

where �g and �t are coe
cients specifying the weights for descents in local minimum regions

and for exploration of broader space� Note that the �rst component on the right�hand side

of ����� is actually gradient descent� and the second component forces x�t to follow the

trace function T �t�

Generally� weights �g and �t can have di�erent values in di�erent global stages� For

example� �t can be set to have large values relative to �g in the �rst stage so that the global

search is emphasized� In later stages� �g can have larger values� and the search is focused on

a local region� In the simplest case� �g and �t are set to constants and are the same in all

stages of the global�search phase�

When there are several stages in the trace�based global search� one stage is coupled to

the next stage by feeding its output trajectory as the trace function of the next stage� with a

prede�ned problem�independent function as the input trace function of the �rst stage� The

stages are cascaded together� Each stage is characterized by a system of ODEs in the form

of ����� but with di�erent T �t� T �t in the �rst stage is an external trace function� T �t

of later stages is the output trajectory x�t of the previous stage� In our implementation�

when the output trajectory is a set of discrete sample points of the continuous trajectory�

interpolation is performed to form a continuous T �t for each stage�

Figure ��� shows a three�stage trace�based global�search method� In general� the functions

P and Q in each stage of the trace�based method can be di�erent� In earlier stages� more

weight can be placed on the trace function� allowing the resulting trajectory to explore more

regions� In later stages� more weight can be placed on local descents� allowing the trajectory

to descend deeper into local basins� Note that all the equations in the trace�based global
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Figure ���� Framework of a three�stage trace�based global search method�

search can be combined into a single equation before being solved� We did not do so because

each trajectory may identify new starting points that lead to better local minima�

In the local�search phase� a traditional descent method� such as gradient descent� conju�

gate gradient� or Quasi�Newton�s methods� is applied to �nd local minima� Initial points for

the local search are selected based on trajectories output by the trace�based global search�

Two heuristics can be applied in selecting initial points� use the best solutions in periodic

time intervals as initial points� or use the local minima in the trajectory in each stage as

initial points� As shown in Figure ���� starting points for the local search are selected from

search trajectories x�t� y�t� and z�t of the global�search phase� Descent methods are

applied to �nd local minima starting from these initial points�

We have presented the formulation of the our trace�based search method for uncon�

strained problems� Its formulation for constrained problems are similar� Our trace�based

method solves constrained problems based on Lagrangian functions� Traditional Lagrangian

methods perform local search by doing descents in the original�variable space and ascents in

the Lagrange�multiplier space� Local search converges to a saddle point that corresponds to

a local minimum of the original constrained problem� Our trace�based search modi�es the

descent trajectory in the original�variable space and uses a trace function to pull the search

out of local minima�
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Figure ���� Relationship between the trace�based global search and the local optimization
method�

In comparison to the formulation ����� for an unconstrained problem� the system of

ODEs specifying a global�search stage for a constrained problem is as follows�

dx�t

dt
� ��grxL�x�t� ��t� �t �x�t� T �t �����

d��t

dt
� r�L�x�t� ��t �����

where �g and �t are weight coe
cients� L�x�t� ��t is the Lagrangian function� and T �t

is the trace function� A trace function is used in the original variable space to overcome

the local minima of the nonlinear objective� No trace function is necessary in the Lagrange�

multiplier space� because the values of Lagrange multipliers change adaptively to re�ect

the degree and duration of constraint violation during the search� A trace function in the

Lagrange�multiplier space breaks the relationship between a search point in the original�

variable space and its corresponding Lagrange�multiplier values� which makes Lagrangian

methods not work well�
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In Figure ���� we summarize the mathematical formulations of the trace�based search

method for unconstrained and constrained continuous problems� and show its relationship to

local optimization methods� This �gure indicates that our trace�based search is an extension

of existing local search methods� and performs global search�

����� An Illustrative Example

Let�s illustrate the trace�based global search using a simple example based on Levy�s No�

� problem ������ This example involves �nding the global minimum of a function of two

variables x�� x� in a bounded region� The function is

fl��x�� x� �
�X
i��

i cos��i� �x� � i�
�X

j��

j cos��j � �x� � j�� �����

Figure ��	 shows the ��D plots and ��D contour plots of this function and the search

trajectories of the trace�based global search� The bounded region of interest is ���� �� in
each dimension� The function has three local minima in this region� one of which is the

global minimum� Using a search range of ���� �� in each dimension� we start Novel from ���

� and run it until logical time t � ��

Figure ��	 shows the trace function and search trajectories of a three�stage trace�based

global search� The plots in the �rst column show the trace function mapped on the ��

dimensional terrain and the ��dimensional contour� Although the trace function visits all

three basins� it only touches the edge of the basin containing the global minimum� The plots

in the second column show the trajectory generated from stage �� The search trajectory

is pulled down toward the bottom of each local minimal basin� Likewise� the plots in the

third and fourth columns show� respectively� that the trajectories are further pulled down

to the local basins after stages � and �� By following the trajectories� three basins with

local minima are identi�ed� and a set of minimal points in each trajectory can be used as

initial points in the local�search phase� Clearly� all the local minima are identi�ed in the

global�search phase�
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Figure ��	� Illustration of the trace�based global search� ��D plots �top row and ��D con�
tour plots �bottom row of Levy�s No� � function with superimposed search
trajectories� trace ��rst column� trajectory after stage � �second column� tra�
jectory after stage � �third column� and trajectory after stage � �fourth col�
umn� Darker regions in the contour plot mean smaller function values� The
trajectories are solved by LSODE� a di�erential�equation solver�
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��
 Trace Function Design

In a trace�based global search� a problem�independent trace function leads the search

throughout the search space� To �nd the global minima e
ciently without any knowledge

of the terrain� a trace function should cover the search space well and guides the search in

an e
cient way�

A trace function should be continuous and cover the search space uniformly� In real�world

applications� some physical time constraints are often imposed in solving a problem� Hence�

it is desirable to continuously improve the best solution found when given more time�

Given the desired behavior of the trace function� we have developed some quantitative

performance measures of the quality of a trace function�

��
�� Evaluation of Coverage

Quantitative measurements of the coverage of a trace function in a high�dimensional

space are necessary in evaluating its performance� A trace function is a one�dimensional

curve� We want to �nd a one�dimensional curve that covers a high�dimensional space well�

In this section� we present the coverage measurement we have studied� and compare various

trace functions based on it�

One possible distance measurement of a point i in the high�dimensional space S to a

curve C is

min
j�C

Dij

where j is some point on the curve C� and Dij is the Euclidean distance between j and i�

Coverage is evaluated based on the distances of all points in the space to the curve� One

measurement is the distance distribution� Another one is the maximum distance using the

following max�min function�

� � max
i�S

min
j�C

�Dij �����
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Here� � is the radius of the largest sphere inside the high�dimensional space that curve C

does not pass through� Accordingly� designing a curve that has the maximal coverage of a

high�dimensional space is to minimize ��

Often there is no closed�form formula to evaluate the distance distribution or the maxi�

mum distance � for a given curve C� Numerical evaluation is possible� but usually expensive�

Since the curve can have any shape� if we evaluate the distance of every point in the high�

dimensional space to the curve� the computation would become intractable very quickly� To

�nd the point that has the largest distance from a curve is also not trivial�

To make the evaluation of coverage tractable� we turn to approximate measurements�

Instead of evaluating the distance of every points in the space to the curve� we divide the

space into sub�spaces and measure the distance of each sub�space to the curve in terms of

the number of sub�spaces in between� The Euclidean distance from the center of a sub�space

to the curve is approximated by the multiplication of the number of sub�spaces in between

and the size of a sub�space�

Using approximate measurement� the procedure to evaluate the coverage of a curve in a

space is as follows� First� the high�dimensional space is uniformly partitioned into smaller

sub�spaces� A sub�space is said to be covered if the curve passes through the sub�space�

and has distance � from the curve� Sub�spaces contiguous to sub�space of distance � have

distance �� Sub�spaces contiguous to sub�space of distance � have distance �� and so on� The

evaluation proceeds like a waveform� starting from sub�spaces intersected with the curve and

propagating to sub�spaces further away� Based on the distances of all sub�spaces� we can

evaluate the coverage of a curve by using either the maximal distance or the distribution�

Figure ��� illustrates the process of �nding the distances of sub�spaces to a given curve�

The space is a ��D square and is divided into �x� sub�squares� Then� we mark the sub�spaces

intersecting with the curve as having distance �� The sub�spaces contiguous to those with

� distance are marked with distance �� and so on� Eventually� we �nd the distances of all

sub�spaces� which is the least number of sub�spaces between this sub�space and the nearest

point of the curve� The distance is called unit distance�
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Figure ���� Illustration of the distance evaluation in a ��D square and several curves with
di�erent lengths� The left graph contains a very short curve� The curve is
extended in the middle graph� The right graph have the longest curve and the
best coverage� The number in each sub�square is the shortest unit distance from
the sub�square to the curve�

The left graph in Figure ��� shows the unit distance of each sub�square to a very short

curve inside the sub�square with distance of �� Sub�squares contiguous to ��distance sub�

squares have distance �� Sub�squares on the top row have the largest distance of �� In the

middle graph� a longer curve covers more regions of the space� Sub�squares are marked by

their unit distance to the curve as shown in the graph� Distances of � are omitted from the

graph� The maximum unit distance of � is possessed by the two sub�squares at the lower

left and right corners� In the graph on the right� the curve is further extended and covers

even more regions of the space� Now� the maximum unit distance is �� This curve achieves

better coverage than the one in the middle�

After getting the distance information of sub�spaces� we can then evaluate the coverage

of a curve� One metric is the maximal distance� which corresponds to the value � in formula

������ However� the single value may not tell the whole story of the coverage� Two curves

with the same maximal distance could have very di�erent coverage� A better evaluation

method is to look at the distribution of sub�space distances� and use a set of points from the

distribution� such as the ��� ��� or �� percentile� as evaluation metrics�
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Figure ���� Two equal�length curves C� and C� with the same maximal distance of sub�
spaces� but with di�erent distance distributions�

For example� Figure ��� shows two curves C� and C� of the same length in a ��D space�

The space is partitioned into �� sub�squares� For both curves� the maximal distance of

sub�squares is �� Their distance distributions of sub�squares are listed in the following table�

Distance to curve � � �

Number of C� � �� �

sub�squares C� � 	 �

From the distribution� we know that curve C� has better coverage�

The accuracy of the approximate measurement based on sub�spaces depends on the size

of a sub�space� When the space is divided more �nely and each sub�space is smaller� the

approximation can have high accuracy� but at the expense of more computations� For an

n�dimensional space� if the space is divided into half along each dimension� there will be �n

sub�spaces� If each dimension is divided into k pieces� then there will be kn sub�spaces� The

computational cost of evaluating distances of all sub�spaces is proportional to the number of

sub�spaces� Therefore� the computational cost increases rapidly as the space is divided into

smaller pieces� For a high�dimensional space� the computational complexity is exponential

and prohibitive even for a moderate division of the space� Hence� to evaluate coverage in
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high�dimensional spaces� we apply sampling techniques� A large number of sub�spaces are

sampled to give a good estimation of the actual distance distribution of sub�spaces� We

found out that ���� samples are usually good enough�

Based on the coverage evaluation method we have described� we then study the coverage

of various trace functions�

��
�� Space Filling Curves

There are two alternative ways to search a space� �a divide the space into sub�spaces

and search sub�spaces extensively one by one� and �b search the space from coarse to �ne�

The �rst is a divide�and�conquer approach� One example is to use space �lling curves�

Space �lling curves have been studied by mathematicians since Peano introduced them in

���� ������ A space �lling curve is any continuous and non�overlapping set of line segments

which completely �lls a subset of high�dimensional space� In the ��dimensional case� a space

�lling curve is a one�dimensional curve that �lls a plane and leaves no space free� One example

is the so�called �snake curve� shown on the left of Figure ����� The �rst two Peano curves�

P� and P�� are also plotted in Figure ����� Peano curves are generated recursively� Curve Pi

is generated from curve Pi�� by duplicating Pi�� nine times� translating and rotating each

duplicate appropriately� and joining the ends�

Peano curves are generated based on the base�� number system� Hilbert ����� produced

space �lling curves based on the even�number system� The �rst three Hilbert curves of degree

� are shown in Figure ����� Curve H� has four vertices at the center of each quarter of the

unit square� Curve H� has �� vertices� each at the center of a sixteenth of the unit square�

The Hilbert space �lling curve is the limit of the sequence of curves and visits every point

within a two�dimensional space� Generally� for an n�dimensional space� the jth Hilbert curve

is constructed from n� copies of the j��st Hilbert curve� The true space �lling curve is the

one that the order goes to the limit of in�nity�

A fundamental property of space �lling curves is that a space �lling curve never intersects

itself� To completely �ll a plane� space �lling curves have to turn over themselves a great

number of times� They often provide a convenient means of exploring the space around a
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Figure ����� Space �lling curves� snake curve �left and the �rst two Peano curves� P� and
P�� �right�

H1 H2 H3

Figure ����� The �rst three Hilbert space �lling curves of degree ��
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speci�c point� Space �lling curves have been applied in computer graphics and databases as

a basis for multi�attribute indices�

One disadvantage of using a space �lling curve as a trace to guide the search is that the

appropriate degree of the space �lling curve needs to be decided before the search starts�

That gives the granularity in which the search covers the space� Then� the search traverses

subregions one by one� This type of search doesn�t provide a continuous improvement of

solution quality as time goes by� Without prior knowledge of the search terrain� the search

process may spend a lot of time in some unpromising subregions before �nally going to

regions with good solutions� In that situation� the quality of the solution is poor and will

not be improved for a long period of time�

��
�� Searching from Coarse to Fine

The second approach is to search the space from coarse to �ne� The more time there is

available� the �ner details the search discovers� The advantage of this approach is the con�

tinuous improvement of solution quality� The trace function of this approach may intersect

itself and does not cover the space as uniformly as space �lling curves do� However� this

issue is not serious when the curve is used to search a high�dimensional space and the time

available is limited�

We have designed a family of trace functions that use this approach� These trace func�

tions are aperiodic and do not repeat themselves� They are parametric functions of one

independent variable� are designed based on the sinusoidal function� have a bounded range�

and move in a cyclic mode� To make a sinusoidal function aperiodic� we put a non�integer

power on the independent variable� The basic function looks like the following�

sin���t�� �����

where �� � 
 � 
 �� controls the cycle frequency� The larger the � is� the higher the

frequency is� With an aperiodic sinusoidal function of di�erent � in each dimension� a trace

function traverses the space in an aperiodic fashion and does not repeat itself� By having an
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appropriate � for each dimension� the curve can cover the space approximately in a uniform

way�

In our trace�based global�search method� a dynamic system containing the trace function

and the optimized function information evolves on a pseudo�time scale� A parametric trace

function with one automatic variable can be incooperated into the dynamic system naturally�

In an n�dimensional space� the trace function we have designed has the following form�

Ti�t � �i sin

�
��
�
t

s

���a��
��a��d��
i����k�
� i � �� � � � � n �����

where i represents the ith dimension� a�� d�� s� �� and k are parameters that control the

speed and shape of the function� a� and d� are in the range of ��� �� and a� � d� 
 �� They

specify the di�erence that the function moves in di�erent dimensions� s 	 � controls the

speed of the function� The larger the s is� the slower the function progresses with respect

to t� �i speci�es the range that the function moves in the ith dimension� k � n is a scaling

factor� The larger the value of k is� the smaller the function changes from one dimension to

another�

When �i � �� the trace function is bounded in space ���� ��n� If the search space of

an application problem is not in ���� ��n� we can either map the search space to ���� ��n or

enlarge the range of the trace function by increasing �i�

A further extension of function ����� is to add an initial phase shift to the trace function

in each dimension as follows�

Ti�t � �i sin

�
��
�
t

s

���a��
��a��d��
i����n
� ��

i� �

n

�
� i � �� � � � � n

����	

The second term inside the sine function is the initial dimension�dependent phase angle�

We compare trace functions with di�erent parameter values using the coverage�evaluation

method presented in the last section� We use trace function ����� as an example to illustrate

the evaluation of coverage� In this example� the set of parameters are a� � ����� s � ��
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Figure ����� ��D plots of trace function at t � �� �� and ��� respectively� The parameter
values of the trace function are a� � ����� s � �� d� � ���� �i � � and k � ���

d� � ���� �i � �� and k � ��� Figure ���� plots the trace function at t � �� ��� and ���

respectively� in a ��dimensional space�

As shown in Figure ����� the trace function moves in a band in the �rst � time units� By

t � ��� the trace function has pretty much traversed the whole space once� By t � ��� the

trace function continues to cover more vacant regions� and approximately in a uniform way�

Figure ���� shows the coverage measurement of this same trace in Figure ���� on a ��

D space based on our algorithm� The ��D square is divided into ��x�� sub�squares� The

number in each sub�square is the unit distance of the sub�square to the trace segment� The

three graphs show the coverage of the trace when it runs for �� ��� and �� units of time�

respectively� For t � �� the maximal distance is �� After �� time units� the maximal distance

is reduced to �� After �� time units� the maximal distance is ��

The coverage depends on how long the trace runs and the length of the trace segment�

Therefore� the coverage of trace functions should be compared based on same length of trace

segments�

Parameters a� and d� are two important parameters in trace function ������ They

determine the di�erence that the trace moves in each dimension� a� speci�es the fastest

movement and d� speci�es the slowest movement� When a� � �� the function is periodic

with a cycle of �� in the �rst dimension� and moves the fastest among all dimensions� In
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Figure ����� Coverage measurements of a trace function in a ��D space� Each dimension
has �� sample points� The three graphs correspond to the coverage when the
trace runs for �� ��� and �� time units� respectively� Each number is the unit
distance of the corresponding sub�square to the trace function�
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the highest dimension� the function is close to sin����t�sd�� Parameter s in trace function

����� controls the speed of the trace with respect to t� and does not a�ect the shape of the

trace�

��
�� Numerical Evaluation of TraceFunction Coverage

In this section� we evaluate the coverage of di�erent trace functions in the form of �����

by varying the values of a� and d�� The search space is assumed to be a hypercube in the

range of ���� �� in each dimension� Each dimension of the high�dimensional space is divided

into �� equal�length components� In this way� an n�dimensional space is decomposed into

��n sub�spaces of equal size� The coverage of a trace is evaluated based on the distribution

of distances from sub�spaces to the trace�

Figure ���� shows the coverage of � trace functions with a� � ���� and d� � ���� ���� ��	�

and ���� respectively� Each of the four graphs shows a ��D plot and the corresponding

contour plot of the cumulative distribution of distances from sub�spaces to the trace� The

three axes are the length of the trace� the distance of a sub�space to the trace �in the range

of ��� ���� and the cumulative distribution of distances from all sub�spaces to the trace�

For example� the upper�left graph shows the coverage distribution of a trace function with

d� � ���� When the trace reaches a length of ���� ���% of the sub�spaces are passed by

the trace� ����% within one unit distance of the trace� 	���% within a distance of �� ����%

within a distance of �� ����% within a distance of �� and all sub�spaces are within a distance

of �� The contour plot shows the ��� ��� and �� percentile of the cumulative distribution�

The distance distributions of these trace functions with various d� are very similar to

each other� For all of them� the ���percentile of distance distribution are less than � after

the curve traverses longer than ���� Moreover� the distance distribution is not sensitive to

values of d�� large d� values� e�g� ���� give worse coverage in the beginning for shorter curves�

but are slightly better for longer curves� All the trace functions show the general trend that

an exponentially longer curve is needed to improve the coverage linearly�
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4-D space: a0 = 0.05, d0 = 0.3
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4-D space: a0 = 0.05, d0 = 0.5
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4-D space: a0 = 0.05, d0 = 0.7
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4-D space: a0 = 0.05, d0 = 0.9
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Figure ����� The coverage of � trace functions in a ��D space with a� � ���� and d� �
���� ���� ��	� and ���� respectively� Each graph shows a ��D plot and a con�
tour plot of the cumulative distribution of distances from sub�spaces to the
trace function� The contour plots show the ��� ��� and �� percentile of the
distribution�
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4-D space: a0 = 0.05, d0 = 0.3
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4-D space: a0 = 0.05, d0 = 0.3
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4-D space: a0 = 0.05, d0 = 0.3
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4-D space: a0 = 0.05, d0 = 0.3
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Figure ����� Sampling is used to evaluate the coverage of a set of trace functions in a ��D
space with a� � ���� and d� � ���� ���� ��	� and ���� respectively� Each graph
shows a ��d plot and a contour plot of the cumulative distribution of distances
between sub�spaces and the trace function� The contour plots show the ��� ���
and �� percentiles of the distribution�

We have also varied a� while �xing d� � ���� Our results are similar to the situation of

varying a�� The distance distribution is not very sensitive to the values of a� in the range of

������ �����

We are interested in solving high�dimensional optimization problems� Hence� we want to

�nd out the coverage of the trace function for high�dimensional space� The computational

complexity of complete coverage evaluation based on sub�spaces increases exponentially with

respect to the number of dimensions� because the number of sub�spaces increases exponen�

tially� Therefore� we use a sampling method to evaluate the coverage�
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10-D space: a0 = 0.05, d0 = 0.3
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10-D space: a0 = 0.05, d0 = 0.5
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10-D space: a0 = 0.05, d0 = 0.7
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10-D space: a0 = 0.05, d0 = 0.9
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Figure ����� The coverage of a set of trace functions in a ���dimensional space with a� � ����
and d� � ���� ���� ��	� and ���� respectively� Each graph shows a ��D plot and
a contour plot of the cumulative distribution of distances between sub�spaces
and the trace function� The contour plots show the ��� ��� and �� percentiles
of the distribution�

To check the accuracy of the sampling method� we compare the distance distribution

obtained by the sampling method to that by the exact method� Figure ���� shows the

coverage of the same trace functions as in Figure ���� in a ��D space with a� � ���� and

d� � ���� ���� ��	� and ���� respectively� ���� sub�spaces were sampled randomly for a given

trace segment to obtain the sampling distance distribution� As shown in Figures ���� and

����� the distribution obtained by sampling is very close to that obtained by evaluating all

the sub�spaces�
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Next� we use sampling to evaluate the coverage of trace functions in high�dimensional

space� Figures ����� ���	� and ���� show the coverage of trace functions in ���� ���� and

���dimensional spaces� As before� each dimension of the high�dimensional spaces is divided

into �� equal�length parts� We �x a� � ���� and vary d� as ���� ���� ��	� and ����

In each of these three �gures� various values of d� generate similar distributions� In a

���dimensional space� the coverage of trace functions is signi�cantly worse than that in a

��dimensional space� For example� the ���percentile contour line �attens out at a distance of

�� In contrast� in a ��dimensional space� the ���percentile contour line decreases to less than

� and approaches �� The coverage is even worse in higher�dimensional spaces� In ��� and

���dimensional space� the ���percentile line only reaches a distance of � and �� respectively�

Our conclusions of trace�function coverage are as follows� The coverage is insensitive to

values of a� and d� in a large range� The coverage improves signi�cantly in the beginning

of the search and shows little improvement afterwards� The behavior is worse for higher�

dimensional space� In high�dimensional space� the coverage is low when the curve length is

short�

��
�
 Summary of TraceFunction Design

In this section� we have studied the coverage of trace functions� We introduce the coverage

of trace function in a high�dimensional space� and present coverage measurements based on

sub�spaces� A high�dimensional space is divided into smaller sub�spaces� and each sub�

space is treated as an entity� The distance from each sub�space to a trace is calculated�

The distribution of distances is used as the basis for evaluating coverage� In a higher�

dimensional space� the number of sub�spaces is very large� and calculating distances of all

the sub�spaces is prohibitively expensive� In this situation� sampling is used to get an

approximate distribution� A large number of sub�spaces are sampled randomly to give a

good approximation�

We have identi�ed two ways to traverse in a search space� One is to divide the space

into sub�spaces and search one sub�space extensively after another� The other one is to

search the space from coarse to �ne� We prefer the second approach due to its advantage
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20-D space: a0 = 0.05, d0 = 0.3
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20-D space: a0 = 0.05, d0 = 0.7
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20-D space: a0 = 0.05, d0 = 0.9
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Figure ���	� The coverage of a set of trace functions in a ���dimensional space with a� � ����
and d� � ���� ���� ��	� and ���� respectively� Each graph shows a ��D plot and
a contour plot of the cumulative distribution of distances between sub�spaces
and the trace function� The contour plots show the ��� ��� and �� percentiles
of the distribution�
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40-D space: a0 = 0.05, d0 = 0.3
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40-D space: a0 = 0.05, d0 = 0.5
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40-D space: a0 = 0.05, d0 = 0.7
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40-D space: a0 = 0.05, d0 = 0.9
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Figure ����� The coverage of a set of trace functions in a ���dimensional space with a� � ����
and d� � ���� ���� ��	� and ���� respectively� Each graph shows a ��D plot and
a contour plot of the cumulative distribution of distances between sub�spaces
and the trace function� The contour plots show the ��� ��� and �� percentiles
of the distribution�
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of continuous improvement of solution quality as time goes by� We have designed a family

of trace functions ����� using the second approach� and have studied the coverage of these

trace functions with di�erent parameter values in ��� ���� ���� and ���dimensional spaces�

Our results are summarized as follows�

	 The coverage of trace functions is not sensitive to their parameter values of a� and d�

in fairly large ranges�

	 The coverage improves quickly as a trace starts to traverse a search space and then

�atten out�

	 An exponentially longer trace is needed to improve the coverage linearly�

	 Trace functions can obtain dense coverage for low�dimensional space� but can only

achieve sparse coverage for high�dimensional space when the length of the trace is

short�

Using trace functions to cover a high�dimensional space densely is expensive� Therefore�

in our trace�based global search method� good initial points are important to bring the

trace close to good solutions� reducing the space that the trace function tries to cover� and

shortening the time to �nd global optima�

In the rest of this thesis� we use the trace function in ����� with parameters a� � ����

and d� � ��� in our experiments�

��� Speed of Trace Function

The search trajectory of our trace�based global search is a�ected by the speed of the

trace function� The system of ODEs as speci�ed in ����� has a limit on how fast the system

can change� If the trace moves too fast� the system of ODE is not able to keep up with the

trace� On the other hand� a slow trace is also not good because the search trajectory cannot

cover a large space given the time available� Also� the trace may have little pulling force�

resulting in gradient descent being the dominant force�

��	



In trace function ������ we introduce a parameter� s� to adjust the speed of the trace�

Smaller s makes the trace move faster in the same amount of time� We want the trace to

move fast� yet not over the limit of the ODE system�

To check whether trace T �t moves too fast� we pass the trace through the following ODE

system�

$x�t � ��x�t� T �t �����

This system generates a trajectory that tries to follow the trace function� If the trace moves

too fast� the generated trajectory only traverses a much smaller region as compared to the

space the trace passes�

We have tested di�erent values of parameter s of the trace function in ������ We want

s to be small in order to give faster speed� while keeping the output trajectory close to the

trace� Empirically� we have found that s � � is good and use it in the rest of this thesis�

��� Variable Scaling During Global Search

In our trace�based global�search method� the search trajectory is generated by the com�

bined force of the trace and the local gradient� These two forces have to strike a balance for

the trace�based global search to work well�

When the global�search stages are modeled as a system of ODEs in ������ a pair of

coe
cients� �t and �t� specify the relative weights put on the trace and the local descent�

Appropriate values of the coe
cients are necessary to generate a good search trajectory�

If the weight on the trace is too large� then the trace becomes dominant� and the search

trajectory follows the trace closely� but ignores terrain information� On the other hand� if

the weight on the gradient is too large� then local descents become dominant� and the search

trajectory is trapped in local minima and cannot get out�

When we use �xed weights� gradient descents dominate the trace in some places where

gradients are large� To overcome the di
culty caused by large gradients� we have developed

an adaptive variable scaling technique� The idea of variable scaling is to stretch out the
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Backward force due to gradient
>  Forward force due to trace
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through variable scaling.
Trace force is increased significantly

Figure ����� Variable scaling stretches out the variable� which reduces the backward force
due to the gradient and increases the forward force due to the trace�

objective function along the variable dimensions� Figure ���� illustrates the e�ect of variable

scaling that changes the relative value of the gradient and the trace�

In the left graph of Figure ����� the gradient on the steep slope contributes a ��� back�

ward force� while a forward force of � is provided by the trace� Since the forward force is

less than the backward force� the search cannot move forward� The right graph shows the

situation after scaling variable values by �� After the variable is stretched out� the backward

force is reduced by half and the forward force is increased by �� Now the search overcomes

the slope and can move forward�

Figure ���� provides more detailed analysis on what happens when local gradients dom�

inate the trace� and before and after variable scaling� In the left graph� a trace function is

going from left to right along one variable dimension x� In this example� x has values in the

range of � and �� The search trajectory follows the trace function and hits a local minimum�

Function values along the search trajectory are plotted below the search trajectory� On the

left side of the local minimum basin� the gradient and the trace point in the same direction�

causing the search trajectory to go down the slope� The problem happens when the trace

tries to pull the search trajectory out of the local minimum from the right side of the basin�

The gradient force counteracts and dominates the trace force� The result is that the search

trajectory cannot get out and is trapped in the local minimum�
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Figure ����� Illustration of gradient and trace force around a local minimum along dimension
x� The left graph shows the situation before variable scaling� in which the
search trajectory is trapped in the local minimum� The right graph shows the
situation after variable scaling where variable x is scaled up �� times and the
search trajectory overcomes the local minimum� The graphs show the trace
function going from left to right� and the resulting search trajectory�

In the right graph of Figure ����� variable x is scaled up �� times and has values from

�� to ��� The trace force is increased by �� times because the di�erence between the trace

position and the search trajectory position is increased by �� times� At the same time� the

gradient magnitude is reduced by �� times� When the trace tries to pull the search trajectory

out from the right side of the local minimum basin� the trace force is larger than the gradient

force� and the search trajectory successfully overcomes the local minimum�

Scaling up variables reduces the gradient force and increases the trace force� Conversely�

scaling down variables increases the gradient and reduces the trace force� The next problem

is whether we should scale up or down variables at a certain time during the search� and by

how much�
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The trace force is proportional to the distance of the current trace position and the search

position� Usually global optimization problems have an explicitly speci�ed region of interests

that corresponds to the search space� The trace function traverses the inside of the search

space� So we have a good idea of how large the trace force can be� On the other hand� the

magnitude of the gradient of the optimization function is more di
cult to estimate� Its value

can be in a very large range� varying from one problem to another� and changing signi�cantly

from one search region to another�

In our adaptive variable�scaling method� variables are scaled adaptively based on the

local gradients and the values of the trace function� When the gradient is much larger than

the trace force� variables are scaled up to make the gradient smaller than the trace force�

When variables are scaled up� the trace force is increased proportionally because the trace

now is in a larger region� At the same time� the local gradient is reduce proportionally

because the function value is not changed and the variables have larger values� For example�

suppose the function to be minimized is f�x� and x is in the range of ���� ��� Scaling x up

by �� times means that x is mapped to the range of ����� ���� and the function becomes

f�x���� By doing variable scaling adaptively during the search� the problem caused by deep

local minima and large gradients can be e�ectively solved�

Let us illustrate the adaptive variable�scaling method using a simple example based on

minimizing a ��dimensional Grewank�s function ������ Figure ���� shows a trace and the

search trajectories with and without adaptive variable scaling on a ��D contour plot of a

portion of this objective function� A darker color in the contour plot represents a smaller

function value� The left graph shows the super�imposed trace function starting from the

position marked as �x� near the center of the graph� The starting point is inside a local

minimal basin� The trace function is evaluated for �� time units� from t � � to ���

The middle graph shows the search trajectory after one stage of the trace�based global

search without adaptive variable scaling� The trajectory is obtained by evaluating the system

of ODEs ����� from t � � to �� using an ordinary di�erential equation solver� LSODE�

Because the gradient force is much larger than the trace force� the search trajectory is

trapped inside a local minimal region�

���



0.15 0.16 0.17

0.16

0.17

0.18

0.19
0.15 0.16 0.17

0.16

0.17

0.18

0.19

X

0.15 0.16 0.17

0.16

0.17

0.18

0.19
0.15 0.16 0.17

0.16

0.17

0.18

0.19

X

0.15 0.16 0.17

0.16

0.17

0.18

0.19
0.15 0.16 0.17

0.16

0.17

0.18

0.19

X

Figure ����� The trace function and search trajectories after one stage of the trace�based
global search with and without adaptive variable scaling on the ��D Grewank�s
function� The ��D contour plots of Grewank�s function are shown in all three
graphs� A darker color in the contour plot represents a smaller function value�
The left graph shows the trace function starting from the position marked �x��
The middle graph shows search trajectory without variable scaling� The right
graph shows search trajectory with adaptive variable scaling�

The right graph of Figure ���� shows the search trajectory generated using adaptive

variable scaling� In this example� the trajectory is not very smooth because variables are

not scaled continuously� Instead� variable scaling is performed every �t � ��� time intervals�

After every �t time unit� the gradient of the current search point is evaluated� If the gra�

dient along some variable dimensions are too large� then these variables are scaled up� The

variables are scaled separately with di�erent scaling factors� As shown in the right graph�

due to the e�ect that adaptive variable scaling reduces large gradients� the search trajectory

overcomes the local minima� and follows the trace function nicely�

Note that besides variable scaling� function scaling is also helpful in modifying function

and gradient values to overcome local minima� For example� when the objective function

takes on values in a large range and has large gradients� function transformations� such as

logarithmic or sigmoidal transformation� can be applied to compress the function values�
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��� Numerical Methods for Solving the Dynamic Systems of Equations

Each stage of the trace�based global search is modeled by a system of ordinary di�erential

equation �ODEs� The search trajectory of each stage is generated by solving the system of

ODEs as an initial value problem �IVP�

Not all initial value problems can be solved explicitly� Oftentimes� it is impossible to �nd

a closed�form solution� Many numerical methods have been developed to approximate the

solution� Widely used methods include Euler�s method� Runge�Kutta methods� predictor�

corrector methods� and implicit methods� Next� we brie�y introduce IVP and present some

popular numerical methods �����	����������������

A general IVP has the following form�

y��t � f�t� y with y�� � y�� �����

In numerical methods� a set of points f�tk� ykg is generated as an approximation of the

solution� i�e� y�tk � yk� Because the solution is approximated at a set of discrete points�

these methods are called di�erence methods or discrete variable methods�

A simple single�step method has the form yk	� � yk�h&�tk� yk for some function� where

&�tk� yk is the increment function� The value h is called the step size� Single�step methods

use only the information from one previous point to compute the next point�

The Euler method belongs to the class of single�step methods� in which the increment

function is f�tk� yk� The Euler method is simple and easy to understand� However� it has

limited usage because larger errors are accumulated as the search proceeds�

Another family of single�step methods are Runge�Kutta methods� which are widely used

in solving IVPs� The following Runge�Kutta method of order � is the most popular�

yk	� � yk �
�

�
�k� � �k� � �k� � k� �����
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where

k� � hf�tk� yk

k� � hf�tk � h��� yk � k���

k� � hf�tk � h��� yk � k���

k� � hf�tk � h� yk � k�

Runge�Kutta methods are good general purpose methods because they are quite accurate�

stable� and easy to program�

Single�step methods are self�starting in the sense that points can be computed one by one

starting from the initial value� Multi�step methods use several prior points in the calculation

of one point� They are not self�starting� A desirable feature of a multi�step method is that

the local error can be determined and a correction term can be included� which improves the

accuracy of the answer in each step� Also� adaptive step�size adjustment can be accomplished�

It is possible to determine if the step size is small enough to obtain an accurate value for the

current point� yet large enough that unnecessary and time�consuming calculations can be

eliminated� An example of a multi�step method is the Adams�Bashforth�Moulton method�

The methods we describes above are explicit methods� They use one or multiple previous

points to calculate the current point� Explicit methods have a limited stability region from

which the step size is chosen� A larger stability region can be obtained by using information

at the current time� which makes the method implicit� The simplest examples is the backward

Euler method�

yk	� � yk � hf�tk	�� yk	� �����

This method is implicit because f is evaluated with the argument yk	� before the value of

yk	� is known� The value of yk	� is often determined iteratively by methods such as Newton�s

method or �xed�point iteration�

Implicit methods have a signi�cantly larger stability region� Much larger steps may be

taken� and thus attain much higher overall e
ciency than explicit methods� despite requiring

more computations per step� Also� certain types of implicit methods are much more e�ective

than explicit methods in solving sti� ODEs�
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A system of ODEs is sti� if its Jacobian matrix J � ��fi��yj has at least one eigenvalue

with a large negative real part and the solution is slowly varying on most of the interval of

integration� Sti�ness is shown as the convergence of solution curves is too rapid�

All commonly used formulas for solving sti� IVPs are implicit in some sense� Implicit

methods solve a linear or nonlinear system in each step of the integration� A good starting

guess for the iteration in solving yk	� can be obtained from an explicit formula� using the

explicit and implicit formulae as a predictor�corrector pair�

One of the most popular pairs of multi�step methods is the Adams�Bashforth�Moulton

method� It uses the explicit fourth�order Adams�Bashforth predictor

yk	� � yk �
h

��
���y�k � ��y�k�� � �	y�k�� � �y�k�� �����

and the implicit fourth�order Adams�Moulton corrector

yk	� � yk �
h

��
��y�k	� � ��y�k � �y�k�� � y�k�� �����

Another family of implicit multi�step methods are the backward di�erentiation formulas�

One example is

yk	� �
�

��
���yk � �yk�� � �yk�� �

�

��
hy�k	� �����

This type of methods are particularly good for solving sti� ODEs�

After brie�y reviewing existing numerical methods for solving IVPs� we come back to

solving the IVPs modeling the global�search stages of our trace�based search� We have used

the explicit Euler method� the Adams�Bashforth�Moulton method� and a method based on

backward di�erentiation formulas�

In applying the Euler method to solve a system of ODEs de�ned in ������ we have the

following iterative equation�

x�t� �t � x�t � �t���grxf�x�t� �t�x�t� T �t� �����
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where �t is the step size� A large �t causes a large stride of variable modi�cation� possibly

resulting in instability� On the other hand� a small �t means a longer computation time for

traversing the same distance� When the exact search trajectory of the global�search phase

is not critical� the Euler method can obtain good results� The Euler method runs faster and

is applied to solve larger problems�

The more sophisticated numerical methods we have used are implemented in a software

package� LSODE� which is the Livermore Solver for Ordinary Di�erential Equations ������

LSODE solves the system of ODEs to within a prescribed degree of accuracy e
ciently

using adaptive step�size adjustments� LSODE implements both the Adams method and the

method based on backward di�erentiation formulas� Most of the time� we have used the

method based on backward di�erentiation formulas in case the ODE system is sti�� We

have also used the Adams method for designing QMF �lter banks�

LSODE obtains high precision solutions in solving IVPs� When the function to be op�

timized is smooth� LSODE is accurate and usually runs fast as well� However� when the

optimized function is rugged� or when there is noise in function and gradient evaluations�

LSODE may progress slowly� When the number of variables is large� LSODE may also

become computationally expensive�

Therefore� the Euler method has advantages in situations in which the function to be

optimized is rugged� has noisy values� and has large number of dimensions� The execution

time of the Euler method can be much faster than more sophisticated methods� and is

relatively insensitive to noise� Its disadvantage is that it has larger errors� which may cause

the search trajectory to diverge from the theoretical trajectory� Also� it is not easy to select

the appropriate step size in the Euler method�

��� Novel� A Prototype Implementing Proposed Methods

In the last chapter� we have presented Lagrangian methods to handle nonlinear con�

straints in continuous and discrete optimization problems� In this chapter� we have pre�

sented a multi�level global search method to overcome local minima� In this section� we

present a prototype that implements the methods proposed in this and the last chapter� In
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Figure ����� Organization of the Novel global search method�

the prototype� our proposed methods are put together to solve nonlinear unconstrained and

constrained� continuous and discrete problems� The prototype is called Novel� which stands

for Nonlinear Optimization Via External Lead�
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Figure ���� shows the organization of the Novel prototype� Users specify an objective

function and a constraint set as well as some control parameters� Novel solves discrete

constrained problems using discrete Lagrangian methods� Continuous problems are solved

using a combination of global and local searches� We present each component of Novel in

detail next�

����� Continuous Methods

For nonlinear continuous unconstrained optimization problems� the optimal solutions

of an objective function are solved by global� and local�search methods� For constrained

problems� constraints are handled by Lagrangian methods� Inequality constraints are �rst

converted to equality constraints using the slack�variable or the MaxQ method� Then� the

combination of the objective function and the constraints forms a Lagrangian function�

Finally� global and local searches are performed on the Lagrangian function to �nd good

solutions�

The search space of a continuous optimization problem is usually large� Identifying

promising search regions and concentrating the search in a smaller sub�space can e�ectively

reduce the computation time in �nding good solutions� Promising regions are represented

as initial points that are fed into the �ne�level global search of Novel�

In our optimization method� promising regions are identi�ed through three ways� ��

domain knowledge� �� heuristic method� and �� coarse�level global search� For knowledge�

rich applications� domain knowledge provides reliable information about promising search

regions� For example� in feedforward neural�network learning problems� optimal weights

usually have small values and optimal solutions are not far from the origin� Therefore� the

sub�space around the origin is a promising search region� In designing �lter banks� we try

to improve the best existing solutions� Thus� the sub�spaces around existing solutions are

promising search regions�

In applications that have little or no domain knowledge� some types of search methods

are applied� These include heuristic search methods and general�purpose search methods�

Heuristic search methods� including various greedy methods� use heuristic strategies to �nd
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promising regions� For instance� a greedy method can �rst �nd the optimal value for each

dimension while keeping the values of other variables constant� Then� it combines the optimal

value for each dimension to form a sub�optimal solution of the original multi�dimensional

problem�

General�purpose global�search methods can be used in the coarse�level global search to

�nd promising regions� In Novel� we have used existing global�search methods that include

simulated annealing� genetic algorithms� and multi�start of local descents� In addition� we

have also developed a trajectory�based method as a variation of multi�start of descents�

Novel consists of a unique �ne�level global search� the trace�based global search method�

Our trace�based search uses a problem�independent trace to lead the search and achieves a

balance between global and local searches� During the search� our trace�based search relies on

two counteracting forces� the local gradient force that drives the search to a local optimum

and a deterministic trace force that leads the search out of local minima� Good starting

points identi�ed in the global�search phase are used in the local search to �nd good local

minima�

In Novel� the trace function for an n�dimensional space is de�ned in ������ and the

default parameter values are a� � ����� d� � ���� s � �� � � �� and k � n� The global�search

stage of our trace�based search is modeled as a system of ordinary di�erential equations

�ODEs� For an unconstrained problem with objective function f�x� the system of ODEs

is

dx�t

dt
� ��grxf�x�t� �t �x�t� T �t

where �g and �t are coe
cients specifying the weights for descents in local minimum regions

and for exploration of broader space� The default value of each is �� The default number of

global�search stages is �� An adaptive variable scaling technique is implemented to overcome

deep local minima with large gradients�
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For a constrained optimization problem with Lagrangian function L�x� �� the system of

ODEs is as follows�

dx�t

dt
� ��grxL�x�t� ��t� �t �x�t� T �t

d��t

dt
� r�L�x�t� ��t

where �g and �t are coe
cients� The search performs descents in the original�variable x

space and ascents in the Lagrange�multiplier � space� A trace function T �t brings the

search out of local minima in the original�variable space�

The system of ODEs is solved by the Euler method or LSODE ������ which is the Liv�

ermore Solver for Ordinary Di�erential Equations� LSODE solves the system of ODEs to

within a prescribed degree of accuracy using adaptive step size adjustments� LSODE imple�

ments both Adams method and the method based on backward di�erentiation formulas�

Fine�level global searches discover local�minima basins� and local searches �nd local min�

ima� Fine�level global searches provide initial points for local searches� Initial points for local

searches are selected based on search trajectories generated by each stage of the trace�based

global search� Novel implements two heuristics to select the initial points� the best solutions

in periodic time intervals or the local minima in each trajectory�

Existing methods of local descents are applied in local searches� For unconstrained

optimization problems� they are gradient descent� quasi�Newton�s and conjugate gradient

methods� Problem�speci�c methods� such as back�propagation in neural�network training

application� can also be applied�

For constrained optimization problems� Novel applies the Lagrangian method with adap�

tive control to perform local search� For constrained optimization problems with Lagrangian

function L�x� �� the system of ODEs is

dx�t

dt
� �rxL�x�t� ��t

d��t

dt
� r�L�x�t� ��t
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where �g and �t are coe
cients� A combination of the objective function and the constraints

forms the Lagrangian function L�x� �� By doing descents in the original variable x space

and ascents in the Lagrange�multiplier � space� the system converges to a saddle point

corresponding to a local minimum of the original constrained optimization problem� Based

on the search pro�le� the Lagrangian method adjusts the weights of the objective and the

constraints to achieve faster and more robust convergence�

In the appendix� we demonstrate Novel�s ability of �nding good solutions by solving some

nonlinear simple�bounded optimization problems� We compare the experimental results

obtained by Novel with those obtained by multi�start of gradient descent�

����� Discrete Methods

Novel applies discrete Lagrangian methods to solve discrete constrained problems� For

the following equality constrained problem�

minx�Dn f�x

subject to h�x � �

where x � �x�� x�� � � � � xn� h�x � �h��x� h��x� � � � � hm�x� and D is a subset of integers�

i�e�� Dn � In� the Lagrangian function is

L�x� � � f�x � �Th�x�

The general structure of DLM to solve this problem is shown in Figure ����� In discrete

space� "xL�x� � is used in place of the gradient function in continuous space� DLM performs

descents in the original variable space of x and ascents in the Lagrange�multiplier space of

�� We call one iteration as one pass through the while loop� In the following� we describe

the features of our implementations of DLM�

�a Descent Strategies� There are two ways to calculate "xL�x� �� greedy and hill�

climbing� each involving a search in the neighborhood of the current value of x�

In a greedy strategy� the value of x leading to the maximum decrease in the Lagrangian�

function value is selected to update the current value� Therefore� all values in the vicinity
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Set initial x and �
while x is not a saddle point or stopping condition has not been reached

update x� x�� x�"xL�x� �
if condition for updating � is satis�ed then

update �� ��� � � c
 h�x
end if

end while

Figure ����� A generic discrete Lagrangian method�

need to be searched every time� leading to high computation complexity� In hill�climbing� the

�rst value of x leading to a decrease in the Lagrangian�function value is selected to update

the current x� Depending on the order of search and the number of points that can improve�

hill�climbing strategies are generally less computationally expensive than greedy strategies�

Hence� we usually use the hill�climbing strategy in our experiments�

�b Updating �� The frequency in which � is updated a�ects the performance of a

search� The considerations here are di�erent from those of continuous problems� In a discrete

problem� descents based on discrete gradients usually make small changes in L�x� � in each

update of x because only one variable changes� Hence� � should not be updated in each

iteration to avoid biasing the search in the Lagrange�multiplier space of � over the original

variable space of x�

In our implementation� � is updated in two situations� One is when the search reaches

a local minimum� another is decided by parameter T that speci�es the number of iterations

before � is updated� T can be changed dynamically according to the value of L�x� � or

when "xL�x� � � �� When "xL�x� � � �� a local minimum in the original variable space

is reached� and the search can only escape from it by updating ��

A parameter c in the term c 
 h�x in Figure ���� controls the magnitude of changes

in �� c is the weight put on constraints� while the weight of the objective is always ��

In general� c can be a vector of real numbers� allowing non�uniform updates of � across

di�erent dimensions and possibly across time� For simplicity� we have used a constant c in

our implementation for all ��s�
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For some problems� the constraints h�x are only evaluated to non�negative values�

such as in satis�ability problems� This makes � in Figure ���� nondecreasing� For dif�

�cult problems that require millions of iterations� � values can become very large as the

search progresses� Large ��s are generally undesirable because they cause large swings in

the Lagrangian�function value� and make the search space rugged and di
cult to �nd good

solutions�

To overcome this problem� we have developed strategies to reduce � dynamically� One

method is to reduce � periodically every certain number of iterations� More sophisticated

methods reduce � adaptively based on the pro�les of the objective� constraints� and Lagrange�

multiplier values�

�c Starting Points and Restarts� In contrast to random�start methods relying on restart�

ing from randomly generated initial points to bring a search out of a local minimum� DLM

continue to evolve without restarts until a saddle point is found� This avoids restarting from

a new starting point when a search is already in the proximity of a good local minimum�

Another major advantage of DLM is that there are very few parameters to be selected or

tuned by users� including the initial starting point� This makes it possible for DLM to always

start from the origin or from a random starting point generated by a �xed random seed� and

�nd a saddle point if one exists� The initial of � is always ��

�d Plateaus in the Search Space� In discrete problems� plateaus with equal Lagrangian

values exist in the search space� Discrete gradient operator may have di
culties in plateaus

because it only examines adjacent points of L�x� � that di�er in one dimension� Hence� it

may not be able to distinguish a plateau from a local minimum� We have implemented two

strategies to allow a plateau to be searched�

First� we need to determine when to change � when the search reaches a plateau� As

indicated earlier� � should be updated when the search reaches a local minimum in the

Lagrangian space� However� updating � when the search is in a plateau changes the surface of

the plateau and may make it more di
cult for the search to �nd a local minimum somewhere

inside the plateau� To avoid updating � immediately when the search reaches a plateau� we

have developed a strategy called �at move� This allows the search to continue for some time
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in the plateau without changing �� so that the search can traverse states with the same

Lagrangian�function value� How long �at moves should be allowed is heuristic and possibly

problem�dependent�

Our second search strategy is to avoid revisiting the same set of states in a plateau� In

general� it is impractical to remember every state the search visits in a plateau due to the

large storage and computational overheads� In our implementation� we have kept a tabu list

to maintain the set of variables �ipped in the recent past ���� ���� and to avoid �ipping a

variable if it is in the tabu list�

���� Potential for Parallel Processing

Parallel processing is essential in solving large nonlinear optimization problems� These

problems are computationally intensive because the number of local minima and the number

of variables can be large� the objectives� constraints� and derivatives can be expensive to

evaluate� and many evaluations of the objectives� constraints� and derivatives may be needed�

Also� the most powerful computers in the world are parallel computers� and the trend will

continue in the future�

In our global search method shown in Figure ���� many components can be executed in

parallel� Generally� parallelism is found at three levels� �� global search in parallel� �� local

search in parallel� and �� evaluation of objective� constraints� and derivatives in parallel�

Our coarse�level global search in Novel provides initial points for our �ne�level global

search� Parallel search methods can be used in the coarse�level global search� such as parallel

genetic algorithms� parallel simulated annealing� and parallel multi�starts of descents� Other

heuristic methods for coarse�level global search can also be parallelized� For instance� in

the trajectory�based method� sample points are selected along a ��dimensional trajectory

function over the search space� Then� descents from these sample points� which take much

more time than selecting the sample points� can be done in parallel�
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Trace�based global searches starting from di�erent initial points generated by the coarse�

level search can be executed in parallel� They are independent and have minimal commu�

nication and synchronization overheads� In each trace�based global search� multiple stages

can be executed in parallel� These stages are cascaded� and can be executed in a pipelined

fashion� However� since the number of stages is not large� the amount of parallelism is

limited�

Local searches of our optimization method start from initial points generated by �ne�level

global searches� They are independent and can be executed in parallel� For many application

problems� local descents are much more expensive� In contrast� the global�search phase is

much faster and can quickly generate many initial points for local descents� In this case�

many descents can be performed in parallel since there is very little communication overhead

among them�

There are a large number of function and gradient evaluations during the execution of

our global search method� They make up the majority of the work� In many applications�

the function or gradients are expensive to evaluate� Thus� evaluating functions and gradients

at di�erent points in parallel can signi�cantly reduce execution time�

Overall� many aspects of parallelism can be explored in our global search method� Our

method can e�ectively run on parallel computers and achieve near linear speedups�

���� Summary

In this chapter� we have presented a global search method that overcomes local minima

in nonlinear optimization problems� This method consists of a global�search phase and a

local�search phase� The global�search phase is further divided into a coarse�level search and

a �ne�level search� The coarse�level search identi�es promising search regions to be searched

more thoroughly by the �ne�level search�

We have applied existing global�search methods� including simulated annealing� genetic

algorithms� and multi�start of descents� in the coarse�level global search� These methods are

executed for a limited amount of time to coarsely identify promising search regions� We have
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also developed a variation of the trajectory methods� which selects sample points based on

a user�provided trajectory in the search space� The outputs of the coarse�level global search

are used as initial points in the �ne�level global search�

For the �ne�level global search� we have proposed a new global�search method for contin�

uous optimization problems� called trace�based global search� The trace�based search uses

a problem�independent continuous trace to lead the search� It relies on two counteracting

forces� the local gradient force that drives the search to a local optimum and a deterministic

trace force that leads the search out of local minima� The trace force is expressed in terms

of the distance between the current trajectory position and the position of the trace� It

produces an information�bearing trajectory from which sample points can be identi�ed as

starting points for the local search�

We have studied the design of new trace functions� and have proposed trace functions that

search a space from coarse to �ne� Trace�based search is modeled by systems of ordinary

di�erential equations �ODEs� We have developed adaptive variable scaling technique to

overcome the di
culty caused by large gradients during global search� and enable the search

trajectory to follow the trace closely�

Our trace�based method is e
cient in the sense that it tries to �rst identify good starting

points before applying a local search� Due to informed decisions in selecting good start�

ing points� our trace�based search avoids many unnecessary e�orts in re�determining al�

ready known regions of attraction� and spends more time in �nding new unvisited ones� Its

complexity is related to the number of �regions of attraction� rather than the number of

dimensions�

Our trace�based method is also e
cient because it provides a continuous means of going

from one local region to another� This avoids problems in methods that determine new start�

ing points heuristically as in evolutionary algorithms� When starting points are determined

randomly� the search may miss many local minima between two starting points or may spend

too much time in one region�

Our trace�based method is better than multi�start methods that perform blind sampling�

as well as random search algorithms �such as genetic algorithms and simulated annealing
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that do not exploit gradient information in their global search strategies� It incurs less

overhead as compared to existing generalized gradient methods and other deterministic global

search methods� It can be integrated into any existing local�search method�

In the local�search phase� existing local�descent methods have been applied� Gradient

descent� quasi�Newton�s� and conjugate gradient methods are e
cient for continuous uncon�

strained problems� For continuous constrained problems� we apply Lagrangian methods with

adaptive control to achieve faster and more robust convergence�

Finally� we have presented a prototype that implements our proposed methods for solving

nonlinear optimization problems� The prototype is called Novel� an acronym for Nonlinear

Optimization Via External Lead�

Novel combines methods for handling nonlinear constraints �proposed in Chapter � and

for overcoming local minima �proposed in Chapter �� and solves constrained and uncon�

strained problems in a uni�ed framework� Constrained problems are �rst transformed into

Lagrangian functions� Then� Novel performs global searches based on the objective functions

of unconstrained problems and the Lagrangian functions of constrained problems� overcom�

ing local minima in a deterministic and continuous fashion�

In the next part of this thesis� we show some very promising results in applying Novel to

solve real�world applications� These applications are �a neural network learning problems

formulated as unconstrained optimization problems� �b digital �lter�bank designs formulated

as nonlinear constrained optimization problems� �c satis�ability and maximum satis�abil�

ity problems� and �d multiplierless �lter�bank designs formulated as discrete optimization

problems�
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�� UNCONSTRAINED OPTIMIZATION IN NEURAL�NETWORK LEARNING

In this chapter� we apply Novel in feed�forward neural�network learning� In general� such

learning can be considered as a nonlinear global optimization problem in which the goal is

to minimize a nonlinear error function that spans the space of weights and to look for global

optima �in contrast to local optima� First� we introduce arti�cial neural networks� present

the formulation of neural�network learning as an optimization problem� and survey existing

learning algorithms� Then� using �ve benchmark problems� we compare Novel against some

of the best global optimization algorithms and demonstrate its superior improvement in

performance�

��� Arti	cial Neural Networks

The concept of arti�cial neural networks �ANNs was inspired by biological neural net�

works� Biological neurons� believed to be the structural constituents of the brain� are much

slower than silicon logic gates� The brain compensates for the relatively slower operation

of biological neurons by having an enormous number of them that are massively intercon�

nected� The result is that inferencing in biological neural networks is much faster than the

fastest computer� In a word� a biological neural network is a nonlinear� highly parallel device

characterized by robustness and fault tolerance� It learns by adapting its synaptic weights

to changes in the surrounding environment�
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Table ���� Von Neumann computer versus biological neural systems�

Von Neumann Computer Biological Neural System
Processor Complex Simple

High speed Low speed
One or a few A large number

Memory Separate from a processor Integrated into processor
Localized Distributed
Not content addressable Content addressable

Computing Centralized Distributed
Sequential Parallel
Stored programs Self�learning

Reliability Very vulnerable Robust
Expertise Numerical computation and Perceptual problems

symbolic manipulations
Operating Well�de�ned Poorly de�ned
environment Well�constrained Unconstrained

Modern digital computers outperform humans in the domain of numeric computation

and symbol manipulation� However� humans can solve complex perceptual problems at a

much higher speed and broader extent than the world�s fastest computer� The biological

brain is completely di�erent from the von Neumann architecture implemented in modern

computers� Table ��� from ����� summarizes the di�erence�

ANNs attempt to mimic some characteristics of biological neural networks� In ANNs� in�

formation is stored in the synaptic connections� Each neuron is an elementary processor with

primitive operations� like summing the weighted inputs and then amplifying or thresholding

the sum�

Figure ��� shows a binary threshold unit proposed by McCulloch and Pitts as an arti�cial

neuron� This neuron computes a weighted sum of n input signals� xi� i � �� � � � � n� and passes

it through an activation function� a threshold function in this example� to produce output
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Figure ���� McCulloch�Pitts model of a neuron �left and a three�layer feedforward neural
network �right�

where ��� is a step function and wi is the synapse weight associated with the ith input�

McCulloch and Pitts proved that suitably chosen weights let a synchronous arrangement of

such neurons perform universal computations ������ The McCulloch�Pitts neuron has been

generalized in many ways� For example� other than threshold functions� activation functions

have taken the forms of piecewise linear� sigmoid� or Gaussian functions�

A neural network is characterized by the network topology� the connection strength be�

tween pairs of neurons �weights� the node properties� and the state�updating rules� The

updating rules control the states of the processing elements �neurons�

According to their architectures� neural networks can be classi�ed into feedforward and

feedback networks� In feedforward neural networks� connections between nodes �neurons

are uni�directional � from the input nodes to the output nodes through possibly several

layers of hidden nodes� The most popular family of feed�forward networks are the multilayer

perceptrons� in which neurons are organized into layers that have uni�directional connections

between them� Figure ��� shows a typical structure of this type of network� On the other

hand� in feedback neural networks� there are connections in the reverse direction� i�e�� from

the output nodes to the input nodes� These feedback connections feed information back from

output nodes to input or hidden nodes�
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An alternative classi�cation of neural networks is based on learning paradigms� by which

neural networks are classi�ed into supervised�� reinforcement�� and unsupervised�learning

networks�

In supervised learning� the target outputs are known ahead of time� and the error between

the desired outputs and the actual outputs during learning is fed back to the network to

adjust its weights� Reinforcement learning di�ers in that its feedback only distinguishes

between correct and incorrect outputs but not the amount of error� In unsupervised learning�

no target output is supplied during training� and the network self�organizes and classi�es

the training data on its own�

In supervised learning of both feedforward and feedback neural networks� the learning can

be formulated as an unconstrained nonlinear optimization problem� Despite various forms

of error functions� such as mean�square error� arctangent error� and cross�entropy error� the

function to be optimized is usually highly nonlinear with many local minima�

In reinforcement learning� the gradients of the optimization criterion with respect to

network weights is estimated instead of computed� Since this information is inaccurate and

noisy� learning is usually carried out by stochastic learning methods and does not involve

traditional numerical optimization�

Unsupervised learning methods use a pre�speci�ed internal optimization criterion to cap�

ture the quality of a neural network�s internal representation� For certain problems whose

outputs are known ahead of time� for instance� encoding and clustering� unsupervised learn�

ing can be formulated as optimization problems� For feedback networks such as Hop�eld

networks� the network designed is for a speci�c function it implements and does not involve

optimization�

��� Feedforward NeuralNetwork Learning Problems

Arti�cial neural nets have found many successful applications ranging from �nger�print

recognition to intelligent cameras� Neural�network design �learning is a di
cult task� and

current design methods are far from optimal�
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Learning in neural networks � whether supervised� reinforcement� or unsupervised � is

accomplished by adjusting weights between connections in response to the inputs of training

patterns� In feed�forward neural networks� this involves mapping from an input space to an

output space� That is� output O of a neural network can be de�ned as a function of inputs

I and connection weights W � O � ��I�W � where � represents a mapping function�

Supervised learning involves �nding a good mapping function that maps training pat�

terns correctly as well as to generalize the mapping found to test patterns not seen in

training ���	�� This is usually done by adjusting weights W while �xing the topology and

the activation function� In other words� given a set of training patterns of input�output

pairs f�I��D�� �I��D�� � � � � �Im�Dmg and an error function �W� I�D� learning strives to

minimize learning error E�W �

min
W

E�W  � min
W

mX
i��

�W� Ii�Di� ����

One popular error function is the squared�error function in which �W� Ii�Di � ���Ii�W �
Di�� Since this error function is non�negative� i�e� E�W  � �� if there exists W � such that

E�W � � �� then W � is a global minimizer� otherwise� the W that gives the smallest E�W 

is the global minimizer� The quality of a learned network is measured by its error on a given

set of training patterns and its �generalization error on a set of test patterns�

Supervised learning can be considered as an unconstrained nonlinear minimization prob�

lem in which the objective function is de�ned by the error function and the search space

is de�ned by the weight space� Unfortunately� the terrain modeled by the error function in

its weight space can be extremely rugged and has many local minima� This phenomenon

is illustrated in Figure ���� which shows two graphs of a ���D error surface projected to

two di�erent pairs of dimensions around a global minimum� The left graph shows a rugged

terrain with a large number of small local minima in the weight space� whereas the right one

shows a distinctive terrain with large �at regions and steep slopes� This ���D error surface

corresponds to a �ve hidden�unit network that has been trained to solve the two�spiral prob�

lem �to be discussed in Section ������ Obviously� a search method that cannot escape from
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a local minimum will have di
culty in �nding the global minimum in the rugged weight

space�

To see how the network structure can a�ect the solution quality� consider the fact that

one hidden�layer perceptron can perform arbitrary mappings as long as the number of hidden

units is large enough� The capacity of a neural network and the number of weights increase as

the number of hidden units increases� This means more global minimizers exist in the error

surface� and local�search methods such as gradient descent can �nd them more readily� On

the other hand� when the number of hidden units is small� there are fewer global minimizers�

Moreover� the error surface can be extremely rugged� making it di
cult for a descent method

from a random starting point to �nd a good solution� To overcome this problem� more

powerful global search methods are needed�

There are many bene�ts in using smaller neural networks� First� they are less costly to

implement and are faster� both in hardware and in software implementations� Second� they

generalize better because they avoid over��tting the weights to the training patterns� This

happens because we are using a lower�dimensional function to �t the training patterns�

��� Existing Methods for Feedforward Neural Network Learning

As we know� the supervised learning of feedforward neural networks is an unconstrained

continuous optimization problem� The task is to �nd the appropriate values of connection

weights so that a given error function is minimized� Optimization problems are classi�ed into

uni�modal and multi�modal� depending on whether there is only one or there are more than

one local minima in the search space� In general� neural network learning is a multi�modal

nonlinear minimization problem with many local minima�

Our study of error functions in the supervised learning of neural networks reveals the

following features�

	 Flat regions may mislead gradient�based methods�

	 There may be many local minima that trap gradient�based methods�
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	 Deep but suboptimal valleys may trap any search method�

	 Gradients may di�er by many orders of magnitude� making it di
cult to use gradients

during a search�

A good search method should� therefore� have mechanisms �a to use gradient information

to perform local search �and be able to adjust to changing gradients and �b to escape from

a local minimum after getting there�

Learning algorithms of neural networks �nd their roots in optimization methods� which

are classi�ed into local or global optimization� Local optimization algorithms� such as

gradient�descent and Newton�s method� �nd local minima e
ciently and work best in uni�

modal problems� They execute fast� but converge to local minima that could be much worse

than the global minimum� Global optimization algorithms� in contrast� employ heuristic

strategies to look for global minima and do not stop after �nding a local minimum ����������

Next� we brie�y review local� and global�optimization algorithms in neural�network learning�

����� Learning Using Local Optimization

Many local�optimization algorithms� such as gradient descent� second�order gradient de�

scent� quasi�Newton� and conjugate gradient methods� have been adapted to the learning of

neural networks� The popular back�propagation �BP algorithm is a variation of gradient

descent algorithms ����� ����� Other gradient�descent type algorithms include BP through

time ������ recurrent BP ������ steepest descent� and other variations ���� ���� ���� ���� �	���

Second�order gradient descents� including BP with momentum and BP with dynamic learn�

ing rate� have been developed to improve the convergence time of BP ���� 	�� ���� ���� �����

Also� quasi�Newton�s methods have shown good speedup over BP ���� ���� whereas conju�

gate gradient methods are among the fastest ���� �	� �	� ���� �	��� Other heuristic methods

that have fast learning speed include methods that learn layer by layer �	��� iterative meth�

ods ���� hybrid learning algorithms ��	�� and methods developed from the �eld of optimal

�ltering ����� ����� Recurrent neural networks have also been trained by gradient�based

methods �����	����	��	���
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Local minimization algorithms have di
culties when the surface is �at �gradient close to

zero� when gradients can be in a large range� or when the surface is very rugged� When

gradients can vary greatly� local search may progress too slowly when the gradient is small

and may over�shoot when the gradient is large� When the error surface is rugged� a local

search from a randomly chosen starting point will likely converge to a local minimum close to

the initial point and a solution worse than the global minimum� Moreover� these algorithms

usually require choosing some parameters� as incorrectly chosen parameters may result in

slow convergence and poor quality solutions�

����� Learning Using Global Search

In order to overcome local minima in the search space and �nd better solutions� global

minimization methods have been developed� They use local search to determine local min�

ima� and focus on bringing the search out of a local minimum once it gets there� Many

global optimization algorithms have been applied in neural�network learning� Examples of

deterministic methods are trajectory methods ���� and branch�and�bound methods ����������

The de�ciency of these methods is that they can only solve small networks�

Stochastic global optimization methods are more successful in solving the learning prob�

lem of neural networks� These include random search algorithms ���� ��� ����� simulated

annealing ���� ����� and genetic algorithms ���� ���� �	�� �	��� They have shown improved

performance with respect to local optimization algorithms� However� their execution time

can be signi�cantly longer�

One thing that needs to be mentioned is that neural network learning has also been for�

mulated as a combinatorial optimization problem and solved by combinatorial optimization

methods� such as reactive tabu search ��������

��� Experimental Results of Novel

In this section� we present the experimental results of Novel in solving �ve neural net�

work benchmark problems and show its improvement in performance against some of the
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Table ���� Benchmark problems studied in our experiments� The numbers of inputs� out�
puts� and training and test patterns are listed in the table�

Problems ' inputs ' outputs ' training patterns ' test patterns
Two�spiral � � ��� ���

Sonar �� � ��� ���
Vowel �� �� ��� ���

���parity �� � ���� �
NetTalk ��� �� ���� ���	��

best global�optimization algorithms ���	� ����� First� we present the neural network prob�

lems used in our experiments� Using the two�spiral problem as an example� we study the

implementation issues of Novel and compare Novel with other global optimization methods�

Finally we present the summary of experimental results on the other benchmark problems�

In general� Novel is able to �nd better results as compared to other global optimization

algorithms in the same amount of time�

����� Benchmark Problems Studied in Our Experiments

Table ��� summarizes the benchmark problems studied in our experiments� They repre�

sent neural network learning problems of di�erent size and complexity� These problems can

be obtained from ftp�cs�cmu�edu in directory �afs�cs�project�connect�bench�

�� Twospiral problem� This problem discriminates between two sets of training

points that lie on two distinct spirals in the x�y plane� Two spirals coil three times around

the origin and around one another� Problems like this one� whose inputs are points on the

��D plane� enable us to display the output of the network in a ��D graph� The two�spiral

problem appears to be a very di
cult task for back�propagation networks�

Figure ��� shows the training and test sets� Each data set has two spirals that consist

of �	 input�output pairs� respectively� Each training or testing pattern represents a point

on the corresponding spiral� The neural network that solves the two�spiral problem has
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Figure ���� The training set of the two�spiral problem �left and the test set of the two�spiral
problem on top of the training set �right�

two real�valued inputs presenting the x and y coordinates of a point� and one binary target

output that classi�es the point to one of the two spirals�

In general� we determine the correctness of a binary output using the �������� criterion�

an output is considered to be � if it is in the lower ��% of the real�valued output range� � if

it is in the upper ��%� and incorrect if it is in the middle ��% of the range�

�� Sonar problem� This problem discriminates between sonar signals bounced o� a

metallic cylinder and those bounced o� a roughly cylindrical rock� This is the data set used

by Gorman and Sejnowski in their study of the classi�cation of sonar signals using a neural

network ����� We used the training and test samples in their �aspect angle dependent�

experiments� The problem has sixty real�valued inputs and one binary output�

�� Vowel recognition problem� This problem trains a network to have speaker�

independent recognition of the eleven steady�state vowels of British English� The problem

was used by Tony Robinson in his Ph�D� thesis to study problems that have no exact solution

and maximize a less than perfect performance of neural networks ������
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This problem has ten real�valued inputs and eleven binary outputs� Vowels are classi�ed

correctly when the distance of the correct output to the actual output is the smallest of the

set of distances from the actual output to all possible target outputs�

�� ��parity problem� This problem trains a network that computes the modulo�two

sum of ten binary digits� It is a special case of the general parity problem� in which the task

is to train a network to produce the sum� modulo �� of N binary inputs� The parity problem

has N binary inputs and one binary output� The output is � if there are an odd number

of � bits in the input� and � if an even number� In the ���parity problem� there are �����

training patterns and no test patterns�

�� NetTalk problem� This problem trains a network to produce proper phonemes�

given a string of letters as input� This is an example of an input�output mapping task that

exhibits strong global regularities� but also a large number of more specialized rules and

exceptional cases� The data set of NetTalk was contributed by Terry Sejnowski� It contains

������ English words along with a phonetic transcription for each word�

We have used �a the same network settings and unary encoding as in Sejnowski and

Rosenberg�s experiments ������ There are �� 
 	 � ��� inputs and �� outputs� �b �����

most common English words as the training set and the entire data set as the test set� and

�c the �best�guess� criterion� an output is treated as correct if it is closer with the smallest

angle to the correct output vector than to any other phoneme output vector� There are a

total of ����� training patterns�

����� Experimental Results on the Twospiral Problem

The two�spiral problem has been used extensively in testing di�erent types of neural

networks and their corresponding learning algorithms� Published results include the learning

of feed�forward networks using BP� CASCOR �	��� and projection pursuit learning ������ The

smallest network is believed to have nine hidden units with 	� weights trained by CASCOR�

In our experiments� we have used feed�forward networks with shortcuts �see Figure ����

Each hidden unit is ordered and labeled by an index� and has incoming connections from all

input nodes and from all hidden units with smaller indexes� The activation function is an
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Figure ���� Structure of the neural network for the two�spiral problem�

asymmetric sigmoidal function g�x � ���� � e��x� where � is the sigmoid gain� and x is

the inner product of the outputs of other neurons and the incoming weights�

We have �xed the search range as ���� �� in each dimension� and have varied � from � to

���� A larger � has the e�ect of compressing the search regions�

The objective function to be minimized is the total sum of squared error �TSSE� f�x �

E�x� de�ned in ����� where the variable vector x represents the weights W � The error

function f�x is computed based on the training patterns during learning� Test patterns

are not used in the objective functions in learning� and are only used to check the results

obtained�

The global�search phase of Novel consists of three cascaded stages� Each stage is modeled

as a system of ODEs in Eq� ������ which is re�stated as follows�

dx�t

dt
� ��grxf�x�t� �t �x�t� T �t

where �g and �t are constant coe
cients and are the same for all stages� The systems of

ODEs is solved by LSODE using the method based on a backward di�erentiation formula�

The local�search phase of Novel performs gradient descents� The gradient descent is also
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Table ���� Results of using NOVEL with the LSODE solver to train four and �ve hidden�unit
neural networks for solving the two�spiral problem�

Sigmoid � Hidden�Unit Networks ��� weights
Gain Coe
cients Training Testing
� �g �t TSSE Correct % Correct %
��� � �� ��� ���� ����

��� � ��� ���	 ���	
��� ��� �� �	�� ���� ����

� �� ���� ���	 ����
�� � �� ��� ���� ����
�� � �� ���� ���� �	��

Maximum time units executed� ���
Avg� CPU time�time unit� � min�

� Hidden�Unit Networks ��� weights
Coe
cients Training Testing
�g �t TSSE Correct % Correct %

��� � �� ��� ��� �
��
��� � ��� ���� ����

��� ��� � ��� ���� ���	
� �� ��� ����� ����

�� � �� ���� ���� ����
�� � �� ��� ����� ����

Maximum time units executed� ���
Avg� CPU time�time unit� � min�

modeled as a system of ODEs�

dx�t

dt
� �rxf�x�t ����

and solved by solver LSODE� All our experiments were carried out on Sun SparcStation ��

model 	� �	� MHz workstations�

We have tried various combinations of algorithmic parameters �� �t� and �g in Novel� In

Table ���� we show the results in training � and � hidden�unit networks to solve the two�spiral

problem� The sigmoid gain � takes on values ��� ��� and ���� while the weight coe
cients

�t and �g are scaled up and down around baseline values of �� and �� respectively�
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When �g and �t are both scaled down from the baseline values by the same magnitude�

for instance �g � ��� and �t � �� the speed of trace movement is slowed down� A slower

trace takes more logical time and usually more CPU time to traverse the same distance than

a faster one� One the other hand� when �g and �t are both scaled up� for instance �g � �

and �t � ��� the trace moves faster� The danger is that if the trace moves too fast� the

search trajectory generated from the ODE dynamic system will not be able to keep up with

the trace� Therefore� �g and �t should be chosen appropriately so that the search trajectory

moves at a fast speed� but under the speed limit of the systems of ODEs�

After trying various values of �� �g� and �t for the � and � hidden�unit networks� we found

that the combination of �g � �� �t � ��� and � � ��� works well� These parameter values

were then used in our experiments to solve the learning problems of � and � hidden�unit

neural networks�

Table ��� shows that multiple solutions with ���% correctness on the training patterns

are found for the � hidden�unit network using di�erent parameter values� These solutions

have di�erent correct percentages on testing patterns� For the � hidden�unit network� the

solutions do not reach ���% correctness on the training set� Generally� larger networks are

easier to be trained to solve the training patterns ���% correctly because there are more

global minimizers in the search space� From a function �tting point of view� a neural�network

learning problem is to �t a set of training data by �nding the appropriate weights of a neural

network� A function with more variables� corresponding to a neural network with more

weights� has more ways to �t a given training set than a function with fewer variables�

Novel successfully trained �ve hidden�unit networks in less than ��� time units� Training

four hidden�unit networks is more di
cult� After running Novel for ��� time units� which

was 		��� hours of CPU time on a SparcStation ���	�� we found a solution with TSSE of ���

and ��% correct on the training set� Using this solution as a new starting point� we executed

Novel for another ����� hours and found a solution that is ���% correct� Figure ��� shows

the four hidden�unit neural network trained by Novel that solves the two�spiral problem�

The second �gure in the �rst row of Figure ��� shows how the best four hidden�unit network

classi�es the ��D space�
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Figure ���� A four hidden�unit neural network trained by Novel that solves the two�spiral
problem�
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Figure ���� ��D classi�cation graphs for the two�spiral problem by � ��rst column� � �second
column� � �third column� and � �fourth column hidden�unit neural networks
trained by Novel �upper row and SIMANN �lower row� Parameters for Novel
are �g � �� �t � ��� and � � ���� and search range ������ ����� Parameters for
SIMANN are RT � ����� NT � �n� and search range ������ ����� The crosses
and circles represent the two spirals of training set� Note that the � hidden�unit
network was trained by Novel di�erently from the other networks�

Novel has found optimal designs for the two�spiral problem� which correspond to ���%

correct on the training set� for the �� � and � hidden�unit neural networks� The best design

for the � hidden�unit network is ����% correct on the training set� The top four graphs in

Figure ��� show the ��D classi�cations by the best �� �� �� and � hidden�unit networks found

by Novel�

Besides solving the system of ODEs in the global�search phase using LSODE� we have

also tried the simpler� less accurate� but faster the Euler method as speci�ed in ������ By

using �xed step sizes� the Euler method advances in discrete points quickly without worrying

about the sti�ness of the ODE system� The drawback of the Euler method is that it has no

���



error estimation and accuracy guarantee� In our experiments� we study the tradeo� of the

solution quality with respect to the accuracy in generating the search trajectory�

An advantage of the Euler method is that it can work with the pattern�wise learning

mode as well as the epoch�wise learning mode� In pattern�wise learning� variables �weights

are updated after every training pattern is presented� while in epoch�wise learning� variables

are updated after all the training patterns are presented� Accordingly� the gradients of the

objective function are calculated based on every training pattern in pattern�wise learning�

By updating the weights more frequently� pattern�wise learning algorithms� such as BP with

pattern�wise learning� have been able to converge faster than epoch�wise learning algorithms�

The pattern�wise learning mode introduces large variations of gradient values because

they are calculated based on a single training pattern� In Novel� when we use pattern�wise

learning and use LSODE to solve the system of ODEs in generating the search trajectories�

the rapid change of gradients makes LSODE fail� In contrast� the Euler method uses �xed

step sizes� and tolerates the changes of gradients well�

Hence� in our experiments� LSODE is only used with epoch�wise learning mode� where

all the training patterns are presented before the gradient is calculated and variables are

updated� The Euler method can be used with both epoch�wise and pattern�wise learning

modes�

To measure the performance of both the epoch� and the pattern�wise learning� we use

the mean�squared error �MSE as the objective function to be minimized� MSE is the total

sum�squared error �TSSE divided by the number of patterns used in calculating the values

of the error function and its gradient�

We have �xed the step size of ���� in the Euler method� and varied the values of param�

eters �� �t� �g� In epoch�wise training� we have tested four pairs of coe
cients� �g � �����

and �t � ����� �g � ����� and �t � ���� �g � ���� and �t � ���� and �g � ���� and �t � ����

We have tried the following �ve values of sigmoid gain �� �� ��� ��� �� and ���� Table ���

presents the combination of parameters leading to the best results of Novel using the Eu�

ler method and epoch�wise training� Our results show that the Euler method is about ten

���



Table ���� Summary results of Novel using the Euler method to solve the two�spiral problem�
The limit of time unit in each run is ����

No� of No� of Sigmoid Coe
cients Best Solution CPU time
hidden gain Training Testing �time unit
units weights � �g �t SSE Correct % Correct % �minutes

� �� �� ���� ��� ���� ���� ���� ����
� �� �� ����� ���� ��� ���� ���� ����
� �� �� ���� ��� ��� ��� ���� ����

times faster than LSODE in solving the system of ODEs� However� the quality of solutions

obtained by using the Euler method is worse�

In using the Euler method together with pattern�wise training� we need to set the step size

to be smaller� e�g� ����� and ������� to get good solutions� Results obtained by using pattern�

wise training are worse than those obtained by using epoch�wise training� For example� the

best results for � hidden�unit networks are ����% and ����% for pattern�wise and epoch�wise

training� respectively�

����� Comparison with Other Global Optimization Methods

In this subsection� we compare the performance of Novel with that of other global op�

timization methods for solving the two�spiral problem� These algorithms include simulated

annealing� evolutionary algorithms� cascade correlation with multi�starts �CASCOR�MS�

gradient descent with multi�starts � GRAD�MS� and truncated Newton�s method with multi�

starts �TN�MS� We �rst describe these methods as follows�

�a Simulated annealing �SA ( SA is a stochastic global optimization method� Start�

ing from an initial point� the algorithm takes a step and evaluates the function� When min�

imizing a function� any down�hill movement is accepted� and the process repeats from this

new point� An uphill movement may be accepted� and by doing so it can escape from local

minima� This uphill decision is made by the Metropolis criteria� As the minimization process

proceeds� the length of the steps decreases and the probability of accepting uphill movements

���



decreases as well� The search converges to a local �sometimes global minimum at the end�

The software package we used is SIMANN from netlib at http���www�netlib�att�com�

�b Evolutionary algorithm �EA( EA is based on the computational model of evolu�

tion� A variety of EAs have been proposed in the past� among which are genetic algorithms�

evolutionary programming� and evolutionary strategies� EAs maintain a population of in�

dividual points in the search space� and the performance of the population evolves to be

better through selection� recombination� mutation� and reproduction� The �ttest individual

has the largest probability of survival� EAs have been applied to solve complex� multi�

modal minimization problems with both discrete and continuous variables� The packages we

used in our experiments are GENOCOP �GEnetic algorithm for Numerical Optimization for

COnstrained Problems ����� and LICE �LInear Cellular Evolution ������

�cCascade correlation with multistarts �CASCOR�MS( The cascade correlation

learning algorithm is a constructive method that starts from a small network and gradually

builds a larger network to solve the problem� This algorithm was originally proposed by

Fahlman and Lebiere �	�� and has been applied successfully to some neural�network learning

problems� In CASCOR�MS� multiple runs of CASCOR are executed from randomly selected

initial points�

�d Gradient descent with multistarts �GRAD�MS ( The gradient�descent al�

gorithm is simple and popular� and its variants have been applied in many engineering

applications� An example is the back�propagation algorithm in neural network learning� For

the two�spiral problem� gradient descent is performed by solving a system of ODEs modeling

gradient descent�

�e Truncated Newton�s method with multistarts �TN�MS ( The truncated

Newton�s method uses second�order information that may help convergence in descents�

They are faster than gradient descents solved by LSODE� The software package we used is

TN from netlib�

Next� we compare the performance of Novel with that of these methods� To allow a fair

comparison� we ran all these methods for the same amount of time using the same network

���



structure� We used sigmoid gain � � ��� for all algorithms except CASCOR�MS and TN�

MS� which have � � �� The CPU time allowed for each experiment was �� hours on a Sun

���	��

The simulated annealing program used in our experiments is SIMANN from netlib ����

with some modi�cations by Go�e� Ferrier� and Rogers presented in ����� We experimented

with various temperature scheduling factors RT � function evaluation factors NT � and search

ranges� The best results were achieved when RT � ����� NT � �n �n is the number of

variables� and the search range is ������ �����
We have studied two evolutionary algorithms �EAs� GENOCOP by Michalewicz and

LICE by Sprave� GENOCOP aims at �nding a global minimum of an objective function

under linear constraints� We have tried various search ranges and population sizes� Search

range ������ ���� and population size ���n give the best results� LICE is a parameter opti�

mization program based on evolutionary strategies� In applying LICE� we have tried various

initial search ranges and population sizes� Range ������ ���� and population size ���n give

the best results�

In applying CASCOR�MS� we ran Fahlman�s CASCOR program �	�� from random initial

weights in the range ���� ��� We started from a new starting point when the current run did

not result in a converged network for a maximum of �� �� � and � hidden units� respectively�

In GRAD�MS� we generated multiple random initial points in the range ������ ����� Gra�

dient descent is modeled by a system of ODEs and is solved using LSODE� One descent is

usually fast� The CPU time limit determines how many descents are executed�

Finally� we have used truncated Newton�s method obtained from netlib with multi�starts

�TN�MS� We generated random initial points in the range ���� ��� and set the sigmoid gain

to �� Since one run of TN�MS is very fast� a large number of runs were done within the time

limit�

The best performance of these algorithms is shown in Figure ���� in which the four graphs

show the progress of all the learning algorithms for the �� �� �� and � hidden�unit networks�

respectively� The plots for Novel� SA� and EAs show the progress of the best run� The plots

for other multi�start algorithms show the improvement of the incumbent� the best solution
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Figure ���� The best performance of various global minimization algorithms for learning
the weights of neural networks with �� �� �� and � hidden units for solving the
two�spiral problem�
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Figure ��	� Training and testing errors of the best designs obtained by various algorithms for
solving the two�spiral problem� There are ��� ��� ��� and �� weights �including
biases in neurons in the neural networks with� respectively� �� �� �� and � hidden
units�

so far� until the CPU time limit is reached� The general trend of all these algorithms is

that the solutions improve quickly in the beginning� Then� the improvement is slowed down

as time goes on� Later� the values of the objective functions obtained by these algorithms

stabilize at di�erent levels�

Figure ��	 summarizes the training and test results of the best solutions found by each

of these algorithms when ran under �� hours of CPU time on a Sun SparcStation ���	��

The graphs show that Novel has the best training and test results for the neural networks

found� followed by SIMANN� TN�MS� CASCOR�MS� and the two evolutionary algorithms�

The two evolutionary algorithms do not work well because genetic operators like mutation

and cross�over do not utilize local gradient information in deciding where to search�

Simulated annealing algorithm has the best results among the algorithms we have tested

except Novel� Table ��� shows the best solutions obtained by Novel and SA� For � hidden�

unit networks� Novel has smaller training errors� and SA has smaller test error� For � and �

hidden�unit networks� Novel is much better than SA� Both found the global minima of the

training set for � hidden�unit networks�
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Table ���� The performance of the best networks with �� �� �� and � hidden units� which
were trainned by NOVEL and simulated annealing �SA�

No� of SSE of Training Correct % of Training Correct % of Testing
hidden units NOVEL SA NOVEL SA NOVEL SA

� ���� ���� ����% ����% 	���% ����%
� ��� ���� ���% ����% ����% ����%
� ��� ��� ���% �	��% ����% ����%
� ��� ��� ���% ���% ����% ����%

Figure ��� shows the ��D classi�cation graphs for the two�spiral problem by the best

solutions of Novel and SIMANN� Novel�s results are in the upper row and SIMANN�s� the

lower row� The two graphs in the �rst column are classi�cation graphs by � hidden�unit

networks� The graphs in the second� third� and fourth columns are by �� �� and � hidden�

unit networks� respectively� Training patterns are super�imposed in these graphs� where

circles belong to one spiral and crosses belong to the other one� When all the circles are in

the black region and all the crosses are in the white region� the classi�cation is ���% percent

correct� As shown in the graphs� the solutions found by Novel have smooth and curved

classi�cation region� whereas results by SIMANN show ragged classi�cations�

Novel has found one optimal solution for � and � hidden�unit networks� and have found

many optimal solutions for � hidden�unit networks with di�erent test performance� Their

correct percentages on the test set range from ����% to ����%� This means that as network

size increases� more solutions exist to solve the training set optimally� Also� when network

size is increased from � hidden units to � hidden units� the best generalization correctness

increase from ����% to ����%� and then ����%�

The experimental results show that a learning algorithm�s performance depends on the

complexity of the error function� When the error function is not complex� as in optimizing

the weights of a ��hidden�unit network� Novel as well as other algorithms like SA can �nd

a good minimum in a small amount time� When the error function is complex and good

solutions are few� Novel performs much better than other algorithms� When the terrain

of the optimized function is rugged� Novel has the ability to search continuously and can
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identify deep and narrow valleys� Further� Novel is able to descend to the bottom of local

minima precisely because it formulates gradient descent as a system of ODEs and solves

them accurately�

��
 Experimental Results on Other Benchmarks

In this section� we show our results in applying Novel on four more benchmark problems�

These are sonar� vowel�recognition� ���parity� and NetTalk problems� They represent classi�

�cation problems of di�erent complexity and characteristics� The network topologies used in

these experiments are multilayer perceptrons � layered feed�forward networks without short�

cuts� The objective function is the mean�squared error �MSE� Other setups are similar to

those for the two�spiral problem�

Neural networks for solving these problems are larger than the ones used for the two�

spiral problem and have more weights �variables� When the number of variables is large�

it becomes slow for LSODE to solve the system of ODEs in Novel� Therefore� we apply

the Euler method to solve the ODEs of global search� Local search is performed by local

optimization methods with fast convergence speed� such as truncated Newton�s method �TN

and the back propagation method �BP�

For the sonar problem� we have applied Novel with the Euler method� TN�MS� SIMANN�

and BP� Our results comply with what was found by Dixon ��	�� TN ran much faster than

epoch�wise BP and achieved comparable solutions� SIMANN is one order of magnitude

slower than TN�MS and Novel� and the results are not better� For these reasons� we describe

only the results for TN�MS and Novel using the Euler method� TN is used in the local�search

phase of Novel�

We have used � and � hidden�unit networks to solve the sonar problem� Table ��� shows

the best solutions of TN�MS and Novel that achieve the highest percentage of correctness

on the sonar problem�s test patterns� Our results show that Novel improves test accuracy

by �%��%�
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All the results in Table ��� were run under similar conditions and time limits� In particu�

lar� Novel always started from the origin and searched in the range ���� �� for each variable�

using some combinations of sigmoid gains from the set f�� ��� ��� ��� ���� ���g and ��g� �t

from the set f���� �� ��� �� ��� ���� ����� ���� ����� �� ����� ����� ������ ���g� TN�MS

was run using di�erent combinations of random initial points in search ranges from the set

f������ ����� ������ ����� ������ ����� ���� ��g and the same sigmoid gains as in Novel� In TN�

MS�Novel� Novel always started from the best result of TN�MS using the same sigmoid

gain when TN�MS was run� In solving the NetTalk problem� the sigmoid gain is set to ��

Novel used learning rates of � and � and a momentum of ���� Back propagation generated

its initial point in the range ������ ����� using a momentum of ��� and learning rates from

the set f���� �� �� �� �� ��g�
We attributed Novel�s superiority in �nding better local minima to its global�search stage�

Since the function searched is rugged and the regions containing good solutions are not large�

it is important to avoid probing from many random starting points and to identify good

basins before committing expensive local descents� In contrast� many descents performed

by multi�start algorithms are performed in unpromising regions� This is exempli�ed by the

behavior of TN�MS� which gave no improvement when we extended the number of restarts

from ��� to ���� However� multi�start algorithms may provide good starting points for Novel�

For the vowel�recognition problem� we have used networks with � and � hidden units�

Table ��� shows that Novel improves training compared to TN�MS� but performs slightly

worse in testing when there are two hidden units� TN�MS�Novel also improved training

when compared with TN�MS� The sonar and vowel�recognition problems are not as hard

as the two�spiral problem studied in the last section� TN�MS� for instance� can �nd good

solutions readily� Therefore� it is more di
cult for global�search methods to �nd better

solutions� In spite of this� Novel can still improve the designs in a small amount of time�

On the ���parity problem� we use neural networks with � and � hidden units to compare

the solution quality of both algorithms� Using a similar setup as described for the sonar

problem� Novel improves the learning results obtained by TN�MS�
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Table ���� Comparison of the best results obtained by NOVEL and truncated Newton�s
algorithm with multi�starts �TN�MS for solving four benchmark problems� where
the parameters in one method that obtains the best result may be di�erent from
those of another method� Results in bold font are better than or equal to results
obtained by TN�MS�

TN�MS NOVEL CPU
Problems ' of ' of Correct % ' of Correct % ' time time

H�U� Wts� training test restarts training test units limits

Sonar � ��� ���� ���� ��� ���� ���� ��� ���� s
� ��	 ��� ���� ��� ��� ���� ��� ���� s

Vowel � �� 	��� ���� ��� ���
 ���� ��� � h
� �� ���	 ���� ��� ���� 
��� �� � h

���parity � �� �	�� N�A ��� ���� N�A �� ���� s
� 	� �	�� N�A ��� ���� N�A �� ���� s

BP NOVEL
NetTalk �� ���	� ���� 	��� �� ���� ���� �� � h

�� ����� ���� 	��� � ���� 	��� � � h

TN�MS�NOVEL
Sonar � ��� ���� ���� ��� ���� s

� ��	 ��� ���� ��� ���� s
Vowel � �� ���
 ���� ��� � h

� �� ���� 
��� ��� � h
���parity � �� ���� N�A �� ���� s

� 	� ���� N�A �� ���� s
BP � NOVEL

NetTalk �� ���	� ���� 	��� �� � h
�� ����� ���� 	��� 	 � h
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In the last application� we have studied the NetTalk problem� Since the number of weights

and training patterns are very large� we have used pattern�wise learning when applying BP

�as in the original experiments by Sejnowski and Rosenberg ������ By experimenting with

di�erent parameter settings of BP� the best learning result by BP is ����% for a �� hidden�

unit network�

NetTalk�s large number of weights precluded using any method other than the pattern�

wise mode in the global�search phase and pattern�wise back propagation in the local�search

phase� Even so� very few �logical time units could be simulated� and our designs perform

better in training but sometimes worse in testing� To �nd better designs� we took the best

designs obtained by pattern�wise BP and applied Novel� Table ��� shows improved training

results but slightly worse testing results� The poor testing results are probably due to the

small number of time units that Novel was run�

In short� Novel�s training results are always better than or equal to those by TN�MS but

are occasionally slightly worse in testing� This is attributed to the time constraint and the

excellence of solutions already found by existing methods� In general� improving solutions

that are close to the global minima is di
cult� often requiring an exponential amount of

time unless a better search method is used�

��� Summary

In this chapter� we have applied Novel to the supervised learning of feed�forward neural

networks� The learning of weights in such networks can be treated as a nonlinear continuous

minimization problem with rugged terrains� Our goal is to �nd neural networks with small

number of weights� while avoiding the over��tting of weights in large networks� Our reasoning

is that there are many good local minima in the error space of large networks� hence increasing

the chance to �nd a good local minimum that does not generalize well to test patterns�

We have identi�ed two crucial features of suitable algorithms for solving these problems�

	 Use gradient information to descend into local minima� Many algorithms have di
�

culties when the surface is �at� or when gradients can vary in a large range� or when
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the terrain is rugged� In the second case� the search may progress too slowly when the

gradient is small and may over�shoot when the gradient is large�

	 Escape from a local minimum once the search gets there� Such mechanisms can be

classi�ed into probabilistic and deterministic� The suitability of a speci�c strategy is

usually problem dependent�

Di�erent algorithms performs di�erent trade�o�s between local search and global search�

Algorithms that focus on either extreme do not work well� These include gradient descent

with multi�starts �such as back�propagation and cascade correlation that focus too much on

local search and covering methods �that focus too much on global search� A good algorithm

generally combines global and local searches� switching from one to another dynamically

depending on run�time information obtained� These include algorithms based on simulated

annealing� evolution� and clustering�

Novel has a global�search phase that relies on two counteracting forces� local gradient

information that drives the search to a local minimum� and a deterministic trace that leads

the search out of a local minimum once it gets there� The result is an e
cient method that

identi�es good basins without spending a lot of time in them� Good starting points identi�ed

in the global�search phase are used in the local�search phase in which pure gradient descents

are applied�

We have shown improved performance of Novel for �ve neural�network benchmark prob�

lems as compared to that of existing minimization and neural�network learning algorithms�

For the two�spiral problem� we have shown a design with near�perfect classi�cation using

four hidden units and �� weights� while the best design known today requires nine hidden

units and 	� weights�
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�� CONSTRAINED OPTIMIZATION IN QMF FILTER�BANK DESIGN

In this chapter� we apply Novel to design quadrature�mirror��lter �QMF �lter banks�

We formulate the design problem as a nonlinear constrained optimization problem� using the

reconstruction error as the objective� and other performance metrics as constraints� This

formulation allows us to search for designs that improve over the best existing designs� We

derive closed�form formulas for some performance metrics and apply numerical methods to

evaluate the values of other performance metrics that do not have closed�form formulas�

Novel uses the adaptive Lagrangian method to �nd saddle points of the constrained opti�

mization problems and relies on the trace�based global search to escape from local minima�

In our experiments� we show that Novel �nds better designs than the best existing solutions

and improves the performance of other global search methods� including simulated annealing

and genetic algorithms� We also study the tradeo�s among multiple design objectives� and

show that relaxing the constraints on transition bandwidth and stopband energy leads to

signi�cant improvements in the other performance measures�


�� TwoChannel Filter Banks

The design of digital �lter banks is important because improvements can have signi�cant

impact in many engineering �elds� For example� �lter banks have been applied in modems�

data transmission� digital audio broadcasting� speech and audio coding� and image and video

coding ������	��	���
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Figure ���� The structure of a two�channel �lter bank�

Digital �lter banks divide an input signal into multiple subbands to be processed� The

simplest �lter bank is the two�channel �lter bank that divides an input signal into two

subbands� It is the starting point in studying more complex� multi�channel �lter banks�

Figure ��� shows the typical structure of a two�channel �lter bank� where x�n is the input

signal in time domain and )x�n is the output signal� The �lter bank consists of four �lters�

H��z� H��z� G��z� and G��z� The two �lters in the upper channel� H��z and G��z� are

low�pass �lters� while the two �lters in the lower channel� H��z and G��z� are high�pass

�lters�

As shown in Figure ���� the �lter bank is divided into two parts� an analysis stage and a

synthesis stage� In the analysis stage� the input spectrum X�z �or X��� � � � � �� which

is the Z�transform �or Fourier transform of x�n� is divided into two subbands� one high

frequency band and one low frequency band� by a pair of analysis �lters H��z and H��z�

Then� according to Nyquist theorem� the subband signals are down sampled by � to produce

the outputs of the analysis stage� v��n and v��n� These output signals can be analyzed

and processed in various ways according to the applications� For example� in a subband

coder for audio or image compression� these signals are quantized and encoded before being

transmitted to the receiver� which is the synthesis part�

When no error occurs between the analysis stage and the synthesis stage� the input signals

of the synthesis stage are the same as the outputs of the analysis stage� In the synthesis
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stage� the subband signals are up�sampled by � to produce f��n and f��n� which are then

passed through the synthesis �lters G��z and G��z that perform interpolation� In the

end� the subband signals are added together to produce the reconstructed signal )x�n at the

output�

In short� output signal )x�n is a function of input signal x�n and the �lters in the �lter

bank� H��z� H��z� G��z� and G��z ��� ����� Following the top branch in Figure ���� we

have the following equations for the analysis and synthesis �lters�

���z � H��zX�z ����

Y��z � G��zF��z ����

We have the following equations for the down�sampling and up�sampling�

V��z �
�

�
����z

��� � ����z���� ����

F��z � V��z
� ����

Substituting Eq� ����� ����� and ���� into ����� we obtain the output of the top branch as

Y��z �
�

�
G��z�H��zX�z �H���zX��z�� ����

Similarly� for the low branch in Figure ���� we can derive

Y��z �
�

�
G��z�H��zX�z �H���zX��z�� ����

The outputs of the upper and lower branches are added together to produce the reconstructed

output signal�

)X�z �
�

�
�G��zH��z �G��zH��z�X�z �

�

�
�G��zH���z �G��zH���z�X��z

� T �zX�z � S�zX��z ���	

where T �z � T �ej� � jT �ej�jej�
�� and S�z � S�ej� � jS�ej�jej	
�� �
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In the reconstructed signal )X�z� the �lter bank may introduce three types of distortions�

�a Aliasing distortion� The sub�sampling in the �lter bank generates aliasing� and the up�

sampling produces images� The term S�zX��z in ���	 is called the aliasing term� �b

Amplitude distortion� The deviation of jT �zj in ���	 from unity constitutes the amplitude

distortion� �c Phase distortion� The deviation of ��� from the desired phase properties�

such as linear phase� is called the phase distortion� These distortions are undesirable in

many �lter�bank applications� For example� in digital image�video compression applications�

amplitude distortions change image color and brightness� whereas phase distortions introduce

unpleasant visual e�ects�

Many methods have been developed to minimize the undesired distortions of �lter banks�

For instance� aliasing distortions can be removed by enforcing appropriate relationships

between the synthesis �lters and the analysis �lters� magnitude distortions can be removed

by using in�nite impulse response �IIR �lters� and the linear phase property can be achieved

by using linear�phase �nite impulse response �FIR �lters ��������

When all the distortions are removed� the original signal is said to be reconstructed

perfectly� Based on ���	� the perfect reconstruction of the original signal requires S�z � ��

for all z� and T �z � z�n� � where n� is a constant� In this case� the transfer function of the

�lter bank is just a pure delay�

Let�s re�write the transfer function in ���	 using the Fourier transformation as follows�

)X�� �
�

�
�G���H��� �G���H����X��

�
�

�
�G���H��� � � �G���H��� � ��X�� � �

� T ��X�� � S��X�� � � ����

In quadrature�mirror��lter �QMF �lter banks� the �lters are chosen to satisfy the following

conditions ����	���	���

G��� � H���� ����

G��� � H���� �����

H��� � ej�H��� � � �����
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Thus� the pairs of �lters in the analysis and the synthesis stages� H��z and H��z� G��z and

G��z� are mirror �lters� respectively� With the particular selection of �lters� ���� becomes

)X�� �
�

�
�H����H��� �H��� � �H��� � ��X��

�
�

�
�H��� � �H���� � ej
H����H��� � ��X�� � �

�
�

�
�H����H��� �H��� � �H��� � ��X��

� T ��X�� �����

Note that the aliasing term disappears� and the aliasing cancellation is exact� independent

of the choice of function H���� Now� the function T �� is only a function of the �lter

H���� which is called the prototype �lter in the QMF �lter bank� The design problem is

now reduced to �nding a prototype �lter H��� � H�� such that T �� is a pure delay�

In an FIR QMF �lter bank� when the prototype �lter H�� is a symmetric low�pass

FIR �lter� H��� as well as the function T ��� has linear phase� In this case� the problem

to design a perfect�reconstruction linear�phase �lter bank entails making the amplitude of

T �� to be �� e�g��

jH��j� � jH�� � �j� � � �����

where we have ignored the constant coe
cient ��� in ������

Figure ��� shows how the frequency responses of the �lters in a QMF �lter bank are

added together to form the overall amplitude response�

It can be shown that once the �lters are chosen as ���� to ������ it is impossible to

obtain perfect reconstruction of the original signal using FIR �lters except for the trivial�

two�tap �lter case� This means that� in general� the reconstruction error �the shaded area

in the right graph of Figure ���� Er �
R 

� �jH��j�� jH����j�� �d�� is not exactly zero�

However� by numerically minimizing the reconstruction error� �lter banks of high quality

can be designed ������

To summarize� FIR QMF �lter banks use mirror �lters in the analysis and the synthesis

stages to obtain the nice properties of linear phase and no aliasing distortion� The design
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Figure ���� The prototype low�pass �lter and its mirror �lter form the reconstruction error�
Er� of the QMF �lter bank�

of FIR QMF �lter banks becomes designing a prototype FIR low�pass �lter to minimize

the reconstruction error� i�e�� the amplitude distortion� Although� in general� these QMF

�lter banks cannot achieve perfect reconstruction� high�quality �lter banks with very small

reconstruction errors can be found numerically�


�� Existing Methods in QMF FilterBank Design

Generally speaking� the design objectives of �lter banks consist of two parts� the re�

sponse of the overall �lter bank and the response of each individual �lter� The performance

metrics of the overall �lter bank include amplitude distortion� aliasing distortion� and phase

distortion� The performance metrics of a single �lter vary from one type of �lters to another�

Filter banks can be composed of either �nite impulse response �lters �FIR or in�nite im�

pulse response �lters �IIR� Figure ��� shows an illustration of the performance metrics of

a single low�pass �lter� The �ve performance metrics� passband ripple �p� stopband ripple

�s� passband �atness Ep� stopband energy Es� and transition bandwidth Tt of a �lter are

calculated based on the di�erence of the frequency response of the �lter and that of the ideal

low�pass �lter� which is a step function�

Table ��� summarizes the possible design objectives of a �lter bank� The performance

metrics of a single �lter are for a low�pass �lter� Because the design objectives are generally
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Figure ���� An illustration of the performance metrics of a single low�pass �lter�

Table ���� Possible design objectives of �lter banks� Refer to Eq� ���	� ����� and Figure
��� for explanation�

Design Objectives Metrics

Overall Minimize amplitude distortion Er Er �
R 

� �jT ��j� � ��d�

Filter Minimize aliasing distortion �a �a �
R 

� jS��j�d�

Bank Minimize phase distortion �p �p �
R 

� j���� ����jd�

Minimize stopband ripple ��s �s � max�jH��j� � � ��s� ��
Single Minimize passband ripple ��p �p � max�jH�� � �j� � � ��� �p�
Filter Minimize transition bandwidth �Tt Tt � �s � �p

Minimize stopband energy �Es Es �
R 

�s
jH��j�d�

Maximize passband �atness �Ep Ep �
R �p
� �jH��j � ��d�

��� �p� ( pass band� ��s� �� ( stop band� ��p� �s� ( transition band�
���� ( the desired linear phase�

nonlinear continuous functions of �lter coe
cients� �lter�bank design problems are multi�

objective� continuous� nonlinear optimization problems�

Algorithms for designing �lter banks can be classi�ed into optimization�based and non�

optimization�based� In optimization�based methods� a design problem is formulated as a

multi�objective nonlinear optimization problem whose form may be application� and �lter�

dependent ������ The problem is then converted into a single�objective optimization problem

and solved by existing optimization methods� such as gradient�descent� Lagrange�multiplier�
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quasi�Newton� simulated�annealing� and genetics�based methods ����� ����� Filter�bank de�

sign problems have also been solved by non�optimization�based algorithms� which include

spectral factorization ����� ���� and heuristic methods� These methods generally do not

continue to �nd better designs once a suboptimal design has been found ������

The design of �lter banks involves complex nonlinear optimization with the following

features�

	 The objectives are not unique and may be con�icting� leading to designs with di�erent

tradeo�s� To design �lter banks systematically� the multiple objectives are integrated

into a single formulation�

	 Some design objectives and their derivatives are not in closed forms and need to be

evaluated using numerical methods�

	 The design objectives are nonlinear�


�� Optimization Formulations of QMF Filterbank Design

There are two approaches in optimization design of QMF �lter banks� multi�objective

unconstrained optimization and single�objective constrained optimization� In the multi�

objective approach� the goals are

	 to minimize the amplitude distortion �reconstruction error of the overall �lter bank�

and

	 to maximize the performance of the individual prototype �lter H���

A possible formulation is to optimize the design with respect to a subset of the measures

de�ned in Table ���� For example� if we want to minimize the reconstruction error of the

�lter bank and the stopband energy of an n�tap FIR prototype �lter with coe
cients x �
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�x�� x�� � � � � xn� the optimization problem is

minx�Rn Er�x and Es�x �����

where Er�x �
Z �

�

���
�jH���xj� � jH�� � ��xj� � �� d�

Es�x �
Z 


���s
jH���xj�d�

Unfortunately� optimal solutions to the simpli�ed optimization problem are not necessar�

ily optimal solutions to the original problem� Oftentimes� performance measures not included

in the formulation are compromised� For example� when Er and Es are the objectives to

be minimized� the solution that gives the smallest Er and Es will probably have a large

transition bandwidth�

In general� optimal solutions of a multi�objective problem form a Pareto optimal frontier

such that one solution on this frontier is not dominated by another� One approach to �nd a

point on the Pareto frontier is to optimize a weighted sum of all the objectives ��	� ��� ����

��������� This approach has di
culty when Pareto frontier points of certain characteristics

are desired� such as those with certain transition bandwidth� Di�erent combinations of

weights must be tested by trial and error until a desired �lter is found� When the desired

characteristics are di
cult to satisfy� trial and error is not e�ective in �nding feasible designs�

In this case� a constrained formulation should be used instead�

Another approach to solve a multi�objective problem is to turn all the objectives ex�

cept one into constraints� In this formulation� the constraints are de�ned with respect

to a reference design� The speci�c measures constrained may be application� and �lter�

dependent ������

Constraint�based methods have been applied to design QMF �lter banks in both the

frequency ��	�������������������� and the time domains ��		������ In the frequency domain�

the most often considered objectives are the reconstruction error� Er� and the stopband

ripple� �s� As stopband ripples cannot be formulated in closed form� stopband attenuation�

Es� is usually used instead� In the time domain� Nayebi ��		� gave a time�domain formulation

���



with constraints in the frequency domain and designed �lter banks using an iterative time�

domain design algorithm�

In this thesis� we formulate the design of a QMF �lter bank in the most general form as

a constrained nonlinear optimization problem ����������

minimize Er�x��Er �����

subject to Ep�x��Ep � � Es�x��Es � �

�p�x���p � � �s�x���s � �

Tt�x��Tt � �

where �Er � �Ep� �Es� ��p� ��s� and �Tt are the performance values of the baseline design �with

possibly some constraint values relaxed or tightened in order to obtain designs of di�erent

trade�o�s� Reconstruction error Er�x is the objective to be minimized� and all other

metrics of a single �lter are used as constraints� This formulation allows us to improve

on the best existing design �such as designs reported by Johnston ����� with respect to

all the performance metrics� In contrast� existing methods generally optimize a subset of

the performance metrics in constrained form or a weighted sum of the metrics� Since the

objective and the constraints in ����� are nonlinear� the optimization problem is generally

multi�modal with many local minima�

We have applied our Novel global search method to design better QMF �lter banks� In the

rest of this chapter� we �rst present our method in evaluating the performance metrics and

their corresponding derivatives� Then� in the experimental results� we show the improvement

of Novel on existing designs� and compare the performance of Novel with those of other global

search methods�


�� Evaluations of Performance Metrics

In QMF �lter�bank design problems� some functions� such as reconstruction error Er�

stopband energy Es� and passband energy Ep� have closed�form formulas� However� other

functions� including stopband ripple �s� passband ripple �p� and transition bandwidth Tt� do

not have closed�form formulas� and have to be evaluated numerically�

���



Let x � �x�� x�� � � � � xN be the parameters of an N�tap prototype �lter� and x is symmet�

ric� i�e�� xi � xN	��i� The frequency response of the prototype �lter is obtained by taking a

Fourier transform of x�

F�x �
NX
n��

xne
�jn�

� e�j
N��

�
�
N��X
n��

xnCos

�
�N � �

�
� n


A� �����

From Eq� ������ the phase response� �N��
�
�� is a linear function of �� and the amplitude

response is

h�x� � �
N��X
n��

xnCos

�
�N � �

�
� n


A� ����	

Hence� the performance metrics listed in Table ��� are functions of h�x� � as follows�

Er�x �
Z 


�
�h��x� � � h��x� � � �� ��d� �����

Es�x �
Z 


�s
x�
h��x� �d� �����

Ep�x �
Z �p
x�

�
�h�x� �� ��d� �����

�s�x � max�jh�x� �j� � � ��s�x� � �����

�p�x � max�jh�x� �� �j� � � ��� �p�x �����

Tt�x � �s�x� �p�x �����

The calculation of h�x� � involves a series of summations� When the summation of large

numbers results in a small number� the numerical cancellation errors can be signi�cant�

These happen in computing h�x� � when the prototype �lter is close to the ideal low�pass

�lter� It is desirable to make the cancellation error small�
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S � a���

C � 	

for j � � to k f

Y � a�j�� C

T � S � Y

C � �T � S�� Y

S � T

g

Figure ���� Kahan�s formula for summation
Pk

j�� aj ������

We have used two numerical methods to do the summation� One is to add numbers from

small to large� For summation
Pk

j�� aj� the numerical solution of this method is

kX
j��

aj�� � �j �����

where j�jj 
 �k� j� and  is the machine precision� The numerical error is proportional to

the number of terms in the summation�

A better way is to use Kahan�s summation formula as shown in Figure ���� in which extra

variables are introduced to maintain higher precision� Its solution of
Pk

j�� aj is

kX
j��

aj�� � ��j �O�N�
X jajj �����

where j��jj 
 � ������ Since machine precision  is very small for double precision �oating

point representations� the second term in the sum is usually small� Further� since j��jajj is
smaller than j�jajj when k is large� the numerical error in ����� can be much smaller than

that in ����� when the summation series is long�

��	



Table ���� Lower and upper bounds for calculating the reconstruction error Er

Index Lower Bound Upper Bound

� Max��� �N�� � n� i Min�N��� �� � n� i
� Max��� � � n � i Min�N��� N�� � n� i
� Max��� N�� � �� n� i Min�N��� N � n� i
� Max��� N � � � n � i Min�N��� �N�� � � � n� i
� Max��� �N � n� i Min�N��� �N�� � � � n� i
� Max��� N�� � � � n � i Min�N��� N � n� i
	 Max��� �� n� i Min�N��� N�� � n� i


���� Closedform Formulas of Er�x� Es�x� and Ep�x

As shown in Eq� ������ ������ and ������ Er�x� Es�x� and Ep�x are expressed as

integrations of h�x� �� In this section� we present their closed�form formulas� Please refer

to ��	�� for more detailed derivations�

By substituting ����	 into ������ we obtain the following formula for reconstruction

error Er�x�

Er�x �
�

�
�
n�N��X
n��

i�N��X
i��

xnxi

�
��xnxi � X

lb��m�ub� �m�n��k�m��n

xmxn�m	i

�
X

lb��m�ub� �m�n��k�m��n

xmx�n	m	i �
X

lb��m�ub� �m	n��k	�

xmxN	��n�m	i

�
X

lb
�m�ub
 �m	n��k	�

xmx�N��	n	m	i �
X

lb	�m�ub	 �m�n��k

xmxN	��n	m�i

�
X

lb��m�ub� �m�n��k

xmxN	�	n�m�i �
X

lb��m�ub� �m	n��k	�

xmxn	m�i

�
�

���
N��X
n��

x�n �����

where k is an integer and � � k � N��� The lower and upper bounds for the seven innermost

summations are shown in Table ����
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The formula for the stopband energy Es�x is obtained by substituting ����	 into ������

Es�x �
�

�

N��X
n��

x�n

�
��� � �s�x� Sin�N � �� �n�s�x

N � �� �n

�
��

�

�

N��X
n��

N��X
m���m ��n

xnxm

�
�Sin�n�m�s�x

n�m
�

Sin�N � � � n �m�s�x

N � � � n�m

�
�����	

Similarly� by substituting ����	 into ������ we obtain the formula for the passband

energy Ep�x as follows�

Ep�x �
�

�

N��X
n��

x�n

�
�p�x �

Sin�N � � � �n�p�x

N � � � �n

�

�
�

�

N��X
n��

N��X
m��n�m��

xnxm

�
Sin�n�m�p�x

n�m
�

Sin�N � � � n�m�p�x

N � �� n�m

�

��
N��X
n��

xn
Sin�N	�

� � n�p�x
N	�
�
� n

� �p�x �����


���� Numerical Evaluation of �s�x� �p�x� Tt�x

Although we do not have closed�form formulas for the other three performance metrics

of a low�pass prototype �lter �stopband ripple� passband ripple� and transition bandwidth�

we can evaluate their values using numerical methods�

We �nd the stopband ripple� �s�x� in the frequency range ����� �� based on the frequency

response of prototype �lter x� First� we uniformly sample the frequency range from ��� to ��

Frequency brackets that contain all the ripples are found based on the sample points� Within

each bracket� we apply Newton�s method to precisely locate the ripple� When Newton�s

method does not converge after a �xed number of iterations� we use Golden search to reduce

the bracket and re�start Newton�s method again� Among all the ripples� the largest one is the

stopband ripple �s�x� In a similar way� the passband ripple �p�x is found in the frequency

range of ��� �����

���



It is desirable to compute the ripples fast� Newton�s method has super�linear convergence

speed when the initial point is close to the convergence point� However� Newton�s method

may have slow convergence� or even diverge in other cases� Golden search uses a bracket to

safeguard the search� It guarantees to �nd the local minimum inside a bracket� but has only

linear convergence speed� By combining Newton�s method and Golden search� we get fast

and guaranteed convergence�

The transition bandwidth Tt�x � �s�x� �p�x is found based on the passband cut�o�

frequency �p�x� and the stopband cut�o� frequency �s�x� �p�x and �s�x are calculated

based on passband and stopband ripples �p�x and �s�x� respectively� Based on the fre�

quency response of the prototype �lter x� �p�x is the �rst � value in the range from ��� to

� that makes h�x� � � � � �p�x� We �nd �p�x in two steps� First� a bracket containing

�p�x is obtained based on sampling� Then� a combination of Newton�s method and bisec�

tion search is used to �nd �p�x within a prede�ned numerical error� A similar method is

used to �nd the stopband cut�o� frequency �s�x� which is the �rst ��x value in the range

from ��� to � that makes h�x� � � �s�x�


���� Evaluations of the Firstorder Derivatives of Performance Metrics

For performance metrics with closed�form formulas� which include reconstruction error

Er�x� stopband energy Es�x� and passband energy Ep�x� please refer to ��	�� for the

analytical forms of their corresponding �rst�order derivatives�

�Es�x

�xi
� xi

�
��� � �s�x� Sin�N � � � �i�s�x

N � � � �i

�
�

�
N��X

n���n ��i

xn

�
�Sin�n� i�s�x

n� i
�

Sin�N � �� n� i�s�x

N � �� n� i

�
�

� ��s�x

�xi
h��x� �s�x� �����

�	�



�Ep�x

�xi
� xi

�
��p�x � Sin�N � � � �i�p�x

N � � � �i

�
�

�
N��X

n���n��i

xn

�
�Sin�n� i�p�x

n � i
�

Sin�N � �� n� i�p�x

N � �� n� i

�
�

�� Sin�N	�
�
� i�p�x

N	�
�
� i

�
��p�x

�xi
�h�x� �p�x� ��� �����

and

�Er�x

�xi
� ��

n�N��X
n��

xn

�
��xnxi � X

lb��m�ub� �m�n��k�m��n

xmxn�m	i

�
X

lb��m�ub� �m�n��k�m��n

xmx�n	m	i �
X

lb��m�ub� �m	n��k	�

xmxN	��n�m	i

�
X

lb
�m�ub
 �m	n��k	�

xmx�N��	n	m	i �
X

lb	�m�ub	 �m�n��k

xmxN	��n	m�i

�
X

lb��m�ub� �m�n��k

xmxN	�	n�m�i �
X

lb��m�ub� �m	n��k	�

xmxn	m�i

�
�

���xi� �����

where� i � �� � � � � N�� and x is symmetric�

Note that �Es
x�
�xi

and �Ep
x�
�xi

are partly in closed form because ��s
x�
�xi

and ��p
x�
�xi

are esti�

mated using �nite di�erence methods� e�g��

��s�x

�xi
�

�s�x�� � � � � xi �"x� � � � � xN��� �s�x�� � � � � xi �"x� � � � � xN��
�"x

�����

��p�x

�xi
�

�p�x�� � � � � xi �"x� � � � � xN��� �p�x�� � � � � xi �"x� � � � � xN��
�"x

�����

�	�



For all the performance metrics without closed�form formulas� which include stopband

ripple� passband ripple� and transition bandwidth� we use �nite di�erence methods to ap�

proximate their derivatives� ��s�x��xi� ��p�x��xi� and �Tt�x��xi�


�
 Experimental Results

In our experiments� we have applied Novel to solve the �� QMF �lter�bank design prob�

lems formulated by Johnston ������ These include ��a� ��b� ��c� ��b� ��c� ��d� ��c� ��d�

��e� ��c� ��d� ��e� ��d� and ��e� where the integer in each identi�er represents the number

of �lter taps� and the types �a� to �e� represent prototype �lters with increasingly sharper

�shorter transition bands�

Our goal is to �nd designs that are better than Johnston�s results across all six perfor�

mance measures� including reconstruction error� stopband energy� passband energy� stopband

ripple� passband ripple� and transition bandwidth� Hence� we use the constrained optimiza�

tion formulation ����� with the constraint bounds de�ned by those of Johnston�s designs�

In our experiments� we improve existing Johnston�s results using Novel� compare the per�

formance of Novel with those of simulated annealing and genetic algorithms� and study the

performance tradeo�s of design objectives ����������


�
�� Performance of Novel

Novel uses the adaptive Lagrangian method presented in Section ����� to handle nonlinear

constraints� Figure ��� compares the execution time of the adaptive Lagrangian method

with that of the static�weight Lagrangian method when both methods achieve the same

quality of solutions� It shows the convergence times of the static�weight Lagrangian method

normalized with respect to that of the adaptive method in solving the ��d and ��e design

problems� For the method with static weights� we have used� respectively� weight values of

����� � 
 ����� ����� � 
 ����� and ���� in our experiments� For the method with dynamic

weights� we have used the weight�initialization algorithm described in Section ����� to set

the initial weights� Our program was run on a ���MHz Intel Pentinm Pro Computer�
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Figure ���� Comparison of convergence speed of Lagrangian methods with and without dy�
namic weight control for ��d �left and ��e �right QMF �lter�bank design
problems� The convergence times of the Lagrangian method using di�erent
static weights are normalized with respect to the time spent by the adaptive
Lagrangian method�

In solving the ��d problem� our adaptive Lagrangian method takes ��� minutes to con�

verge to a saddle point with an objective value of ��	��� whereas the Lagrangian method

with static weights obtains the same quality of solution with vastly di�erent convergence

speed� ranging from ��� times to �	�� times as long as the adaptive Lagrangian method�

Similarly� the dynamic method takes ���� minutes in solving the ��e design problem� but

the static method takes vastly di�erent and longer times for di�erent initial weights� ranging

from ��� times to �	�� times longer�

Table ��� shows the experimental results for all the design problems found using the

adaptive Lagrangian method normalized with respect to Johnston�s solutions� For each

problem� the adaptive Lagrangian method starts from Johnston�s solution and converges to

a saddle point� We use LSODE to generate the search trajectory� In Table ���� a value less

than � for a performance metric means that our design is better on this metric as compared

to Johnston�s design� The table shows that the dynamic Lagrangian method improves the

objective value �second column� while satisfying all the design constraints �Columns ��	�

The execution times to �nd the solutions di�er signi�cantly� varying from a few minutes to

several days�

�	�



Table ���� Experimental results of the dynamic Lagrangian method in designing QMF �lter
banks� We use Johnston�s solutions as starting points�

Filter�type Er �p Ep �s Es Tr CPU time �minutes� Time unit

��a 	���	 	���� 	��� 	���� ��			 ��			 �� 	����
��b 	���� 	���� 	�	� ��			 ��			 ��			 ���� 	���
��c 	��� ��			 	���� ��			 ��			 ��			 ���� 	����
�
b 	���� 	���
 	��	 	���� ��			 ��			 ����	 	��	�
�
c 	���	 ��			 	��� ��			 ��			 ��			 ���
 	��

�
d 	��� ��			 	��� ��			 ��			 ��			 ��� 	����
��c 	���� 	���� 	���� 	���� ��			 ��			 ���� 	����
��d 	��	 	���� 	�		 ��			 ��			 ��			 ���
 	����
��e 	���� ��			 	���
 ��			 ��			 ��			 ���� 	���


c 	���� ��			 	��	 	��
� 	���� ��			 ����� 	����

d 	��
 	���� 	���� 	���� ��			 ��			 ��	�� 	��	�

e 	��� ��			 	�
	 ��			 ��			 ��			 ���� 	��
�
�
d 	��
 	���� 	��� 	���� 	���� ��			 ��
��� 	�	��
�
e 	�
� ��			 	���
 ��			 ��			 ��			 ���� 	���

Due to the nonlinear function in the objective and the constraints� there exist local

minima in the search space of QMF �lter�bank design problems� Lagrangian methods only

perform local searches� Global�search methods are needed to overcome local minima� Our

Novel relies on the trace�based global search to escape from local minima� and to identify

good starting points for local searches� Table ��� shows the experimental results of Novel

that uses the trace�based global search together with the adaptive Lagrangian method in

solving QMF �lter�bank design problems� The trace�based global search consists of one

global�search stage that starts from Johnston�s solution and searches in the range ����� in

each dimension around Johnston�s solution� The global�search stage is run for one time unit�

i�e�� from t � � to t � �� In every ��� time units� a starting point for the local search is

selected� so there are a total �� descents performed� We use LSODE to generate both the

global� and the local�search trajectories�

Table ��� shows the results of Novel in solving the QMF design problems� A value less

than � for a performance metric means that the design is better on this metric as compared

to Johnston�s design� Due to the excessive time of the Lagrangian method in solving ���c�

�	�



Table ���� Experimental results of Novel using trace�based global search and the dynamic
Lagrangian method as local search in solving the QMF �lter�bank design prob�
lems� �A ����MHz Pentium Pro running Linux�

Filter�type Er �p Ep �s Es Tr CPU time �hrs� � Descents

��a 	��� ��			 	�� ��			 ��			 ��			 ���� �	
��b 	��� ��			 	��� ��			 ��			 ��			 ��� �	
��c 	��� ��			 	���� ��			 ��			 ��			 ��� �	
�
b 	���
 ��			 	��� ��			 ��			 ��			 ���� �
�
c 	���	 ��			 	��� ��			 ��			 ��			 �	�� �	
�
d 	���� ��			 	���	 ��			 ��			 ��			 ��� �	
��c 	���� ��			 	��� ��			 ��			 ��			 
	�� 

��d 	��	 ��			 	�		 ��			 ��			 ��			 ���� �	
��e 	���� ��			 	�� ��			 ��			 ��			 �
�� �	

d 	��
� 	���� 	���� 	���� ��			 ��			 ���� �

e 	��� ��			 	�� ��			 ��			 ��			 
��
 �	
�
e 	�
� ��			 	���� ��			 ��			 ��			 ���
 �

and ���d� problems� we did not run Novel on them� The last column in Table ��� shows the

number of local descents based on our Lagrangian method performed in the corresponding

CPU time�

Comparing to Table ���� Novel with global search �nds better solutions than Novel with

only local search for problems ���a�� ���b�� ���c�� ���d�� and ���e�� The reason that no

better solutions are found for the other problems is attributed to the good quality of solutions

found by the Lagrangian method starting from Johnston�s solutions and to the execution

time available�

Johnston used sampling in computing energy values whereas Novel used closed�form

integration� Hence� designs found by Johnston are not necessarily at the local minima in

a continuous formulation� To demonstrate this� we applied local search in a continuous

formulation of the ��D design� starting from Johnston�s design� We found a design with

a reconstruction error of ��	�� of Johnston�s result� By applying global search� Novel can

further improve the design to result in a reconstruction error of ��	�� of Johnston�s result�

Figure ��� depicts our ��D QMF and Johnston�s designs� It indicates that our design

has smoother passband response and lower reconstruction error�

�	�



0.99

0.995

1

1.005

1.01

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

P
as

sb
an

d

f

Johnston
NOVEL

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

8e-05

9e-05

0.0001

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(h
(f

)^
2 

+
 h

(0
.5

-f
)^

2 
-1

.0
)^

2

f

Johnston
NOVEL

Figure ���� A comparison of our ��D QMF design and Johnston�s design� The left graph
shows the passband frequency response� and the right graph shows the recon�
struction error�

To summarize� Novel has improved over Johnston�s results over all these �lter�bank design

problems� The objective� reconstruction error� has been improved for all the problems� Other

performance measures are at least as good as Johnston�s with a few better� Note that other

design methods generally perform trade�o�s� resulting in designs that are better in one or

more measures but worse in others�


�
�� Comparison with Other Global Optimization Methods

We have applied simulated annealing �SA and evolutionary algorithms �EA in QMF

�lter�bank design� The SA we have used is SIMANN from netlib that works on the following

weighted�sum formulation�

min
x

f�x � w�
Er�x

�Er
� w�max

	
Ep�x

�Ep
� �� �




�w�max

	
Es�x

�Es
� �� �



� w�max

	
�p�x

��p
� �� �




�w�max

	
�s�x

��s
� �� �



� w�max

	
Tt�x

�Tt
� �� �



�����
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Table ���� Experimental results of simulated annealing �SA for solving QMF �lter�bank
problems� The cooling rates of SA for ���� ���� ���� ���� and ���tap �lter banks
are ����� ����� ����� ����� and ����� respectively� The total number of evaluations
for ���� ���� ���� ���� and ���tap �lter banks are ��� ��� ��� �� and � millions�
respectively� �A ����MHz Pentium Pro running Linux�

Filter�type Er �p Ep �s Es Tr CPU time �hrs
��a ����� ����� ����� ����� ����� ����� ����
��b ����� ����� ����� ����� ����� ����� ����
��c ����� ����� ����� ����� ����� ����� ����
��b ����� ����� ����� ����� ����� ����� ����
��c ����� ����� ����� ����� ����� ����� ����
��d ����� ����� ����� ����� ����� ����� ����
��c ����� ����� ��	�� ����� ����� ����� ����
��d ����	 ��	�� ���	� ����� ����� ����� �	��
��e ����� ����� ����� ����� ����� ����� ����
��c ��	�� ����� ����� ����� ����� ����� ����
��d ����� ����� ��	�	 ����� ����� ����� ����
��e ����� ����� ����� ����� ����� ����� ����
��d ����	 ����� ��	�� ����� ����� ����� ����
��e ����� ����� ����� ���	� ����� ����� ����

where �Er � �Ep� �Es� ��p� ��s� and �Tt are performance values of the baseline design� In our

experiments� we assign weight � for reconstruction error �w� � � and weight �� for the other

performance measures �wi � ��� i � �� � � � � �� SA uses Johnston�s solutions as initial points�

We have tried various parameter settings and report the best solutions in Table ���� Like

Novel� SA searches in the range ������� ����� in each dimension around Johnston�s solution�

uses cooling rates of ����� ����� ����� ����� and ���� for ���� ���� ���� ���� and ���tap QMF

�lter banks� respectively� and runs for a total of ��� ��� ��� �� and � millions evaluations�

respectively�

For some problems� SA �nds solutions that improve Johnston�s solutions on all six per�

formance measures� However� for others� SA�s solutions have a larger transition band� This

is because in weighted�sum formulation� there is no way to force all the objectives to be

smaller than certain values�
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Table ���� Experimental results of the evolutionary algorithm for solving a constrained for�
mulation �EA�Constr of QMF �lter�bank problems� The population size of EA
is ��n� where n is the number of variables� and the generations for ���� ���� ����
���� and ���tap �lter banks are ����� ����� ����� ����� and ����� respectively�
�A Sun SparcStation �����

Filter�type Er �p Ep �s Es Tr CPU time �hrs
��a ��	�� ����� ���	� ����� ��	�� ����� ��	
��b ����� ����� ����� ����� ����� ���	� ��	
��c ����� ����� ����� ����� ����� ����� ��	
��b ����� ����� ����� ����� ����� ����� 	��
��c ����� ����� ����� ����� ����� ����	 	��
��d ���	� ����� ����� ����� ����� ����� 	��
��c ������ ����� ����� ����� ����� ����	 ����
��d ����� ����� ����� ����� ����� ����� �	��
��e ��	�� ����� ����� ����� ����� ����� ����
��c ������ ����� ����� ����� ����	 ����� ����
��d ��	��� ����� ����� ����� ����� ����� �	�	
��e ����� ����� ����� ����� ����� ����� ����
��d �����	 ����� ����	 ����� ����� ���	� ����
��e ����� ����� ����� ���	� ����� ����� ����

The EA used in our experiments is Sprave�s Lice �Linear Cellular Evolution program

that can solve both constrained and weighted�sum formulations� As in Novel and SA� we

have set the search range to be ������� ����� in each dimension around Johnston�s solution�

and have tried various population size and number of generations�

Table ��� reports the experimental results of EA solving the constrained formulation ����

�EA�Constr� The �tness value of each individual is based on its feasibility and its objective

value� Feasible individuals have higher �tness value than infeasible ones� Among infeasible

individuals� the one with a smaller constraint violation has a higher �tness value� The best

solutions we obtained are reported in Table ���� We have used a population size ��n� where n

is the number of variables� and ran for a total of ����� ����� ����� ����� and ���� generations

for ���� ���� ���� ���� and ���tap QMF �lter banks� respectively�
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EA�Constr has di
culty in �nding good feasible solutions� This is because the constraints

based on Johnston�s solutions form a tiny feasible region in the search space� Randomly

generated points have little chance of being feasible�

Table ��	 reports the experimental results of EA solving the weighted�sum formulation

�EA�Wt� As in the experiments with SA� We assign weight � for the reconstruction error

and weight �� for the rest of the performance measures� The population size and the number

of generations executed are the same as in the experiments of EA�Constr� the population size

is ��n� where n is the number of variables� and a total of ����� ����� ����� ����� and ����

generations were executed for ���� ���� ���� ���� and ���tap QMF �lter banks� respectively�

Except ���b� and ���d�� where EA�Wt improves Johnston�s solutions in all six per�

formance measures� EA�Wt only �nds solutions with trade�o�s� Usually� the solutions of

EA�Wt have larger transition bands than Johnston�s solutions and improve in other perfor�

mance measures�

To summarize� the performance improvement of Novel comes from three sources�

	 The closed�form formulation used in Novel is more accurate than the sampling method

used in Johnston�s approach� Local optima found by Novel are true local optima�

Johnston�s solution are local optima in a discrete approximation of the design problem�

	 Novel uses a constrained formulation which allows it to �nd designs that are guaran�

teed to be better than or equal to Johnston�s design with respect to all performance

measures�

	 The Lagrangian formulation is solved as a system of ordinary di�erential equations

�ODEs� The system of ODEs precisely converges to the saddle point that corre�

sponds to the local minimum of original constrained optimization problem� ODE

solver LSODE solves the equations accurately�

	 Novel uses the trace�based global search to overcome local minima� and to �nd better

solutions than pure local�search methods do�
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Table ��	� Experimental results of the evolutionary algorithm for solving the weighted�sum
formulation �EA�Wt of QMF �lter�bank problems� The population size of EA
is ��n� where n is the number of variables� and the generations for ���� ���� ����
���� and ���tap �lter banks are ����� ����� ����� ����� and ����� respectively�
�A Sun SparcStation �����

Filter�type Er �p Ep �s Es Tr CPU time �hrs
��a ����� ����� ����� ����� ��	�� ����� ���
��b ����� ����� ����� ����� ����� ����� ���
��c ����� ����� ����� ����� ����� ����� ���
��b ����� ����� ����� ����	 ����� ����� ���
��c ����� ����� ����� ����� ����� ����� ���
��d ����� ����� ����� ����� ����� ����� ���
��c ����� ����� ���	� ����� ����� ����� �	��
��d ����� ��	�� ����� ����� ����� ����� ����
��e ����� ����� ����� ����� ����� ����� ����
��c ��	�� ����� ��	�� ����� ����� ����� ����
��d ��	�	 ����� ����� ����� ����� ����� ����
��e ����� ����� ����� ����� ����� ����� ����
��d ����� ����� ����� ����� ����� ����� ���	
��e ����� ����� ����� ����� ����� ����� ����
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Novel improves Johnston�s solutions constantly� SA obtains solutions with trade�o�s for

most of the problems� They improve most performance measures� but has worse transition

bandwidth than Johnston�s� This is due to the weighted�sum formulations� EA�Wt has the

same di
culty in improving over Johnston�s solution across all the performance measures�

In particular� the solutions of EA�Wt also have larger transition bandwidths� EA�Constr

uses a direct search method to probe the search space� When the feasible region is small�

direct search methods have di
culty in generating good feasible solutions� Clearly� Novel

achieves the best performance among these methods�


�
�� Performance Tradeo�s

By using our constrained formulation� we can further study trade�o�s in designing QMF

�lter banks in a controlled environment� Loosening some constraints in ����� generally leads

to smaller reconstruction errors�

Figure ��	 demonstrates these trade�o�s for ��D QMF �lter banks� In our experiments�

we have used Johnston�s designs as our baselines� In the left graph� constraints on stopband

ripple and energy are relaxed by �% to ��% from Johnston�s solution� In the right graph�

the constraint on transition bandwidth is relaxed by �% to ��% from Johnston�s solution�

The y�axis shows the solution ratio� which is the ratio between the measures found by Novel

and that of Johnston�s� All solutions obtained by Novel satisfy the constraints�

As shown in the left graph� when constraints on stopband ripple and energy are loosened�

the reconstruction error� passband ripple and passband energy decrease� while transition

bandwidth is the same with respect to the relaxation ratio� This means that for relaxed

requirements of stopband ripple and energy� the solutions have better reconstruction error�

passband ripple� and passband energy� But they do not have better transition bandwidth�

In the right graph� the constraint on transition bandwidth is loosened� The reconstruction

error and passband energy decrease signi�cantly� The stopband ripple is reduced slightly

while the stopband energy is the same�

In the previous experiments� we have relaxed one or two performance requirements� In

the next experiments� we study the change of reconstruction error when all the constraints
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Figure ��	� Experimental results in relaxing the constraints with respect to Johnston�s de�
signs for ��D QMFs� The x�axis shows the relaxation ratio of stopband energy
and ripple �left � or transition bandwidth �right as constraints in Novel with
respect to Johnston�s value� The y�axis shows the ratio of the measure found
by Novel with respect to Johnston�s�

are either tightened or loosened at the same time with the same ratio� Figure ��� shows the

experimental results in relaxing and in tightening the constraints with respect to Johnston�s

designs for ��D and ��D QMFs� Tightening all the constraints in ����� causes the recon�

struction error to increase� whereas loosening them leads to smaller reconstruction error�

When the constraints are loosened� the reconstruction error� passband energy� passband

ripple and stopband ripple decrease signi�cantly with respect to the relaxed constraints�

These improvements are at the expense of the transition bandwidth and stopband energy�

which increase according to the relaxed constraints�

When the constraints are tightened� we have di
culty in �nding solutions that satisfy all

constraints� For both ��D and ��D QMF� the transition bandwidth is not satis�ed according

to the tightened constraint� This means that Johnston�s solutions are at or very close to the

Pareto frontier of optimal solutions� There is no solution that is �% better than Johnston�s

solution on all six performance metrics�
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Figure ���� Experimental results in relaxing and in tightening the constraints with respect
to Johnston�s designs for ��D �left and ��D �right QMFs� The x�axis shows
the ratio of the constraint in Novel with respect to Johnston�s value� The y�axis
shows the ratio of the performance measures of Novel�s solutions with respect
to Johnston�s�


�� Summary

In this chapter� we have applied Novel to design QMF �lter banks� We formulate the

design problem as a single�objective constrained optimization problem that takes all the

performance metrics into consideration� We use the reconstruction error of the overall �lter

bank as the objective function to be minimized� and �ve performance metrics of the proto�

type low�pass �lter� including stopband ripple� stopband energy� passband ripple� passband

�atness� and transition bandwidth� to form constraint functions constrained by the corre�

sponding performance measures of the baseline solution� Our objective is to improve the

reconstruction error while all other performance measures are at least as good as the baseline

solution�

For three performance metrics� which include reconstruction error� stopband and pass�

band energies� we derive their closed�form formulas and their corresponding derivatives� For

the other three performance metrics� which include stopband ripple� passband ripple� and

transition bandwidth� we apply numerical methods to �nd their values and the corresponding

derivatives�
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In our experiments� we use Johnston�s solutions as the baselines and apply Novel to �nd

better solutions� We compare the performance of our adaptive Lagrangian method with

the static Lagrangian method� We show that the convergence time of the static Lagrangian

method is generally longer than that of the dynamic Lagrangian method� and can vary

signi�cantly depending on the initial weights�

By using the dynamic Lagrangian method� we have successfully improved the solutions

of all the test problems� We have found solutions with smaller reconstruction errors than

Johnston�s solutions� while all the other performance metrics are equal to or better than

those of Johnston�s solutions� The nonlinear functions in the objective and the constraints

produce local minima that trap local�search methods� By using trace�based global search in

Novel� we have further improved the solutions obtained by the Lagrangian methods�

We have compared the results obtained by Novel with those obtained by simulated an�

nealing �SA and evolutionary algorithm �EA� SA solves an unconstrained optimization

problem with a weighted�sum formulation� EA works on both the weighted�sum formulation

and the single�objective constrained formulation solved by Novel� It is inherently di
cult to

improve all the performance measures at the same time by using the weighted�sum formula�

tion� SA and EA usually obtain trade�o� solutions with some performance metrics improved

and others getting worse� In solving the constrained formulation� EA fails to �nd good

feasible solutions for all the test problems because the feasible regions are very small and

di
cult to �nd by random probing� Overall� Novel has the best performance and improves

the baseline solutions consistently�

Using our constrained optimization formulation� we have studied performance trade�o�s

among the six performance metrics of a QMF �lter bank� We have found that relaxing

some constraints slightly can lead to a large reduction of the reconstruction error� When

the stopband ripple and energy or the transition bandwidth is relaxed� the other three per�

formance measures� reconstruction error� stopband energy� and stopband ripple can become

signi�cantly smaller� When we relax all the constraints� the stopband energy and transi�

tion bandwidth usually meet the relaxed constraints� which other metrics are signi�cantly

improved�
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As a �nal note� the design approach and the Novel method we have applied to design

QMF �lter banks can be carried out to design other digital �lters and �lter banks� such as

IIR �lters and �lter banks and multi�rate and multi�band �lter banks�
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�� DISCRETE OPTIMIZATION

In this chapter� we apply Novel� particularly the discrete Lagrangian method �DLM�

to solve discrete optimization problems� including the satis�ability problems �SAT� the

maximum satis�ability problems �MAX�SAT� and the design of multiplierless �power�of�

two� PO� QMF �lter�banks�

SAT is a class of NP�complete problems that model a wide range of real�world applica�

tions� These problems are di
cult to solve because they have many local minima in their

search space� often trapping greedy search methods that utilize some form of descent� We

formulate SAT problems as discrete constrained optimization problems and apply Novel to

solve them� Instead of restarting from a new starting point when a search reaches a local

trap� the Lagrange multipliers in our discrete Lagrangian method provide a force to lead

the search out of a local minimum and move it in the direction provided by the Lagrange

multipliers� One of the major advantages of our method is that it has very few algorithmic

parameters to be tuned by users� and the search procedure can be made deterministic and

the results� reproducible� We demonstrate our method by applying it to solve an extensive

set of benchmark problems archived in DIMACS of Rutgers University� Our method usu�

ally performs better than the best existing methods and can achieve an order�of�magnitude

speedup for many problems�

MAX�SAT is a general case of SAT� As in solving SAT� we formulate a MAX�SAT problem

as a discrete constrained optimization problem and solve it using Novel� In our experiments�
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we have applied Novel to solve a large number of MAX�SAT test problems� Novel is usually

two orders faster than other competing methods� and can also �nd better solutions�

Finally� we apply Novel to design multiplierless QMF �lter banks� In multiplierless QMF

�lter banks� �lter coe
cients are represented as sums or di�erences of powers of two� and

multiplications become additions� subtractions� and shifting� Without the complexity of

multiplications� each �lter takes less area to implement in VLSI� and more �lter taps could

be accommodated in a given area to achieve higher performance� We formulate the design

problem as a discrete constrained optimization problem and solve it using Novel� Novel

has obtained designs with similar quality to real�value designs� but less computation and

hardware implementation costs�

This chapter is divided into � sections� In Section ��� to Section ���� we present the

application of Novel to solve SAT problems� In Section ���� we show the application of Novel

to solve MAX�SAT problems� In Section ��	� we present the application of Novel in designing

multiplierless QMF �lter banks� Finally� in Section ���� we conclude this chapter�

��� Introduction to Satis	ability Problems

The satis�ability �SAT problem is one of the most studied problems in contemporary

complexity theory� It was the �rst NP�complete problem discovered by Stephen Cook in

��	��

De�ne a set of Boolean variables x � �x�� x�� � � � � xn� xi � f�� �g� and let the complement

of any of these variables xi be denoted as !xi� In propositional logic� the variables are called

literals � Using standard notations� where the symbol � denotes or and � denotes and� we can

write any Boolean expression in conjunctive normal form �CNF� i�e�� a �nite conjunction of

disjunctions� in which each literal appears at most once� Each disjunctive grouping is called

a clause� Given a set of m clauses fC�� C�� � � � � Cmg on the n variables x� a Boolean formula

in conjunctive normal form �CNF is

C� � C� � � � � � Cm ����
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A clause is satis�ed if at least one of its member literals is true� A Boolean expression is

satis�ed if all of its clauses are simultaneously satis�ed given a particular assignment to the

literals �variables�

The satis�ability problem is de�ned as follows�

Given a set of literals and a conjunction of clauses de�ned over the literals� �nd

an assignment of values to the literals so that the Boolean expression is true� or

derive its infeasibility if the Boolean expression is infeasible�

The SAT problem belongs to an important class of discrete constraint�satisfaction prob�

lems �CSP� Many problems in arti�cial intelligence� logic� computer aided design� database

query and planning� etc�� can be formulated as SAT problems� These problems are known

to be NP�complete and require algorithms of exponential complexity in the worst case to

obtain a satisfying assignment�

Many search methods have been developed in the past for solving SAT problems� These

include resolution� constraint satisfaction� and backtracking� These methods are computa�

tionally expensive and are not suitable to apply to large problems�

In addition to the formulation in ����� SAT problems can be formulated as discrete or

continuous� constrained or unconstrained� optimization problems� In Section ���� we present

�ve formulations� show the objective and�or constraints for each formulation� and discuss

approaches for solving each�

SAT algorithms can be classi�ed as incomplete and complete� depending on whether they

can �nd a random solution or �nd all the solutions� The advantage of complete algorithms

is that they can detect infeasibility when a SAT problem is infeasible� However� they are

generally computationally expensive and are suitable for relatively small problems� On

the other hand� incomplete methods are much faster� but cannot conclude whether a SAT

problem is feasible or infeasible when no solution is found within a limited amount of time�

Recently� a class of local �incomplete search methods were proposed� solving a class of

hard SAT problems with size of an order�of�magnitude larger than those solved by complete

methods� A major disadvantage of these methods is that they require users to set some
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problem�speci�c parameters in order to �nd solutions e
ciently� For this reason� one of our

goals is to design a fast local search method whose results can be reproduced easily�

In our approach� we formulate a SAT problem as a discrete constrained optimization

problem with a goal of minimizing N�x subject to a set of constraints�

minx�f���gn N�x �
mX
i��

Ui�x ����

subject to Ui�x � � �i � f�� �� � � � �mg�

where Ui�x � � if the logical assignment x satis�es Ci� and Ui � � if Ci is false� N�x

measures the number of unsatis�ed clauses� and N�x � � when all the clauses are satis�ed�

We then apply Novel with the discrete Lagrangian method to solve this problem�

Traditionally� Lagrangian methods have been developed to solve continuous constrained

optimization problems� By doing descents in the original variable space and ascents in

the Lagrange�multiplier space� equilibrium is reached when optimal solutions are found� To

apply these methods to solve discrete SAT problems� we need to develop discrete Lagrangian

operators that can work on discrete values� Novel uses the Discrete Lagrangian method

�DLM to solve discrete optimization problems� and searches for saddle points based on

a discrete Lagrangian function� Equilibrium is reached when a feasible assignment to the

original problem is found� Novel moves a search trajectory out of a local minimum in a

direction provided by the Lagrange multipliers� without restarting the search�

In the next four sections of this chapter� we present our results in solving SAT prob�

lems� In Section ���� we �rst summarize previous formulations and algorithms to solve SAT

problems� In Section ���� we apply our discrete Lagrangian method �DLM to solve SAT

problems� and derive related theoretical foundations� In Section ���� we address the issues

and alternatives in implementing DLM� Finally� in Section ���� we show our experimental

results in applying DLM to solve SAT problems from the DIMACS benchmark suite� After�

wards� we switch to present our results in applying Novel to solve other discrete problems�

���



��� Previous Work

In this section� we review the previous work in solving SAT problems� which include

various discrete and continuous� constrained and unconstrained formulations� and the corre�

sponding algorithms for solving them�

����� Discrete Formulations

Discrete formulations of SAT problems can be classi�ed as unconstrained versus con�

strained as follows�

�a Discrete Constrained Feasibility Formulation� This is the formulation de�ned in �����

Methods to solve it can be either complete or incomplete� depending on their ability to prove

infeasibility� Complete methods for solving this formulation include resolution ���� ��	��

backtracking ������ and consistency testing �������	������ An important resolution method

is Davis�Putnam�s algorithm ����� These methods enumerate the search space systematically�

and may rely on incomplete methods to �nd feasible solutions� Their disadvantage is that

they are computationally expensive� For instance� Selman et al� ����� and Gu �������������

have reported that Davis�Putnam�s algorithm cannot handle SAT problems with more than

��� variables� and better algorithms today have di
culty in solving SAT problems with more

than ��� variables�

�b Discrete Unconstrained Formulation� In this formulation� the goal is to minimize

N�x� the number of unsatis�able clauses� That is�

min
x�f���gn

N�x �
mX
i��

Ui�x ����

Many local search algorithms were designed for this formulation� These algorithms can

deal with large SAT problems of thousands of variables� However� they may be trapped by

local minima in the search space� where no state in its local neighborhood is strictly better�

Consequently� steepest�descent or hill�climbing methods will be trapped there� Restarts

merely bring the search to a completely new region�
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Methods designed for ���� are usually incomplete methods� although some mechanisms

like backtracking can make them complete� Most incomplete methods are random methods�

relying on ad hoc heuristics to �nd random solutions quickly� Those that have been applied

include multi�start �restart of local improvement �descent methods� stochastic methods

such as simulated annealing �SA ��������� and genetic algorithms �GA ���������� They are

discussed brie�y as follows�

A pure descent method with multi�starts descends in the space of the objective function

from an initial point� and generates a new starting point when no further improvement can

be found locally� Examples include hill�climbing and steepest descent ���������������	�����

������	������ For large SAT problems� hill�climbing methods are much faster than steepest

descent because they descend in the �rst direction that leads to improvement� whereas

steepest descent methods �nd the best direction� An example of an objective function

suitable to be searched by descent or hill�climbing methods is ����� Pure descent methods

are not suitable when there are constraints in the search space as formulated in �����

Recently� some local search methods were proposed and applied to solve large SAT prob�

lems ���� ��� �	��� The most notable ones are those developed independently by Gu and

Selman�

Gu developed a group of local search methods for solving SAT and CSP problems� In

his Ph�D thesis ������ he �rst formulated con�icts in the objective function and proposed a

discrete relaxation algorithm �a class of deterministic local search to minimize the number

of con�icts in these problems� The algorithms he developed subsequently focused on two

components� methods to continue a search when it reaches a local minimum� and methods

for variable selection and value assignment� In the �rst component� he �rst developed the

so�called min�con�icts heuristic ����� and showed signi�cant performance improvement in

solving large size SAT� n�queen� and graph coloring problems �������	���������� His meth�

ods use various local handlers to escape from local traps when a greedy search stops progress�

ing ��������� ��������� Here� a search can continue without improvement when it reaches

a local minimum ����� and can escape from it by a combination of backtracking� restarts�

and random swaps� In variable selection and value assignment� Gu and his colleagues have

developed random and partial random heuristics ����� ���� �������� �������� ��	� ���� �����
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These simple and e�ective heuristics signi�cantly improve the performance of local search

algorithms by many orders of magnitude�

Selman developed GSAT ������������� that starts from a randomly generated assignment

and performs local search iteratively by �ipping variables� Such �ipping is repeated until

either a satis�able assignment is found or a pre�set maximum number of �ips is reached�

When trapped in a local minimum� GSAT either moves up�hill or jumps to another random

point� To avoid getting stuck on a plateau� which is not a local minimum� GSAT makes

side�way moves�

In short� the objective function in ���� may have many local minima that trap local

search methods� Consequently� a search in a seemingly good direction may get stuck in a

small local minimum� and will rely on random restarts or hill climbing to bring the search out

of the local minimum� However� both schemes do not explore the search space systematically�

and random restarts may bring the search to a completely di�erent search space�

Stochastic methods� such as GA and SA� have more mechanisms to bring a search out

of a local minimum� but are more computationally expensive� Selman et al� ����� reported

that annealing is not e�ective for solving SAT problems� To the best of our knowledge� there

is no successful application of genetic algorithms to solve SAT problems� In general� these

methods are much slower than descent methods and can only solve small problems�

�c Discrete Constrained Formulation� There are various forms in this formulation� One

approach is to formulate SAT problems as ��� integer linear programming �ILP problems�

and apply existing ILP algorithms to solve them ����� ����� However� this approach is gen�

erally computationally expensive�

Another approach is to minimize an objective function N�x� subject to a set of con�

straints� as de�ned in ���� and restated as follows�

min
x�f���gn N�x �

mX
i��

Ui�x

subject to Ui�x � � �i � f�� �� � � � �mg�
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This formulation is better than those in ���� and ���� because the constraints provide

another mechanism to bring the search out of a local minimum� When a search is stuck in

a local minimum� the objective value as formulated in ���� is a discrete integer� and the

vicinity of the local minimum may either be worse or be the same� On the other hand� in

formulating the problem as in ����� there is very little guidance given to the search algorithm

as to which variable to �ip when a clause is not satis�ed� Novel solves SAT problems based

on the discrete constrained formulation ����� We show e
cient heuristic algorithms that

search in discrete space� while satisfying the constraints�

����� Continuous Formulations

In formulating a discrete SAT problem in continuous space� we transform discrete vari�

ables in the original problem into continuous variables in such a way that solutions to the

continuous problem are binary solutions to the original problem� This transformation is po�

tentially bene�cial because an objective in continuous space may smooth out some infeasible

solutions� leading to smaller number of local minima explored� Unfortunately� continuous

formulations require computationally expensive algorithms� rendering them applicable to

only small problems� In the following� we show two such formulations�

�a Continuous Unconstrained Formulation�

min
x�Rn

f�x �
mX
i��

ci�x� ����

where ci�x is a transformation of clause Ci�

ci�x �
nY
j��

ai�j�xj ����

ai�j�xj �

����������
���������

��� xj� if xj in Ci

x�j if !xj in Ci

� otherwise

����
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Values of x that make f�x � � are solutions to the original problem in �����

Note that the objective is a nonlinear polynomial function� Hence� there may be many

local minima in the search space� and descent methods� such as gradient descent� conju�

gate gradient� and quasi�Newton�s methods� can be trapped by the local minima ���������

����� Global search techniques� such as clustering methods� generalized gradient methods�

Bayesian methods� and stochastic methods� can also be applied� however� they are usually

much more computationally expensive than descent methods�

To overcome the ine
ciency of continuous unconstrained optimization methods� Gu de�

veloped discrete bit�parallel optimization algorithms �SAT ���� and SAT ���� to evaluate

continuous objective function ����� and have found signi�cant performance improvements�

�b Continuous Constrained Formulation� This generally involves a heuristic objective

function that indicates the quality of the solution obtained �such as the number of clauses

satis�ed� One formulation similar to ���� is as follows�

minx�Rn f�x �
mX
i��

ci�x ���	

subject to ci�x � � �i � f�� �� � � � �mg

where ci�x is de�ned in �����

The key in the continuous approach lies in the transformation� When it does not smooth

out local minima in the discrete space or when the solution density is low� continuous methods

are much more computationally expensive to apply than discrete methods�

Since ���	 is a continuous constrained optimization problem with a nonlinear objective

function and nonlinear constraints� we can apply existing Lagrange�multiplier methods to

solve it� Our experience is that a Lagrangian transformation does not reduce the number of

local minima� and continuous Lagrangian methods are an order�of�magnitude more expensive

to apply than the corresponding discrete algorithms �����
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��� Applying DLM to Solve SAT Problems

To apply our discrete Lagrangian method �DLM introduced in Section ����� to solve a

SAT problem� we introduce an arti�cial objective H�x and formulate the problem into a

constrained optimization problem as follows�

minx�f���gn H�x ����

subject to Ui�x � � �i � f�� �� � � � �mg�

where Ui � � if Ci is true� and Ui � � if Ci is false�

Let�s show that a saddle point �x�� �� to the Lagrangian formulation of ���� consists of

a feasible solution x� to the SAT problem in ����� For a given saddle point �x�� ���

F �x�� � � F �x�� ��  H�x� � �TU�x� � H�x� � ��TU�x�

 �TU�x� � ��TU�x�

for any � close to ��� The condition holds only when U�x� � �� i�e�� x� is a feasible solution

to the SAT problem in �����

In order for all feasible solutions to the SAT problem in ���� to become saddle points of

����� the objective function H�x must satisfy the following condition�

Necessary Condition for Objective Function� If a feasible solution x� to the SAT

problem in ���� is a local minimum of the objective function H�x� then �x�� �� is a saddle

point of the Lagrangian formulation ���� for any positive ���

Proof� The Lagrangian function of ���� is

F �x� � � H�x � �TU�x

For a feasible solution x� of ����� U�x� � �� Hence� for any positive �� and any ��

F �x�� � � H�x� � �TU�x� � H�x� � H�x� � ��TU�x� � F �x�� ���

By the de�nition of U�x� U�x � � for any x� Since x� is a local minima of U�x and �� is

positive�

F �x�� �� � H�x� � ��TU�x� � H�x� � H�x � ��TU�x � F �x� ��
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for x close to x�� Therefore� we have

F �x�� � � F �x�� �� � F �x� ��

and �x�� �� is a saddle point�

There are many functions that satisfy the necessary condition� Examples are

H�x �
mX
i��

Ui�x ����

H�x �
mX
i��

liUi�x �����

H�x �
mX
i��

�lmax � �� liUi�x �����

where li is the number of variables in clause Ci� and lmax � max�li� i � �� � � � �m� The

�rst function assigns uniform weights to all the clauses� The second function assigns more

weights to longer clauses� whereas the third one is the opposite� A feasible solution x� is a

local minimum of these functions because Ui�x� � �� i � �� � � � �m� and H�x� � �� In our

experiments� we use the �rst function as our objective function� and formulate SAT problems

as constrained optimization problems in �����

The SAT problem de�ned in ���� is a special case of the discrete constrained optimization

problem de�ned in ������ An important property of the formulation in ���� is that all local

minima are also the global minima� This is true because� based on ����� x� is de�ned as

a local minimum if U�x� � �� which implies that N�x� � � �a global minimum� This

condition is stated more formally as follows�

Necessary and Su�cient Condition for Optimality� x� is a global minimum of the

SAT formulation in ���� if and only if U�x� � ��

Proof� Straightforward�
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Due to this property� a SAT problem formulated in ���� can be solved by the di�erence

equations in ����� and ����� that �nd saddle points of a discrete Lagrangian function� In

the rest of this section� we show how the general discrete Lagrangian method �DLM can be

applied to solve discrete SAT problems�

The discrete Lagrangian function for ���� is de�ned as follows�

L�x� � � N�x � �TU�x �
mX
i��

Ui�x �
mX
i��

�iUi�x �
mX
i��

�� � �iUi�x �����

where x � f�� �gn� U�x � �U��x� � � � � Um�x � f�� �gm� and �T is the transpose of � �

���� ��� � � � � �m that denotes the Lagrange multipliers� Due to the binary domain of x� the

neighborhood of x is more restricted than in general discrete problems� which is re�ected in

the de�nition of the saddle point�

A saddle point �x�� �� of L�x� � is de�ned as one that satis�es the following condition�

L�x�� � � L�x�� �� � L�x� �� �����

for all � su
ciently close to �� and for all x whose Hamming distance between x� and x is

��

SaddlePoint Theorem for SAT� x� is a global minimum of ���� if and only if there

exists some �� such that �x�� �� constitutes a saddle point of the associated Lagrangian

function L�x� ��

Proof� The Saddle�Point Theorem discussed in Section ����� for discrete problems can be

applied here� A simpler proof is as follows�

��� part� Since �x�� �� is a saddle point� L�x�� � � L�x�� �� for � su
ciently close to

��� From the de�nition of the Lagrangian function in ������ this implies

mX
i��

�iUi�x
� �

mX
i��

��iUi�x
��

Suppose some Uk�x� �� �� which means Uk�x� � �� Then � � ����� � � � � ��k � �� � � � � ��n
would violate the inequality for a positive �� Therefore� U�x� � �� and x� is a global

minimum�
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�� part� If x� is a global minimum� then U�x� � �� and L�x�� �� � L�x�� � � ��

The vector �� � � makes L�x�� �� � L�x� ��� Therefore� �x�� �� is a saddle point�

Corollary� If a SAT problem formulated in ���� is feasible� then any algorithm that can

�nd a saddle point of L�x� � de�ned in ����� from any starting point can �nd a feasible

solution to the SAT problem�

Proof� If a SAT problem is feasible� then its solutions are global minima of ����� These

correspond to saddle points of L�x� � de�ned in ������ If an algorithm can �nd a saddle

point from any starting point� then it will �nd a solution to the problem�

Since a Lagrangian method only stops at saddle points� this corollary implies that the

method will �nd a saddle point regardless of its starting point �including the origin if the

problem is feasible� Unfortunately� the corollary does not guarantee that it will �nd a saddle

point in a �nite amount of time�

To apply DLM to solve SAT problems� we de�ne the discrete gradient operator"xL�x� �

with respect to x such that "xL�x� � points to state x� in the Hamming distance�� neigh�

borhood of the current state x that gives the maximum improvement in L�x� �� If no state

in the ��neighborhood of x improves L�x� �� then "xL�x� � � ��

Figure ��� illustrates the discrete gradient operator� It is a ��dimensional problem�

The current point x has Lagrangian value L � ��� States within Hamming distance of

� from x have Lagrangian values 	� ��� and �� along dimensions �� �� and �� respectively�

The neighboring state along dimension � improves the Lagrangian value most� Therefore�

"xL�x� � � ��� �� ��

Next� we propose a method to update �x� � so that it will eventually satisfy the optimality

condition de�ned in ������

Discrete Lagrangian Method �DLM� A for SAT�

xk	� � xk �"xL�x
k� �k �����

�k	� � �k � U�xk �����

���



L = 10

7

10

12

X1

X2

X3

Figure ���� Illustration of the discrete gradient operator for SAT�

It is easy to see that the necessary condition for algorithm A to converge is when U�x �

�� implying that x is optimal� If any of the constraints in U�x is not satis�ed� then � will

continue to evolve to handle the unsatis�ed constraints�

The following theorem establishes the correctness of A and provides the conditions for

termination�

FixedPoint Theorem for SAT� An optimal solution x� to the SAT problem de�ned in

���� is found if and only if A terminates�

Proof� �� part� If A terminates� then U�x � �� which makes "xL�x� � � �� Since this

is a su
cient condition for the optimality of ����� the optimal solution is found�

��� part� If an optimal solution x� is found� then according to the necessary condition

of optimality� U�x� � �� implying that "xL�x� � � �� Therefore� neither x nor � will

change� leading to the conclusion that A terminates�

Example� The following simple example illustrates the discrete Lagrangian algorithm� The

problem has four variables� fx�� x�� x�� x�g� 	 clauses�

�x� � x� � x� � �x� � !x� � !x� � � !x� � !x� � x� � � !x� � !x� � !x�
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��x� � x� � !x� � �x� � !x� � x� � � !x� � x� � !x�g

and � solutions� f��� �� �� �� ��� �� �� �g�
Algorithm A works as follows�

�� Initially� x� � f��� �� �� �g and �� � f��� �� �� �� �� �� �g� and L�x�� �� � ��

�� The L values of neighboring points of the initial point are

L���� �� �� �� �� � L���� �� �� �� �� � L���� �� �� �� �� � L���� �� �� �� �� � ��

Since L�x�� �� is less than or equal to the values of the neighboring points� "xL�x�� �� � ��

As the fourth clause is not satis�ed� �� is updated to f�� �� �� �� �� �� �g� Further� x is

updated to be x� � x�� Note that ��� the penalty for the fourth clause� is increased in order

to provide a force to pull the search out of the local minimum�

�� L�x�� �� � �� The L values of x��s neighboring points are

L���� �� �� �� �� � L���� �� �� �� �� � L���� �� �� �� �� � �

and L���� �� �� �� �� � ��

There are three choices of "xL�x�� ���

	 If we choose "xL�x
�� �� � ��� �� �� �� then x� � ��� �� �� � and �� � ��� �� �� �� �� �� ��

	 If we choose "xL�x�� �� � ��� �� �� �� then x� � ��� �� �� � and �� � ��� �� �� �� �� �� ��

	 If we choose "xL�x�� �� � ��� �� �� �� then x� � ��� �� �� � and �� � ��� �� �� �� �� �� ��

Assume that we choose "xL�x�� �� � ��� �� �� � in this example�

�� x� � ��� �� �� � and L�x�� �� � �� The L values of neighboring points are

L���� �� �� �� �� � �� L���� �� �� �� �� � ��

and L���� �� �� �� �� � L���� �� �� �� �� � ��
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Therefore� "xL�x�� �� � ��� �� �� �� x and � are updated to x� � ��� �� �� � and �� �

��� �� �� �� �� �� �� respectively�

�� U�x� � � implies that "xL�x�� �� � �� Hence� A terminates� and x� is a solution�

Note that � de�ned in ����� is non�decreasing� Ways to decrease � are discussed in

Section ������

One of the important features of DLM is that it continues to search until a solution

to the SAT problem is found� independent of its starting point� Therefore� DLM does not

involve restarts that are generally used in other randomized search methods� However� as in

other incomplete methods� DLM does not terminate if there is no feasible solution� Further�

as in general Lagrangian methods� the time for DLM to �nd a saddle point can only be

determined empirically�

DLM has a continuous search trajectory without any breaks� DLM descends in the

original variable space� similar to what is used in other algorithms� When the search reaches

a local minimum� DLM brings the search out of the local minimum using its Lagrange

multipliers� As a result� we often see small �uctuations in the number of unsatis�ed clauses

as the search progresses� indicating that DLM bypasses small �dents� in the original variable

space with the aid of Lagrange multipliers� In contrast� some local search algorithms rely on

randomized mechanisms to bring the search out of local minima in the original variable space�

When the search reaches a local minimum� it is restarted from a completely new starting

point� Consequently� the search may fail to explore the vicinity of the local minimum it has

just reached� and the number of unsatis�ed clauses at the new starting point is unpredictable�

In contrast to other local search methods� such as Gu�s local�search methods ���������

and GSAT ����� ��������� DLM descends in Lagrangian space� To get out of local minima

that do not satisfy all the constraints� DLM increases the penalties on constraints that are

violated� recording history information on constraint violation in the Lagrange multipliers�

Eventually as time passes� the penalties on violated constraints will be very large� forcing
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these constraints to be satis�ed� On the other hand� GSAT uses uphill movements and ran�

dom restarts to get out of local minima� whereas Gu�s local�minimum handler uses stochastic

mechanisms to escape from local minima�

Although our strategy is similar to Morris� �break�out� strategy ��	�� and Selman and

Kautz�s GSAT ��������� that applies adaptive penalties to escape from local minima� DLM

provides a theoretical framework for better understanding of these heuristic strategies� In

addition� DLM can incorporate new techniques for controlling Lagrange multipliers in order

to obtain improved performance� Some of these strategies are described in Section ������

��� Implementations of DLM

In this section we discuss issues related to the implementation of DLM and present three

implementations� There are three components in applying a Lagrangian method� evaluating

the derivative of the Lagrangian function� updating the Lagrange multipliers� and evaluating

the constraint functions� In the continuous domain� these operations are computationally

expensive� especially when the number of variables is large and the function is complex�

However� as we show in this and the next sections� implementation in the discrete domain

is very e
cient� and our method is faster than other local�search methods for solving SAT

problems�

����� Algorithmic Design Considerations

The general algorithm of DLM is shown in Figure ���� It performs descents in the

original variable space of x and ascents in the Lagrange�multiplier space of �� In discrete

space� "xL�x� � is used in place of the gradient function in continuous space� We call one

iteration as one pass through the while loop� In the following� we describe the features of

our implementation of A in Figure ����

�a Descent and Ascent Strategies� There are two ways to calculate "xL�x� �� greedy

and hill�climbing� each involving a search in the range of Hamming distance one from the

current x �assignments with one variable �ipped from the current assignment x�
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Generic algorithm A

Set initial x and �
while x is not a solution� i�e�� N�x 	 �

update x� x�� x�"xL�x� �
if condition for updating � is satis�ed then

update �� ��� �� c
 U�x
end if

end while

Figure ���� Generic discrete Lagrangian algorithm A for solving SAT problems�

In a greedy strategy� the assignment leading to the maximum decrease in the Lagrangian�

function value is selected to update the current assignment� Therefore� all assignments in the

vicinity need to be searched every time� leading to computation complexity of O�n� where

n is number of variables in the SAT problem� In hill�climbing� the �rst assignment leading

to a decrease in the Lagrangian�function value is selected to update the current assignment�

Depending on the order of search and the number of assignments that can be improved�

hill�climbing strategies are generally less computationally expensive than greedy strategies�

We have compared both strategies in solving SAT benchmark problems� and have found

hill�climbing to be orders of magnitude faster with solutions of comparable quality� Hence�

we have used hill�climbing in our experiments�

�b Updating �� The frequency in which � is updated a�ects the performance of a

search� The considerations here are di�erent from those of continuous problems� In a discrete

problem� descents based on discrete gradients usually make small changes in L�x� � in each

update of x because only one variable changes� Hence� � should not be updated in each

iteration of the search to avoid biasing the search in the Lagrange�multiplier space of � over

the original variable space of x�

In our implementation� � is updated under two situations� One is when "xL�x� � � ��

the other is every T iterations� In our experiments� we have found that DLM works better

when T is large� Consequently� � will be updated infrequently and most likely be updated
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only when "xL�x� � � �� When "xL�x� � � �� a local minimum in the original variable

space is reached� and the search can only escape from it by updating ��

By setting T to in�nity� the strategy amounts to pure descents in the original x variable

space� while holding � constant� until a local minimum is reached� This corresponds to

Morris� �break out� strategy ��	��� In the Breakout algorithm� a state is a complete set of

assignments for variables� In the case of a SAT problem� each clause is associated a weight�

and the cost of a state is the sum of weights of unsatis�ed clauses of the state� Initially

all weights are one� Iterative improvements of the state continues until a local minimum is

reached� Then the weight of each currently unsatis�ed clause is increased by unit increments

until breakout from the local minimum occurs� Iterative improvements resume afterwards�

A parameter c in the term c 
 U�x in Figure ��� controls the magnitude of changes in

�� In general� c can be a vector of real numbers� allowing non�uniform updates of � across

di�erent dimensions and possibly across time� For simplicity� we have used a constant c in

our implementation for all ��s� Empirically� c � � has been found to work well for most of

the benchmark problems tested� However� for some larger and more di
cult problems� we

have used a smaller c in order to reduce the search time�

The last point on � in Figure ��� is that it is always nondecreasing� This is not true

in continuous problems with equality constraints� In applying Lagrangian methods to solve

continuous problems� the Lagrange multiplier � of a constraint g�x � � increases when

g�x 	 � and decreases when g�x 
 �� In A shown in Figure ���� � is nondecreasing

because U�x is either � or �� when a clause is not satis�ed� its corresponding � is increased�

and when a clause is satis�ed� its corresponding � is not changed� For most of the benchmark

problems we have tested� this strategy does not worsen the search time as these problems are

relatively easy to solve� However� for di
cult problems that require millions of iterations�

� can become very large as time goes on� Large ��s are generally undesirable because they

cause large swings in the Lagrangian�function value�

To overcome this problem� we develop a strategy to reduce � periodically in DLM A�

in Section ������ Using this strategy� we can solve some of the more di
cult benchmark

problems�
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�c Starting Points and Restarts� In contrast to other SAT algorithms that rely on

random restarts to bring a search out of a local minimum� DLM will continue to evolve

without restarts until a satis�able assignment is found� This avoids restarting to a new

starting point when a search is already in the proximity of a good local minimum� Another

major advantage of DLM is that there are very few parameters to be selected or tuned by

users� including the initial starting point� This makes it possible for DLM to always start

from the origin or from a random starting point generated by a �xed random seed� and �nd

a feasible assignment if one exists�

�d Plateaus in the Search Space� In discrete problems� plateaus with equal values exist

in the Lagrangian�function space� Our proposed discrete gradient operator may have dif�

�culties in plateaus because it only examines adjacent points of L�x� � that di�er in one

dimension� Hence� it may not be able to distinguish a plateau from a local minimum� We

have implemented two strategies to allow a plateau to be searched�

First� we need to determine when to change � when the search reaches a plateau� As

indicated earlier� � should be updated when the search reaches a local minimum� However�

updating � when the search is in a plateau changes the surface of the plateau and may

make it more di
cult for the search to �nd a local minimum somewhere inside the plateau�

To avoid updating � immediately when the search reaches a plateau� we have developed a

strategy called �at move� This allows the search to continue for some time in the plateau

without changing �� so that the search can traverse states with the same Lagrangian�function

value� How long �at moves should be allowed is heuristic and possibly problem dependent�

Note that this strategy is similar to Selman�s �sideway�move� strategy ������

Our second search strategy is to avoid revisiting the same set of states in a plateau� In

general� it is impractical to remember every state the search visits in a plateau due to the

large storage and computational overheads� In our implementation� we have kept a tabu list

to maintain the set of variables �ipped in the recent past ���� ���� and to avoid �ipping a

variable if it is in the tabu list�

To summarize� we employ the following strategies and settings of parameters in our

implementations of the generic DLM A�

���



	 A hill�climbing strategy is used for descents in the original variable space�

	 T � the time interval between updating �� is in�nity�

	 The initial � is ��

	 The initial starting point is either the origin or a randomly�generated starting point

obtained by calling random number generator drand����

	 The random number generator uses a �xed initial seed of ����

	 To handle more di
cult and complex problems� �at moves and tabu lists may be used

in a search to traverse plateaus� and � may be reduced systematically�

Without any speci�c statement� these strategies and parameters settings are used in our

implementations in the following section�

����� Three Implementations of the Generic DLM

Figures ���� ���� and ��� show three implementations of the general algorithm A with

increasing complexity�

A�� DLM Version � shown in Figure ���� is the simplest� It has two alternatives to �nd

a variable in order to improve the Lagrangian�function value� �ip variables one by one in

a prede�ned order� or �ip variables in unsatis�ed clauses� Since only variables appearing

in unsatis�ed clauses can potentially improve the current Lagrangian�function value� it is

not necessary to check variables that appear only in currently satis�ed clauses� The �rst

alternative is fast when the search starts� By starting from a randomly generated initial

assignment� it usually takes just a few �ips to �nd a variable that improves the current

Lagrangian�function value� As the search progresses� there are fewer variables that can

improve the Lagrangian�function value� At this point� the second alternative should be

applied�

A� uses parameter � to control switching from the �rst alternative to the second� We

found that � � �� works well and used this value in all our experiments�
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DLM A�

Set initial x
Set � � �
Set c � �
Set � � ��
while x is not a solution� i�e�� N�x 	 �

if number of unsatis�ed clauses � �� then
Maintain a list of unsatis�ed clauses
if � variable v in one of the unsatis�ed clauses such that
L�x�� � 
 L�x� � when �ipping v in x to get x� then
x�� x�

else
Update �� ��� �� c � U�x

end if
else

if � variable v such that L�x�� � 
 L�x� � when �ipping v
in a prede�ned order in x to get x� then
x�� x�

else
Update �� ��� �� c � U�x

end if
end if

end while

Figure ���� Discrete Lagrangian Algorithm Version �� A�� an implementation of A for solv�
ing SAT problems�
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DLM A�

Set initial x
Set � � �
Set c � �
Set � � n��� where n is the number of variables
while x is not a solution� i�e�� N�x 	 �

if number of iterations � � then
Maintain a list� l� of variables such that
if one of them is �ipped� the solution will improve�

if l is not empty then
Update x by �ipping the �rst element of l

else
Update �� ��� �� c � U�x

end if
else

if � variable v such that L�x�� � 
 L�x� � when �ipping v
in a prede�ned order in x to get x� then
x�� x�

else
Update �� ��� �� c � U�x

end if
end if

end while

Figure ���� Discrete Lagrangian Algorithm Version �� A�� for solving SAT problems�
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A�� DLM Version � shown in Figure ���� employs another strategy to make local im�

provements� Initially� it is similar to A�� As the search progresses� the number of variables

that can improve the current Lagrangian�function value are greatly reduced� At this point� a

list is created and maintained to contain variables that can improve the current Lagrangian�

function value� Consequently� local descent is as simple as �ipping the �rst variable in the

list�

A� uses � to control the switching from the �rst strategy to the second� We found that

� � n�� works well and used this value in our experiments� A� also has more e
cient data

structures to deal with larger problems�

A�� DLM Version � shown in Figure ���� has more complex control mechanisms and was

introduced to solve some of the more di
cult benchmark problems �such as the �g�� �f� and

large �par� problems in the DIMACS benchmarks better than A�� It is based on A� and

uses all of A��s parameters� We have applied strategies based on �at moves and tabu lists

to handle plateaus ��������� An important element of A� is the periodic scaling down of the

Lagrange multipliers in order to prevent them from growing to be very large� Further� to

get better performance� we may have to tune c for each problem instance�

Program e
ciency is critical when dealing with SAT problems with a large number of

variables and clauses� Since DLM searches by constantly updating state information �current

assignment of x� Lagrange�multiplier values� and Lagrangian�function value� state updates

have to be very e
cient� In our implementation� we update state information incrementally

in a way similar to that in GSAT� In large SAT problems� each variable usually appears in

a small number of clauses� Therefore� state changes incurred by �ipping a variable are very

limited� When �ipping a variable� some clauses become unsatis�ed while some others become

satis�ed� The incremental update of the Lagrangian�function value is done by subtracting

the part of improvement and adding the part of degradation� This leads to very e
cient

evaluation of L�x� �� In a similar way� the computation of "xL�x� � can also be done

e
ciently�

In general Lagrangian methods� Lagrange multipliers introduced in the formulation add

extra overhead in computing the Lagrangian function as compared to the original objective
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DLM A�

Set initial x
Set � � �
Set � � n��� where n is the number of variables
Set tabu length Lt� e�g�� ��
Set �at�region limit Lf � e�g�� ��
Set � reset interval I�� e�g�� �����
Set constant c� e�g�� ���
Set constant r� e�g�� ���
while x is not a solution� i�e�� N�x 	 �

if number of iterations � � then
Maintain a list� l� of variables such that
if one of them is �ipped� the solution will improve�

end if
if number of iterations � � and l is not empty then

Update x by �ipping the �rst element of l
else if � variable v such that L�x�� � 
 L�x� � when �ipping v

in a prede�ned order in x to get x� then
x�� x�

else if � v such that L�x�� � � L�x� � when �ipping v in x to get x�

and number of consecutive �at moves � Lf
and v has not been �ipped in the last Lt iterations then

x�� x� � �at move  �
else

Update �� ��� � � c � U�x�
end if
if iteration index mod I� � � then

Reduce � for all clauses� e�g� ��� ��r
end if

end while

Figure ���� Discrete Lagrangian Algorithm Version �� A�� for solving SAT problems�
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function� This overhead in DLM is not signi�cant because an update of � requires O�p

time� where p is the number of unsatis�ed clauses� and p� m when the number of clauses

m is large�

����� Reasons behind the Development of A�

In our experiments� we found thatA� has di
culty in solving some of the hard benchmark

problems� By looking into the execution pro�les of A� as illustrated in Figure ���� we have

the following interesting observations�

	 The sampled Lagrangian�function values decrease rapidly in the �rst few thousand

iterations �the upper left graph of Figure ���� but keep increasing afterwards to become

very large at the end� The iteration�by�iteration plot of the Lagrangian part �bottom

right graph of Figure ��� shows the same increasing trend�

	 Some Lagrange multipliers become very large as indicated in the spread of Lagrange

multipliers �the upper right graph of Figure ���� This large spread leads to large

Lagrangian�function values�

	 The number of unsatis�ed clauses is relatively stable� �uctuating at around �� �the

upper left graph�

As the Lagrangian�function space is very rugged and di
cult to search when there is

a large spread in Lagrange�multiplier values� we have developed three strategies in A� to

address this problem�

First� we introduce in A� �at moves to handle �at regions in the Lagrangian�function

space� InA�� Lagrange multipliers are increased whenever the search hits a �at region� Since

�at regions in hard problems can be very large� Lagrange multipliers can increase very fast�

making the search more di
cult� Flat moves allow the search to explore �at regions without

increasing the Lagrange multipliers and the Lagrangian�function value�
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Figure ���� Execution pro�les of A� on problem �g�����	� starting from a random initial
point� The top left graph plots the Lagrangian�function values and the number
of unsatis�ed clauses against the number of iterations sampled every ���� itera�
tions� The top right graph plots the minimum� average and maximum values of
the Lagrange multipliers sampled every ���� iterations� The bottom two graphs
plot the iteration�by�iteration objective and Lagrangian�part values for the �rst
������ iterations�
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Figure ��	� Execution pro�les of A� using a tabu list of size �� and �at moves of limit of ��
on problem �g�����	� starting from a random initial point� See Figure ��� for
further explanation�

Second� we introduce a tabu list ���� ���� to store variables that have been �ipped in

the recent past and to avoid �ipping any of them in the near future� This strategy avoids

�ipping the same set of variables back and forth and revisiting the same state�

The result of applying these two strategies is shown in Figure ��	� These graphs show

signi�cant reduction in the growth of Lagrangian�function values and Lagrange multipliers

as compared to those of A�� However� these values still grow without bound�

Third� we introduce periodic scale�downs of Lagrange multipliers to control their growth

as well as the growth of Lagrangian�function values� Figure ��� shows the result when

all Lagrange multipliers are scaled down by a factor of ��� every ������ iterations� These

graphs indicate that periodic scaling� when combined with a tabu list and �at moves� leads to

bounded values of Lagrange multipliers and Lagrangian�function values� The bottom right

graph in Figure ��� shows the reduction in the Lagrangian part after two reductions of its �

values at ������ and ������ iterations�

By using these three strategies� A� can solve successfully most of the hard problems in

the DIMACS benchmark suite�
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Figure ���� Execution pro�les of A� with tabu list of size ��� �at moves of limit ��� and peri�
odic scaling of � by a factor of ��� every ������ iterations on problem �g�����	�
starting from a random initial point� Note that the average Lagrange multiplier
values are very close to � and� therefore� overlap with the curve showing the
minimum Lagrange multiplier values� See Figure ��� for further explanation�

���



��
 Experimental Results

In this section� we evaluate DLM using SAT benchmarks in the DIMACS archive� The

archive is made up of a repository of hundreds of easy and hard SAT problems with many

variables and clauses�

Our DLM code was written in C� In our experiments� we have tested DLM on all satis�

�able problems in the DIMACS archive� We have compared the performance of DLM with

reported results in the literature on the following benchmark problems�

	 Circuit synthesis problems �ii by Kamath et al� ����� ( a set of SAT encodings of

Boolean circuit�synthesis problems�

	 Circuit diagnosis problems �ssa ( a set of SAT formulas based on circuit fault analysis�

	 Parity learning problems �par ( a collection of propositional versions of parity learn�

ing problems�

	 Arti�cially generated ��SAT instances �aim�

	 Randomly generated SAT instances �jnh�

	 Large random satis�able ��SAT instances �f�

	 Hard graph coloring problems �g�

	 An encoding of the Towers�of�Hanoi problems �hanoi� and

	 Gu�s asynchronous�circuit synthesis benchmarks �as and technology mapping bench�

marks �tm�

In this section� we show experimental results on the three versions of our DLM imple�

mentation described in Section ������

A� sets all parameters constant throughout the runs in order to avoid introducing random

e�ects in the program and to allow easy reproduction of results� It works well on the �aim�

problems� but not as well on others�
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Table ���� Execution times of A� in CPU seconds on a Sun SparcStation ����� for one
run of A� starting from x � � �origin as the initial point on some DIMACS
benchmark problems�

Problem DLM A� Problem DLM A�

Identi�er Time ' of Iter� Identi�er Time ' of Iter�
ssa	������� ����� ���� ii��a� ����� 	��
ssa	������� ����	 ��	� ii��b� ����� ����
ssa	������� ����	 ���� ii��c� ����	 ���
ssa	������� ����	 ���� ii��d� ����	 ���

aim������ ��yes��� ����� ��� ii��e� ����	 ����
aim������ ��yes��� ����	 ���� ii��b� ����� ���
aim������ ��yes��� ����� ��� ii��c� ����� 	��
aim������ ��yes��� ����	 ���� ii��d� ����	 ����

par����c ����	 	��� ii��e� ����� ���
par����c ����� �	��

A� has no problem�dependent parameters to be tuned by users and generally works well

for all the benchmark problems� However� it has di
culty in solving some larger and more

di
cult problems� including �g�� �f�� large �par�� and �hanoi��

A� has some parameters to be tuned in its complex control mechanisms� Although these

parameters are problem dependent� we have tried a few sets of parameters and have found

one set that generally works well� Results reported are based on the best set of parameters

found� A� solves some of the more di
cult problems better than A��

Table ��� shows the experimental results when A� was always started from the origin� It

shows execution times in CPU seconds and the number of iterations� In each iteration� either

one variable was �ipped or the � values were updated� In each experiment� A� succeeded in

�nding a feasible assignment� For most of the test problems� we have found the average time

that A� spent when started from the origin to be longer than the average time when started

from randomly generated initial points� A possible explanation is that the distance between

the origin and a local minimum is longer than the average distance between a randomly

generated starting point and a nearby local minimum�
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Table ���� Comparison of A��s execution times in seconds averaged over �� runs with re�
spect to published results of WSAT� GSAT� and Davis�Putnam�s algorithm �����
on some of the circuit diagnosis problems in the DIMACS archive� �A�� Sun
SparcStation ����� and a ����MHz SGI Challenge with MIPS R����� GSAT�
WSAT and DP� SGI Challenge with a 	� MHz MIPS R�����

Problem No� of No� of DLM A� WSAT GSAT DP
Identi�er Var� Clauses SUN SGI ' Iter� SGI SGI SGI

ssa	������� ���� ��	� ����� ����� 	�	� ��� ��� 	
ssa	������� ���� ���� ����� ����� ���� � ��  
ssa	������� ���� ���� ����� ����� ���� ��� ��  
ssa	������� ���� ���� ����	 ����� ���� ��� ��  

We have compared the performance of A� with respect to the best known results on these

benchmark problems� Most of our timing results were averaged over ten runs with randomly

generated initial points� starting from a �xed seed of ��� in the random number generator

drand���� Consequently� our results can be reproduced deterministically�

In Table ���� we compare A� with WSAT� GSAT� and Davis�Putnam�s algorithm in

solving the circuit diagnosis benchmark problems� We present the average execution times

and the average number of iterations of A� as well as the published average execution times

of WSAT� GSAT and Davis�Putnam�s method ������ We did not attempt to reproduce the

reported results of GSAT and WSAT� since the results may depend on initial conditions�

such as the seeds of the random number generator and other program parameters� We ran

A� on an SGI Challenge� so that our timing results can be compared to those of GSAT

and WSAT� Our results show that A� is approximately one order of magnitude faster than

WSAT�

�Based on a single�CPU ����MHz SGI Challenge with MIPS R���� at the University of Illinois National

Center for Supercomputing Applications� we estimate empirically that it is ����� slower than a Sun Sparc�

Station ����� for executing A� to solve SAT benchmark problems� However� we did not evaluate the speed

di�erence between a ����MHz SGI Challenge and a ���MHz SGI Challenge on which GSAT and WSAT were

run�
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Table ���� Comparison of A��s execution times in seconds averaged over �� runs with the
published results on the circuit synthesis problems� including the best known
results obtained by GSAT� integer programming �IP� and simulated anneal�
ing ������ �A�� Sun SparcStation ����� and a ����MHz SGI Challenge with
MIPS R����� GSAT and SA� SGI Challenge with a 	� MHz MIPS R����� Inte�
ger Programming� VAX �	���

Problem No� of No� of DLM A� GSAT IP SA
Identi�er Var� Clauses SUN SGI ' Iter� SGI Vax SGI
ii��a� ���� ����� ����� ����� ��� � ���� ��
ii��b� �	�� ��	�� ����� ����� ���� �� 	� ��
ii��c� ���� ����	 ����� ���	� 	�	 � 	�� �
ii��d� ���� ����� ����� ����� ��� � ���	 �
ii��e� ���� ��	�� ����	 ����� ��� � ���� �

In Table ���� we compare A� with the published results of GSAT� integer programming

and simulated annealing on the circuit synthesis problems ������ Our results show that A�

performs several times faster than GSAT�

In Table ���� we compare the performance of the three versions of DLM with some of

the best known results of GSAT on the circuit�synthesis� parity�learning� some arti�cially

generated ��SAT� and some of the hard graph coloring problems� The results on GSAT are

from ������ which are better than other published results� Our results show that DLM is

consistently faster than GSAT on the �ii� and �par� problems� and that A� is an order�of�

magnitude faster than GSAT on some �aim� problems�

Table ��� also shows the results of A� on some �g� problems� Recall thatA� was developed

to cope with large �at plateaus in the search space that confuse A�� which failed to �nd any

solution within � million iterations� Hansen ����� and later Selman ����� addressed this

problem by using the tabu search strategy� In a similar way� we have adopted this strategy

in A� by keeping a tabu list to prevent �ipping the same variable back and forth� This led

to better performance� although the performance is sensitive to the length of the tabu list�

A� performs comparably to GSAT on these �g� problems�
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Table ���� Comparison of DLM�s execution times in seconds averaged over �� runs with the
best known results obtained by GSAT ����� on the DIMACS circuit�synthesis�
parity�learning� arti�cially generated ��SAT instances� and graph coloring prob�
lems� Results on A� were based on a tabu length of ��� �at region limit of ���
� reset interval of ������� and � reset to be ����� when the � reset interval is
reached� For �g������� and �g�������� c � ���� For �g�����	� and �g�����
��
c � ����� �A�� A�� A�� Sun SparcStation ������ GSAT� SGI Challenge �model
unknown

Problem No� of No� of SUN Success SGI Success
Identi�er Var� Clauses Sec� Ratio Sec� Ratio

DLM A� GSAT
aim������ ��yes��� ��� ��� ���� ����� ���� ����
aim������ ��yes��� ��� ��� ���� ����� ��� �����
aim������ ��yes��� ��� ��� ���� ����� ���� �����
aim������ ��yes��� ��� ��� ���� ����� ���� �����

DLM A� GSAT
ii��b� ��� �	�� ���� ����� ��� �����
ii��c� �	� ��	� ���� ����� ���	 �����
ii��d� ��� ���	� ���� ����� ���� �����
ii��e� ��� ���� ���� ����� ���� �����

par����c �� �	� ���� ����� ���� �����
par����c �	 ��� ���� ����� ��� �����

DLM A� GSAT
g�����	 ���� ���	� ������� ����� �����	 	���
g������ ���� 	���� ����	 ����� ��� �����
g������ �	�� ������ ��	�� ����� ���� �����
g������ 	��� ������ ������� ���� ������� ����
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In Tables ��� to ���� we compare the performance of DLM with the best results of

Grasp on the DIMACS benchmark problems ������ Grasp is a greedy randomized adaptive

search procedure that can �nd good quality solutions for a wide variety of combinatorial

optimization problems �	��		����������

In ������ four implementations of Grasp were applied to solve �ve classes of DIMACS SAT

problems� �aim�� �ii�� �jnh�� �ssa	����� and �par�� Comparing to GSAT� Grasp did better

on the �aim�� �ssa	����� and �par� problems� and worse on the �ii� and �jnh� problems� The

results of the most e
cient implementation of Grasp� Grasp�A� are used in our comparison�

Grasp was run on an SGI Challenge computer with ��� MHz MIPS R����� The average

CPU time of �� random runs of Grasp are shown in the tables� in which Grasp succeeded in

all �� runs for each problem�

In Table ��� and ���� we compare A�� A�� and Grasp in solving the whole set of �aim�

problems� which were randomly generated instances with a single satis�able solution� For

these problems� A� performs better than A� on the average� and is usually � to � orders of

magnitude faster than Grasp� Grasp does not have results on some of the larger �aim�����

instances�

In Tables ��	 and ���� we compare A� with Grasp in solving the �ii�� �jnh�� �par�� and

�ssa	���� problems� Except for some small instances that both DLM and Grasp solve in

no time� DLM is generally � to � orders of magnitude faster than Grasp in solving the �ii��

�jnh� and �ssa	���� problems� For the �par� problems� DLM A� obtains comparable results

to Grasp in solving the �par��x�c� instances� but is worse in solving the �par��x� instances�

In addition to the �par��x� instances� DLM A� and A� have di
culty in solving the

� par���� � par���� � hanoi� and � f� problems� Tables ��� shows some preliminary but

promising results of A� on some of the more di
cult but satis�able DIMACS benchmark

problems� Comparing with Grasp� A� is better in solving the �par���x�c� instances� but is

worse in solving the �par��x� and �par���x� problems�

Finally� we show in Table ���� our results of A� on the �as� and �tm� problems in the

DIMACS archive� The average time over �� runs is always under � second for these problems�

���



Table ���� Comparison of DLM�s execution times in seconds over �� runs with the published
results of Grasp on the �aim� problems from the DIMACS archive ������ �DLM
A�� A�� Sun SparcStation ������ Grasp� SGI Challenge with a ��� MHz MIPS
R����� Success ratio for Grasp is always ������

DLM A� DLM A� Grasp
Problem Succ� Sun CPU Seconds Succ� Sun CPU Seconds Avg� SGI
Identi�er Ratio Avg� Min� Max� Ratio Avg� Min� Max� Seconds

aim��	�� ��yes��� �	��	 	�	�� 	�			 	���	 �	��	 	�	
� 	�	�� 	��		 ����
aim��	�� ��yes��� ���	 	�		 	�			 	�	�� �	��	 	�	�	 	�			 	�	�	 	���
aim��	�� ��yes��� �	��	 	�	�	 	�			 	�	�� �	��	 	�	�� 	�			 	�	�	 	�
�
aim��	�� ��yes��
 ���	 	���	 	�	�� 	���� �	��	 	�	�	 	�			 	�	�� 	�
�
aim��	�� 	�yes��� �	��	 	�	�� 	�			 	�	�� �	��	 	�	�� 	�	�� 	�	� ����
aim��	�� 	�yes��� ��	 	�	�	 	�			 	�	�� �	��	 	�	�� 	�	�� 	��		 ���
aim��	�� 	�yes��� �	��	 	�		� 	�			 	�	�� �	��	 	�	�� 	�			 	���� ����
aim��	�� 	�yes��
 �	��	 	�	
 	�			 	���	 �	��	 ����	 	�			 ����� 	���
aim��	�� 
�yes��� �	��	 	�	�� 	�			 	�	�� �	��	 ���� 	�	�� ���
	 	���
aim��	�� 
�yes��� �	��	 	�	�� 	�			 	�	�� �	��	 	���� 	�	�� 	���	 	��
aim��	�� 
�yes��� �	��	 	�	�� 	�			 	�	�� �	��	 	��
� 	�	�� 	���� 	�
�
aim��	�� 
�yes��
 ���	 	�	�� 	�			 	�	�� �	��	 	�	�� 	�	�� 	���	 	���
aim��	�� 	�yes��� �	��	 	�	�	 	�			 	�	�� �	��	 	�	�� 	�			 	�	�� 	�	�
aim��	�� 	�yes��� �	��	 	�		� 	�			 	�	�� �	��	 	�	� 	�	�� 	�	�	 	��

aim��	�� 	�yes��� �	��	 	�		� 	�			 	�	�� �	��	 	�	�� 	�			 	��		 	�	�
aim��	�� 	�yes��
 �	��	 	�		� 	�			 	�	�� �	��	 	�	�� 	�			 	�	�� 	�	�
aim��		�� ��yes��� �	��	 	�	� 	�	�� 	���� �	��	 	�	�� 	�	�� 	��		 ��	�
	
aim��		�� ��yes��� �	��	 	�	�� 	�	�� 	��		 �	��	 	�	� 	�	�	 	���� ������
aim��		�� ��yes��� �	��	 	�	�� 	�	�	 	���� �	��	 	��
� 	�	�� 	���� ������
aim��		�� ��yes��
 �	��	 	�	�� 	�			 	���� �	��	 	�	�� 	�	�� 	���� �	��	
aim��		�� 	�yes��� ���	 	��
 	�	�� ���		 �	��	 	���� 	�	�	 	��� ������
aim��		�� 	�yes��� �	��	 	��� 	�	�	 	��		 �	��	 	���� 	���� ����	 �	�
	
aim��		�� 	�yes��� �	��	 	��		 	�	�� 	���� �	��	 	��� 	�	�� 	�
		 �����
aim��		�� 	�yes��
 �	��	 	���� 	�	�� ����� �	��	 	�	�� 	�	�	 	���� ������
aim��		�� 
�yes��� �	��	 	�
�	 	�			 ����	 �	��	 	���� 	���� 
�
�� �	���
aim��		�� 
�yes��� �	��	 	���� 	�	�� ���� �	��	 	���� 	���� 	��� �
���
aim��		�� 
�yes��� �	��	 	�	�	 	�	�� 	��		 �	��	 	�� 	�	�� ��		 
����
aim��		�� 
�yes��
 �	��	 	�	� 	�			 	��		 �	��	 	���	 	�			 	���� �
���
aim��		�� 	�yes��� �	��	 	�	�	 	�			 	�	�� �	��	 	�	�� 	�	�� 	���� 	���
aim��		�� 	�yes��� �	��	 	�	� 	�			 	�	�� �	��	 	��
� 	�	�� 	�
�� 	���
aim��		�� 	�yes��� �	��	 	�	�� 	�			 	�	�	 �	��	 	�	� 	�	�� 	���� 	��
aim��		�� 	�yes��
 �	��	 	�	� 	�			 	�	�� �	��	 	�	�� 	�	�� 	���� 	�


���



Table ���� Comparison of DLM�s execution times in seconds over �� runs with the published
results of Grasp on the �aim����� problems from the DIMACS archive ������
�DLM A�� A�� Sun SparcStation ������ Grasp� SGI Challenge with a ��� MHz
MIPS R����� Success ratio for Grasp is always ������

DLM A� DLM A� Grasp
Problem Succ� Sun CPU Seconds Succ� Sun CPU Seconds Avg� SGI
Identi�er Ratio Avg� Min� Max� Ratio Avg� Min� Max� Seconds

aim��		�� ��yes��� �	��	 	��� 	���	 ��
�� �	��	 	��
 	���� ����
aim��		�� ��yes��� ���	 	��� 	�
�� ���� �	��	 	���� 	���	 ����	
aim��		�� ��yes��� �	��	 ��
� 	���� 
��
� �	��	 ����� 	���� ����	
aim��		�� ��yes��
 ���	 �	�	
 ���		 ����� �	��	 ���	 	���� ����
aim��		�� 	�yes��� ���	 ���� ���� ���� �	��	 ��� 	��		 ���

aim��		�� 	�yes��� 
��	 	��� 	���	 ����	 �	��	 ����� 	���� �	�		
aim��		�� 	�yes��� ���	 ����� 	���	 ��
� �	��	 ���
� 	��� 
����
aim��		�� 	�yes��
 	��	 �	��	 ���	� 	��		 ����	
aim��		�� 
�yes��� ��	 	�
�� 	��� ���		 �	��	 ���� 	���� ����	
aim��		�� 
�yes��� �	��	 	��
� 	�	�	 ��
�� �	��	 ����� 	���� �����
aim��		�� 
�yes��� �	��	 	�� 	�	�	 ���		 �	��	 ��
	� 	���	 ��
��
aim��		�� 
�yes��
 ���	 ����� 	�	�	 ���
� ���	 ����	 	���� �����
aim��		�� 	�yes��� �	��	 	�	�� 	�	�� 	���� �	��	 	���� 	��		 ����� ����
aim��		�� 	�yes��� ���	 	��	� 	�	�	 	��� �	��	 	���	 	���� 	���� �	��
aim��		�� 	�yes��� �	��	 	��	� 	�	�� 	���� �	��	 	���� 	���	 ����	 �����
aim��		�� 	�yes��
 �	��	 	��� 	�	�� 	���� �	��	 	�
�� 	�	�	 ��			 ��
�	

���



Table ��	� Comparison of DLM A��s execution times in seconds over �� runs with the pub�
lished results of Grasp on the �ii� problems from the DIMACS archive ������
�DLM A�� Sun SparcStation ������ Grasp� SGI Challenge with a ��� MHz
MIPS R����� The success ratios for DLM A� and Grasp are always ������

DLM A� Grasp DLM A� Grasp
Problem Sun CPU Seconds Avg� SGI Problem Sun CPU Seconds Avg� SGI

Id� Avg� Min� Max� Seconds Id� Avg� Min� Max� Seconds
ii�a� ����� ����� ����	 ���� ii�a� ����	 ����� ����	 ����
ii�a� ����� ����� ����	 ���� ii�a� ����	 ����	 ����� ����
ii�b� ����� ����� ����	 ���� ii�b� ����� ����	 ����� ���	
ii�b� ����� ����	 ����	 ����� ii�b� ����� ����� ����� �����
ii�c� ����� ����� ����	 �	��� ii�c� ����� ����� ����� ����
ii�d� ����� ����	 ����� ���� ii�d� ����� ����� ����� ����
ii�e� ����� ����	 ����� ���� ii�e� ����� ����� ����	 ����	
ii��a� ����� ����	 ����� ����� ii��a� ����� ����� ����� ��	���
ii��b� ����� ����	 ����� ����� ii��b� ���		 ����� ��	�	 �����
ii��c� ����� ����� ����� ����� ii��c� ����	 ����� ����� �����
ii��d� ����� ����	 ����	 ����� ii��d� ����� ����� ����� �����
ii��e� ����	 ����	 ����	 	���� ii��e� ���	� ����� ����� �����
ii��a� ����	 ����� ����� ����� ii��b� ����� ����	 ����� ����
ii��b� ����� ����� ����	 ���� ii��b� ����� ����� ��	�	 ����
ii��b� ����� ����	 ����� ����� ii��c� ����� ����� ����� ��	�
ii��c� ����� ����� ����� ���� ii��c� ����� ����� ����� ����
ii��c� ����� ����	 ����	 ����� ii��d� ����� ����	 ����	 ����
ii��d� ����� ����� ����� �	��� ii��d� ����	 ����� ��	�� ����	
ii��e� ����� ����	 ����� �	��	 ii��e� ����	 ����� ����� ����
ii��e� ����� ����� ����� ���� ii��e� ����� ����� ����� �����
ii��e� ����� ����� ����� ����	

���



Table ���� Comparison of DLM A��s execution times in seconds over �� runs with the pub�
lished results of Grasp on the �jnh�� �par�� and �ssa� problems from the DIMACS
archive ������ �DLM A�� Sun SparcStation ������ Grasp� SGI Challenge with a
��� MHz MIPS R����� and success ratio for Grasp is always ������

DLM A� Grasp
Problem Success Sun CPU Seconds Avg� SGI
Identi�er Ratio Avg� Min� Max� Seconds

jnh� ����� ����� ����	 ����� ����	
jnh	 ����� ����� ����	 ����� ����
jnh�� ����� ����� ����	 ����� ����
jnh�	 ����� ����� ����� ����	 ����
jnh��� ����� ����� ����	 ����� ����
jnh��� ����� ���	� ����	 ����	 �����
jnh��� ����� ����� ����� ����� ���	
jnh��	 ����� ����	 ����� ����	 ����
jnh��� ����� ����� ����	 ����� 	���
jnh��� ����� ����� ����	 ����	 ����
jnh��� ����� ����� ����� ������ 	����
jnh��� ����� ����� ����	 ����� ����
jnh��	 ����� ����� ����� ����� ��	�
jnh��� ����� ����� ����	 ����� ����
jnh��� ����� ����	 ����� ����� ����	
jnh��� ����� ����� ����	 ����� �����
par��� ���� ����� ����� �����	 ����
par��� ���� ����� ����� 	���	 ��	�
par��� ���� ����� ����	 �����	 ����
par��� ���� ����� ����� �����	 ���	
par��� ���� ����	� ����� ������ ����
par����c ����� ���	� ����� ����� ���	
par����c ����� ����� ����� ����	 ����
par����c ����� ����� ����� ����� ����
par����c ����� ����� ����	 ����	 ����
par����c ����� ���		 ����	 ����� ���	

ssa	������� ����� ����� ����� ����� 	���
ssa	������� ����� ����� ����� ����	 ����
ssa	������� ����� ����� ����	 ����� ��	�
ssa	������� ����� ����	 ����� ����� �����

���



Table ���� Comparison of DLM A��s execution times in seconds over �� runs with the pub�
lished results of Grasp on some of the more di
cult DIMACS benchmark prob�
lems from the DIMACS archive ������ �Success ratio of Grasp is always ������
Program parameters� For all the problems� �at region limit � ��� � reset to
����� every ������ iterations� For the par��������� problems� tabu length � ����

� � �� For the rest of the par problems� tabu length � ��� � � �
�
� For the f

problems� tabu length � ��� � � �
��
� For the hanoi� problem� tabu length � ���

� � �
�
� System con�guration� DLM A�� Sun SparcStation ������ Grasp� SGI

Challenge with a ��� MHz MIPS R�����

DLM A� Grasp
Problem Succ� Sun CPU Seconds Average
Identi�er Ratio Avg� Min� Max� SGI Sec�
par��� ����� ��	�� ����� ������ ����
par��� ����� ����� ����� �����	 ��	�
par��� ����� ����� ����� ������ ����
par��� ����� ����� ����� ������ ���	
par��� ����� ������ ����	 ������ ����
par���� ���� ���	��� ������ ������� �������
par���� ���� ����� ����� ����� �������
par���� ���� ������� ������� �������
par���� ���� ������ ������ 	��	��
par���� ���� ������� ������� �������
par�����c ����� ����� ���	 ������ �������
par�����c ����� ������ ����� ������ ��	����
par�����c ����� ��	�� ����� �	���� �������
par�����c ����� ����	 ��	 ������ ��	����
par�����c ����� ������ ����� ������ �������
hanoi� ���� �	��� �	��� �	���
f��� ����� ���� ��� �	��
f���� ����� ����� ��� ����	
f���� ����� ������ �	��� �����	

���



Table ����� Execution times of DLM A� in Sun SparcStation ����� CPU seconds over ��
runs on the �as� and �tm� problems from the DIMACS archive�

Problem Success Sun CPU Seconds Problem Success Sun CPU Seconds
Id� Ratio Avg� Min� Max� Id� Ratio Avg� Min� Max�
as� ����� ����� ����	 ����� as�� ����� ����� ����	 �����
as� ����� ����	 ����	 ����� as�� ����� ����	 ����	 ����	
as� ����� ����	 ����� ����� as�� ����� ����� ����	 ����	
as� ����� ����� ����� ����� as�� ����� ����� ����	 ����	
as� ����� ����� ����� ����� as�� ����� ����	 ����	 �����
as	 ����� ����� ����� ����� as�� ����� ����	 ����	 �����
as� ����� ����	 ����	 ����	
tm� ����� ����� ����	 ����� tm� ����� ����� ����� �����

To summarize� we have presented the application of Novel based on the discrete La�

grangian method �DLM in solving SAT problems� DLM belongs to the class of incomplete

methods that attempts to �nd a feasible assignment if one exists� but will not terminate if

the problem is infeasible�

We formulate a SAT problem as a discrete constrained optimization problem in which

local minima in the Lagrangian space correspond to feasible assignments of the SAT problem�

Searching for saddle points� therefore� corresponds to solving the SAT problem�

We �rst extend the theory of Lagrange multipliers for continuous problems to discrete

problems� With respect to SAT problems� we de�ne the concept of saddle points� derive the

Discrete Saddle Point Theorem� propose methods to compute discrete gradients� and apply

DLM to look for saddle points� We show the Discrete Fixed Point theorem which guarantees

that DLM will continue to search until a saddle point is found� We further investigate various

heuristics in implementing DLM�

We have compared the performance of DLM with respect to the best existing methods

for solving some SAT benchmark problems archived in DIMACS� Experimental results show

that DLM can solve these benchmark problems often faster than other local�search methods�

We have not been able to solve the remaining DIMACS benchmark problems that include

���



	 par���� thru par�����

	 par�����c thru par�����c� and

	 hanoi��

��� Solving Maximum Satis	ability Problems

In this section� we apply DLM to solve a general class of satis�ability problem� the

weighted maximum satis�ability problem �MAX�SAT� The MAX�SAT problem is a discrete

optimization problem� They are di
cult to solve due to the large amount of local minima

in their search space�

We formulate a MAX�SAT problem as a discrete constrained optimization problem� and

present the discrete Lagrangian method �DLM for solving MAX�SAT problems� DLM

provides an e
cient way of searching in a discrete space� Instead of restarting from a new

starting point when a search reaches a local minimum� the Lagrange multipliers in DLM

provide a force to lead the search out of a local minimum and move it in the direction

provided by the Lagrange multipliers� We further investigate issues in implementing DLM

to solve MAX�SAT problems� Our method dynamically adjusts the magnitude of Lagrange

multipliers and clause weights to �nd better solutions� Since our method has very few

algorithmic parameters to be tuned� the search procedure can be made deterministic and

the results� reproducible� In our experiments� we compare DLM with GRASP in solving a

large set of test problems� and show that it �nds better solutions and is substantially faster�

����� Previous Work

As presented in Section ���� the satis�ability �SAT problem is de�ned as follows� Given

a set of m clauses fC�� C�� � � � � Cmg on n variables x � �x�� x�� � � � � xn� xi � f�� �g� and a

Boolean expression in conjunctive normal form �CNF�

C� � C� � � � � � Cm�

��	



�nd an assignment to the variables so that the Boolean expression evaluates to be true� or

derive infeasibility if it is infeasible�

MAX�SAT is a general case of SAT� In MAX�SAT� each clause Ci is associated with

weight wi� The objective is to �nd an assignment to the variables that maximizes the sum

of the weights of satis�ed clauses�

max
x�f���gn

mX
i��

wi Si�x� �����

where Si�x equals � if logical assignment x satis�es Ci� and � otherwise� This objective

is equivalent to minimizing the sum of the weights of unsatis�ed clauses� Based on this

de�nition� SAT is a decision version of MAX�SAT in which all clauses have unit weights�

MAX�SAT problems are di
cult to solve for the following reasons�

	 They have a large number of local minima in their search space� where a local minimum

is a state whose local neighborhood does not include any state that is strictly better�

	 The weights in the objective function of a MAX�SAT problem can lead to a much

more rugged search space than the corresponding SAT problem� When a MAX�SAT

problem is satis�able� existing SAT algorithms ����� ���� developed to �nd a satis��

able assignment to the corresponding SAT problem can be applied� and the resulting

assignment is also optimal for ������ However� this approach does not work when the

MAX�SAT problem is not satis�able� In this case� existing SAT local�search methods

have di
culties in overcoming the rugged search space�

Methods for solving MAX�SAT can be classi�ed as incomplete and complete� depending

on whether they can �nd the optimal assignment� Complete algorithms can determine

optimal assignments� They include mixed integer linear programming methods ����� and

various heuristics ���� ���� ����� They are generally computationally expensive and have

di
culties in solving large problems�

On the other hand� incomplete methods are usually faster and can solve some large

problems that complete methods cannot handle� Many incomplete local�search methods

���



have been designed to solve large SAT problems of thousands of variables �����������������

and have obtained promising results in solving MAX�SAT problems ����������

Another approach to solve MAX�SAT is to transform it into continuous formulations�

Discrete variables in the original problem are relaxed into continuous variables in such a way

that solutions to the continuous problem are binary solutions to the original problem� This

transformation is potentially bene�cial because an objective in continuous space may smooth

out some local minima� Unfortunately� continuous formulations require computationally

expensive algorithms� rendering them applicable only to small problems�

In this section we apply DLM to solve MAX�SAT problems� We formulate a MAX�SAT

problem in ����� as a discrete constrained optimization problem ������

min
x�f���gn N�x �

mX
i��

wi Ui�x ����	

subject to Ui�x � � �i � f�� �� � � � �mg�

where wi 	 �� and Ui�x equals to � if the logical assignment x satis�es Ci� and � otherwise�

We �rst present DLM for solving MAX�SAT� and investigate the issues and alternatives in

implementing DLM� Then� we present experimental results of DLM in solving a large set of

MAX�SAT test problems�

����� DLM for Solving MAXSAT Problems

The Lagrangian function for ����	 is de�ned as follows�

Lmaxsat�x� � � N�x � �TU�x �
mX
i��

�wi � �iU�x �����

where x � f�� �gn� U�x � f�� �gm� and �T �the transpose of � � ���� ��� � � � � �m denotes

the Lagrange multipliers�

A saddle point �x�� �� of Lmaxsat�x� � is de�ned as one that satis�es the following

condition�

Lmaxsat�x
�� � � Lmaxsat�x

�� �� � Lmaxsat�x� �
� �����
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for all � su
ciently close to �� and for all x whose Hamming distance between x� and

x is �� The following version of DLM �nds discrete saddle points of Lagrangian function

Lmaxsat�x�� ��

Discrete Lagrangian Method �DLM� Amaxsat�

xk	� � xk �"xLmaxsat�x
k� �k �����

�k	� � �k � c
 U�xk �����

where c is a positive real number and � represents exclusive OR �XOR� We de�ne the

discrete gradient operator "xLmaxsat�x� � with respect to x such that "xLmaxsat�x� � �

���� � � � � �n � f�� �gn with at most one �i not zero� and it gives Lmaxsat�x� � the greatest

reduction in the neighborhood of x with Hamming distance �� Note that "xLmaxsat�x� � is

similar to the discrete gradient operator that we have de�ned for SAT problems�

There are two important properties about DLM Amaxsat�

	 It is easy to see that the necessary condition for algorithm Amaxsat to converge is when

U�x � �� implying that x is optimal� If any of the constraints in U�x is not satis�ed�

then � will continue to evolve to handle the unsatis�ed constraints� and the search

continues� In that case� a stopping criterion based on a time limit will be needed�

	 DLM Amaxsat modeled by ����� and ����� minimizes Lmaxsat�x� � in ����� while �

is changing� Since Ui�x is weighted by wi � �i in ������ changing � is equivalent to

perturbing the weights in the original objective function de�ned in ����	� In �nding

better assignments while trying to satisfy all the clauses� DLM e�ectively changes the

weights of unsatis�ed clauses and modi�es Lmaxsat�x� � to be searched� Since the

optimal assignment depends on the relative weights in ����	� the change in weights

in DLM is done in such a way that maintains their relative magnitudes� In contrast�

existing MAX�SAT methods explore the search space without modifying the weights�

This feature is the major di�erence between existing methods and DLM�

Next� we discuss various considerations in implementing DLM� Figure ��� shows the

pseudo code of Amaxsat�� a generic DLM implementing ����� and ������ where c is a positive

���



�� Set initial x randomly by a �xed random seed
�� Set initial � to be zero
�� while x is not a feasible solution� i�e� N�x 	 �
�� update x� x�� x�"xLmaxsat�x� �
�� update incumbent if N�x is better than current incumbent
�� if condition for updating � is satis�ed then
	� update �� ��� � � c
 U�x
�� end if
�� end while

Figure ���� Generic DLM Amaxsat� for solving SAT problems�

constant that regulates the magnitude of updates of �� We de�ne one iteration as one pass

through the while loop� In the following� we describe some of our design considerations�

�a Initial Points �Lines ���� DLM is started from either the origin or from a random

initial point generated using a �xed random seed� Further� � is always set to zero� The �xed

initial points allow the results to be reproduced easily�

�bDescent and Ascent Strategies �Line �� There are two ways to calculate "xLmaxsat�x� ��

greedy and hill�climbing� each involving a search in the range of Hamming distance one from

the current x� Depending on the order of search and the number of assignments that can be

improved� hill�climbing strategies are generally much faster than greedy strategies�

Among various ways of hill�climbing� we used two alternatives in our implementation� �ip

the variables one by one in a prede�ned order� or maintain a list of variables that can improve

the current Lmaxsat�x� � and just �ip the �rst variable in the list� The �rst alternative is

fast when the search starts� By starting from a randomly generated initial assignment� it

usually takes very few �ips to �nd a variable that improves the current Lmaxsat�x� �� As the

search progresses� there are fewer variables that can improve Lmaxsat�x� �� At this point�

the second alternative becomes more e
cient and should be applied�

�c Conditions for updating � �Line �� The frequency in which � is updated a�ects

the performance of a search� The considerations here are di�erent from those of continuous

problems� In a discrete problem� descents based on discrete gradients usually make small
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changes in Lmaxsat�x� � in each update of x because only one variable changes� Hence� �

should not be updated in each iteration of the search to avoid biasing the search in the

Lagrange�multiplier space of � over the original variable space of x�

Experimental results show that a good strategy is to update � only when "xLmaxsat�x� � �

�� At this point� a local minimum in the original variable space is reached� and the search

can only escape from it by updating ��

�d Amount of update of � �Line 	� A parameter c controls the magnitude of changes in

�� In general� c can be a vector of real numbers� allowing non�uniform updates of � across

di�erent dimensions and possibly across time� In our experiments� c � � has been found to

work well for most of the benchmarks tested� However� for some larger problems� a larger c

results in shorter search time and better solutions�

The update rule in Line 	 results in nondecreasing � because U�x is either � or �� In

contrast� in continuous problems �i of constraint gi�x � � increases when gi�x 	 � and

decreases when gi�x 
 ��

From our previous experience in solving SAT problems using DLM� we know that some �

values for some di
cult problems can become very large after tens of thousands of iterations�

At this point� the Lagrangian search space ����� becomes very rugged� and the search has

di
culty in identifying an appropriate direction to move� To cope with this problem� �

should be reduced periodically to keep them small and to allow DLM to better identify good

solutions�

The situation is worse in MAX�SAT because the weights of clauses� w� can be in a large

range� making Lmaxsat�x� � in ����� even more rugged and di
cult to search� Here� �� w

in MAX�SAT has a similar role as � in SAT� Without any mechanism to reduce � � w�

Lmaxsat�x� � can become very large and rugged as the search progresses�

This situation is illustrated in the upper two graphs of Figure ����� which shows the

behavior of DLM when it is applied to solve two MAX�SAT problems� The graphs show

that the Lagrangian values vary in a very large range� which makes the Lagrangian space

di
cult to search�
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With periodic scaling of � and w every ��� iterations

Figure ����� Execution pro�les of jnh� �left and jnh�� �right� jnh� is satis�able and jnh��
is not�

One way to overcome this problem is to reduce � and w periodically� For instance� in the

lower two graphs of Figure ����� ��w was scaled down by a factor of � every ��� iterations�

This strategy reduces Lmaxsat�x� � and restricts the growth of the Lagrange multipliers�

leading to faster solutions for many test problems�

Figure ���� shows Amaxsat�� our implementation of DLM to solve MAX�SAT� Amaxsat�

uses the �rst strategy of hill�climbing in descents in the beginning and switches to the second

strategy later� A parameter� �� is used to control the switch from the �rst strategy to the

second� We found that � � n�� works well and used this value in our experiments�

Amaxsat� updates � only when a local minimum is reached� In our experiments� we have

used a simple scheme that increases � by a constant across all the clauses�
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Set initial x
Set � � �
Set c � �
Set � � n��� where n is the number of variables
Set � reduction interval I�� e�g� ���
Set reduction ratio r� e�g� ���
Set base � value �b� e�g� �
Set base weight value wb� e�g� �
while x is not a feasible solution� i�e� N�x 	 �� and

termination criteria are not met
if number of iterations � � then

Maintain a list� l� of variables such that
if one of them is �ipped� Lmaxsat�x� � will improve�

if l is not empty then
Update x by �ipping the �rst element of l

else
Update �� ��� �� c � U�x

end if
else

if � variable v s�t� Lmaxsat�x
�� � 
 Lmaxsat�x� � when �ipping v

in a prede�ned order in x to get x� then
x�� x�

else
Update �� ��� �� c � U�x

end if
end if
if iteration index mod I� � � then

Reduce � and weights for all clauses if possible�
e�g� ��� max��b� ��r� wi �� max�wb� wi�r

end if
if x is better than incumbent� keep x as incumbent�

end while

Figure ����� Amaxsat�� an e
cient implementation of DLM�

Amaxsat� controls the magnitude of Lmaxsat�x� � by periodically reducing � and w� More

sophisticated adaptive mechanisms can be developed to lead to better performance�
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����� Experimental Results

In our experiments� we evaluate DLM using some benchmarks and compare it with

previous results obtained by GRASP ������ GRASP is a greedy randomized adaptive search

procedure that has been shown to quickly produce good�quality solutions for a wide variety

of combinatorial optimization problems� including SAT and MAX�SAT ����������

The �� MAX�SAT problems tested by GRASP were derived from DIMACS SAT bench�

mark jnh that have ��� variables and between ��� and ��� clauses� Some of them are

satis�able� while others are not� Their weights are integers generated randomly between �

and ����� The �� benchmark problems can be obtained from

ftp���netlib�att�com�math�people�mgcr�data�maxsat�tar�gz�

Our DLM code was written in C� The experiments were run on a ���MHz Sun SparcSta�

tion ������ The code was compiled using gcc with the ��O� option�

In our experiments� we �rst studied the e�ect of dynamic reduction of � on Lmaxsat�x� ��

We compared the results obtained by DLM with and without periodic reduction of �� For

each test problem� we ran DLM with � scaling for �� times from random initial points� and

DLM without � scaling between � and �� times� each for ������ iterations� We then took

the best solution of the multiple runs as our �nal solution�

Table ���� and ���� show the results obtained by DLM with and without periodical �

scaling� When � was not reduced periodically� DLM found �� optimal solutions out of the

�� problems �based on the best results of �� runs� When � was reduced periodically� we

tried several values of I�� the reduction interval� and r� the reduction ratio� Using I� of ����

����� ����� and ���� and r of ���� �� and �� we found signi�cant improvement in solution

quality when � was reduced periodically �except for the case when I� � ����� The best

combination is when I� � ��� and r � �� in which �� more optimal solutions were found

than without � reduction� �� test problems were improved� and no solution is worse� Overall�

we found optimal solutions in �� out of the �� test problems �based on best of �� runs�

Table ���� and ���� compare the solutions obtained by DLM and by GRASP� The results

of GRASP are from ����� that were run for ������ iterations on a ����MHz SGI Challenge
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Table ����� Comparison of results of DLM and those of GRASP with respect to the optimal
solutions� �jnh����� ��� clauses�

P
i wi � ������� GRASP was run ������

iterations on a ����MHz SGI Challenge with MIPS R���� whereas DLM with
� scaling was run ���� times� each for ������ iterations� from random starting
points on a Sun SparcStation ������ For DLM with dynamic � scaling� I� � ���
and r � ��

Deviations from Optimal Solutions
Problem Best result of ' Runs of DLM Optimal

ID �� runs of DLM with � scaling GRASP solution
without � scaling � �� ��

jnh� � � � � ���� ������
jnh� ���� ��� ��� ��� ���� ������
jnh� ���� ���� ���� � ���� ���	��
jnh� � � � � ��� ������
jnh	 � � � � � ������
jnh� � � � � ��	� ������
jnh� ���� �	 �	 �	 ���� ������
jnh�� �	� � � � ��	� ������
jnh�� ��� �� � � ���� ���	��
jnh�� � � � � ���� ������
jnh�� � � � � ���� ������
jnh�� � �		 � � ���� ������
jnh�� �	� �	� �	� � ���� ���	��
jnh�� ��� � � � ��� ������
jnh�	 � � � � ���� ������
jnh�� ���� ��� � � ���� ���	��
jnh�� ���� � � � ���� ���	��
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Table ����� Continuation of Table ����� Comparison of results of DLM and those of GRASP
with respect to the optimal solutions� �jnh�������� ��� clauses�

P
iwi � �������

jnh�������� ��� clauses�
P

i wi � �������

Deviations from Optimal Solutions
Problem Best result of ' Runs of DLM Optimal

ID �� runs of DLM with � scaling GRASP solution
without � scaling � �� ��

jnh��� � � � � � ������
jnh��� ���� � � � ���	 ����	�
jnh��� � � � � ���� ������
jnh��� � � � � ��� ������
jnh��	 � � � � ���	 ������
jnh��� � � � � ��	� ������
jnh��� � � � � ���	 ������
jnh��� � � � � � ������
jnh��� � � � � ���� ����	�
jnh��� ��� � � � ���� ������
jnh��� � � � � ���� ������
jnh��� � � � � ���� ������
jnh��� ���� ���� � � ���	 ������
jnh��	 � � � � �� ������
jnh��� � � � � ���� ������
jnh��� ��	� � � � ���� ������
jnh��� � � � � ���� ������
jnh��� � � � � ���� ������
jnh��� ��	� ���� ���� ���� ���� ������
jnh��� ���� ���� ���� ���� ���� ������
jnh��� ��	� ���� � � ���� ������
jnh��� ���� ���� ���� ���� ���� ������
jnh��� � � � � ���� ������
jnh��	 � � � � ���� ������
jnh��� ���� ���� ��� � ���� ���	��
jnh��� � � � � ���� ����	�
jnh��� ���� � � � ���� ������
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Table ����� Comparison of average CPU time in seconds for ������ iterations of DLM and
GRASP�

Problem ' Clauses GRASP DLM
jnh���� ��� 	���� ��	

jnh������� ��� ����� ��	
jnh������� ��� ��	�� ���

with MIPS R����� In contrast� DLM with � scaling was run between � and �� times from

random initial points using ������ iterations each� More runs are helpful in obtaining better

solutions� ��� ��� and �� optimal solutions were found when DLM with � scaling was run ��

��� and �� times from random initial points� respectively�

Our results show signi�cant improvement over GRASP in �� of the �� test problems�

For the remaining four problems� both DLM and GRASP found optimal solutions for three

of them� and GRASP found a better solution in one� It is important to note that� although

the di�erences between GRASP�s results and the optimal solutions are relatively small�

improvements in this range are the most di
cult for any search algorithm�

Table ���� shows the average time in seconds for ������ iterations of GRASP and DLM�

Since GRASP was run on a faster machine� one iteration of DLM is around three orders of

magnitude less than that of GRASP�

GRASP found better results when the number of iterations was increased� Using the ten

test problems reported in ����� that were run for ������� iterations of GRASP� Table ����

compares the results of DLM and GRASP with longer runs� It shows that DLM still found

better solutions in all the problems� except the cases that both found optimal solutions�

Increasing the number of iterations of DLM can also improve the best solutions found�

Based on the best of �� runs� DLM was able to �nd �� out of �� optimal solutions when the

number of iterations is increased to �������� while it is �� when the number of iterations is

�������

To summarize� we have presented DLM for solving MAX�SAT problems in this section�

DLM belongs to the class of incomplete methods that attempt to �nd approximate solutions
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Table ����� Comparison of solutions found by DLM and those found by GRASP with longer
iterations�

Problem GRASP DLM Optimal
Id ��K ���K ��K iter Solutions

jnh� ���� �		 � ������
jnh�� ��	� ���� � ������
jnh�� ���� ���� � ���	��
jnh�� ���� ��� � ������
jnh��� � � � ������
jnh��� ���	 ���� � ����	�
jnh��� ���� ��� � ������
jnh��� ���� � � ������
jnh��� ���� ���� ���� ������
jnh��� ���� ��� � ������

in a �xed amount of time� DLM improves over existing discrete local� and global�search

methods in the following ways�

	 DLM can escape from local minima in a continuous trajectory without restarts� hence

avoiding a break in the trajectory as in methods based on restarts� This is advantageous

when the trajectory is already in the vicinity of a local minimum� and a random restart

may bring the search to a completely di�erent search space�

	 DLM provides a mechanism to control the growth rate and the magnitude of Lagrange

multipliers� which is essential in solving di
cult MAX�SAT problems�

Using a large set of test problems� we have compared the performance of DLM with

that of GRASP� one of the best local�search methods for solving MAX�SAT problems� Our

experimental results show that DLM solves these problems two order�of�magnitude faster

than GRASP� and �nds better solutions for a majority of test problems in just a few seconds�

���



��� Designing Multiplierless QMF Filter Banks

In this section� we apply discrete Lagrangian method �DLM to solve an engineering ap�

plication problem� the design of multiplierless quadrature�mirror��lter �QMF �lter banks�

In multiplierless QMF �lter banks� �lter coe
cients are powers�of�two �PO� where num�

bers are represented as sums or di�erences of powers of two �also called canonical signed

digit representation� or CSD� Using this representation� multiplications become additions�

subtractions and shifting�

Based on a formulation similar to the real�value QMF design problem presented in Chap�

ter �� we formulate the design problem as a nonlinear discrete constrained optimization prob�

lem� using the reconstruction error as the objective and the other performance metrics as

constraints� One of the major advantages of this formulation is that it allows us to search

for designs that improve the best existing designs with respect to all performance metrics�

rather than designs that trade one performance metric for another� Then� we apply DLM to

solve this discrete optimization problem� In our experiments� we show that our method can

�nd designs that improve over Johnston�s benchmark designs using a maximum of three to

six ��bits in each �lter coe
cient� The performances of these designs are close to the best

continuous solutions found by Novel in Chapter ��

����� Introduction

Traditional FIR �lters in QMF �lter banks use real numbers or �xed�point numbers

as �lter coe
cients� Multiplications of such long �oating point numbers generally limit

the speed of FIR �ltering� To overcome such a limitation� multiplierless �powers�of�two or

PO� �lters have been proposed� These �lters use �lter coe
cients that have only a few

bits that are ones� When multiplying a �lter input �multiplicand with one such coe
cient

�multiplier� the product can be found by adding and shifting the multiplicand a number of

times corresponding to the number of ��bits in the multiplier� For example� multiplying x

by ���������� can be written as the sum of three terms� x
 � � x 
 �� � x 
 ��� each of

which can be obtained by shifting x� A limited sequence of shifts and adds are usually much

faster than full multiplications� Without using full multiplications� each �lter tap takes less

���



area to implement in VLSI� and more �lter taps can be accommodated in a given area to

implement �lter banks of higher performance�

The frequency response of a PO� �lter� H�z� is

H�x� z �
n��X
i��

xiz
�i �

n��X
i��

�
�d��X
j��

ei�j�
j


A z�i �����

where
Pd��

j�� jei�jj � l for all i� ei�j � ��� �� �� n is the length of the PO� �lter �the number of

variables� l is the maximum number of ��bits used in each coe
cient� and d is the number

of bits in each coe
cient�

The design of multiplierless �lters has been solved as integer programming problems

that represent �lter coe
cients as variables with restricted values of powers�of�two� Other

optimization techniques that have been applied include combinatorial search methods ������

simulated annealing ����� genetic algorithms ������ linear programming ���	�� and continuous

Lagrange�multiplier methods in combination with a tree search ������

The design of QMF �lter banks can be formulated as a multi�objective unconstrained

optimization problem or as a single�objective constrained optimization problem� In this

thesis� we take the approach similar to the design of real�value QMF �lter banks in Chapter ��

and formulate the design of a PO� QMF �lter bank in the most general form as a constrained

nonlinear optimization problem ���	��

min
x�D

f�x � Er�x��Er �����

subject to Ep�x��Ep � � Es�x��Es � � Tt�x��Tt � �

�p�x���p � � �s�x���s � �

where x is a vector of discrete coe
cients in the discrete domain D� �Ep� �Es� ��p� ��s� and �Tt

are constraint bounds found in the best known design �with possibly some bounds relaxed or

tightened in order to obtain designs of di�erent trade�o�s� and �Er is the baseline value of

reconstruction error found in the best known design� The goal here is to �nd designs whose

performance measures are better than or equal to those of the reference design� Since the

objective and constraints are nonlinear� the problem is multi�modal with many local minima�
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The inequality constrained optimization problem ����� can be transformed into an equal�

ity constrained optimization problem as follows�

Minimize f�x �
Er�x

�Er
�����

subject to g��x � max

	
Ep�x

�Ep
� �� �



� �

g��x � max

	
Es�x

�Es
� �� �



� �

g��x � max

	
�p�x

��p
� �� �



� �

g��x � max

	
�s�x

��s
� �� �



� �

g��x � max

	
Tt�x

�Tt
� �� �



� �

where all the objective and constraints have been normalized with respect to the correspond�

ing values of the best known design�

����� DLM Implementation Issues

DLM was mainly implemented by Mr� Zhe Wu to solve the design problem of multipli�

erless �lter banks� The Lagrangian function of ����� is

F �x� � � f�x �
�X
i��

�i 
 gi�x �����

where � � ��i� i � �� � � � � � are Lagrange multipliers� To apply DLM to solve ������ we

�rst de�ne the discrete gradient operator as follows�

"xF �x� � � �x �����

where F �x� �x� � � has the minimum value among all F �y� � for y su
ciently close to x�

�� is an operator for changing one point in discrete space into another with � value� An example of � is

the exclusive�OR operator�
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�� Generate a starting point x
�� Set initial value of �
�� while x is not a saddle point or stopping condition has not been reached
�� update x to x� only if this will result in F �x�� � 
 F �x� �
�� if condition for updating � is satis�ed then
�� �i �� �i � c 
 gi�x� �c 	 � is real
	� end if
�� end while

Figure ����� An implementation of DLM for solving the design problem of multiplierless
�lter banks

Figure ���� shows our implementation of DLM for designing multiplierless �lter banks�

Mr� Zhe Wu has addressed the following issues in implementing DLM�

Generating a Starting Point

There are two alternatives to select a starting point �Line � in Figure ����� choosing an

existing PO� QMF �lter bank as a starting point� or choosing a discrete approximation of an

existing QMF �lter bank with real coe
cients� The �rst alterative is not possible because

not many such �lter banks are available in the literature� In this section� we discuss the

second alternative�

Given a real coe
cient and b� the maximum number of ��bits to represent the coe
cient�

we �rst apply Booth�s algorithm ���� to represent consecutive ��s using two ��bits and then

truncate the least signi�cant bits of the coe
cients� This approach generally allows more

than b ��bits to be represented in b ��bits� As an example� consider a binary �xed point

number �������������� After applying Booth�s algorithm and truncation� we can represent

the number in � ��bits�

������������� �Booth�sAlgorithm ��������!��!��� �Truncation �
�� � ����

Previous work ������	����� shows that scaling has a signi�cant impact on the coe
cient�

optimization process in PO� �lters� In our case� the performance of a PO� �lter obtained
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Table ����� Comparison of a PO� �lter bank obtained by truncating the real coe
cients of
Johnston�s ��e QMF �lter bank ����� to � bits and a similar PO� �lter bank
whose coe
cients were scaled by ������ before truncation� �Performance has
been normalized with respect to the performance of the original �lter bank�

Performance Metrics Er Ep Es �p �s Tt
Filter bank A with Truncated Coe
cients ���� ���� ���� ���� ���� ����
Filter bank B with Scaling and Truncation ���� ���� ���� ���� ���� ����

by truncating its real coe
cients to a �xed maximum number of ��bits is not as good as one

whose real coe
cients were �rst multiplied by a scaling factor� We illustrate this observation

in the following example�

Consider Johnston�s ��e �lter bank ����� as a starting point� Table ���� shows the

performance of two PO� �lters� Filter A was obtained by truncating each of the original

coe
cients to a maximum of � ��bits� and Filter B was obtained by multiplying each of

the coe
cients by ������ before truncation� The example shows that Filter B performs

almost as good as the original design with real coe
cients� In fact� a design that is better

than Johnston�s ��e design can be obtained by using Filter B as a starting point� but no

better designs were found using Filter A as a starting point� This example illustrates that

multiplying by a scaling factor changes the bit patterns in the �lter coe
cients� which can

improve the quality of the starting point when the coe
cients are truncated�

Figure ���� shows a simple but e�ective algorithm to �nd the proper scaling factor� We

evaluate the quality of the resulting starting point by a weighted sum of the performance

metrics based on constraint violations� Since under most circumstances� the constraint on

transition bandwidth is more di
cult to satisfy� we assign it a weight ��� and assign � to

the other four constraints� Our objective in �nding a good scaling factor is di�erent from

that in previous work ������	������ Note that the �lter output in the �nal design will need

to be divided by the same scaling factor�

Experimental results show that the algorithm in Figure ���� executes fast� and the scaling

factors chosen are reasonable and suitable� It is important to point out that scaling does not
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�� LeastSum���
�� for scaleFactor �� ������ to ��� step ������
�� Multiply each �lter coe
cient by scaleFactor
�� Get the PO� form of the scaled coe
cients
�� Compute the weighted sum of constraint violation�

sum ��
P�

i��wi 
 gi�x
�� if �sum 
 LeastSum then
	� LeastSum �� sum
�� BestScale �� scaleFactor
�� endif
��� endfor
��� return BestScale

Figure ����� Algorithm for �nding the best scaling factor� where wi is the weight of con�
straint i�

help when the number of ��bits allowed to represent each coe
cient is large� For instance�

when the maximum number of ��bits allowed is larger than �� the performance of all the

�lters is nearly the same for all scaling factors�

Updating x

The value of x is updated in Line � of DLM in Figure ����� There are two ways in which

x can be updated� greedy descent and hill climbing� Hill climbing is more e
cient and

generally leads to good PO� designs� Therefore� we use hill climbing as our update strategy�

We process all the bits of all coe
cients in a round�robin manner� Suppose n is the �lter

length and l is maximum number of ��bits that can be used for each coe
cient� Then the

ith coe
cient is composed of l bits bi��� bi��� � � � � bi�l� We process the bits in the following

order repetitively�

b���� b���� � � � � b��l� b���� � � � � bn��� � � � � bn�l�

For each bit bi�j� we perturb it to be a new bit b�i�j that di�ers from bi�j by either the sign

or the exponent or both� with the condition that b�i�j is not the same in sign and exponent

���



as another bit of the ith coe
cient� Using bi��� � � � � bi�j��� b�i�j� � � � � bi�n while keeping other

coe
cients the same� we compute the new Lagrangian value F �x�� � and accept the change

if F �x�� � 
 F �x� ��

Initializing and Updating �

The value of � is initialized in Line � of DLM in Figure ����� To allow our experiments

to be repeated and our results be reproduced easily� we always set � to zero as our initial

point�

Line � of DLM in Figure ���� is related to the condition when � should be updated� As we

know in solving SAT and MAX�SAT problems� � for violated constraints should be updated

less frequently in DLM than in traditional Lagrangian methods for continuous problems�

Thus� in our implementation� we update � every time three coe
cients have been processed�

Since � is updated before all the �lter coe
cients have been perturbed� the guidance provided

by � in our implementation may not be exact�

When updating � before the search reaches a local minimum of F �x� �� we set c in Line

� of DLM to be a normalized value as follows�

c �
�speed

max�i�� gi�x
����	

where �speed is a real constant used to control the speed of increasing �� Experimentally� we

have determined �speed to be �������

When the search reaches a local minimum� a more e
cient rule for updating � has been

developed by Mr� Zhe Wu to bring the search out of the local minimum� A proper value of

c di�erent from that in ����	 is calculated� If � is increased too fast� then the search will

restart from a random starting point� On the other hand� if the increase of � is too small�

then the local minimum is not changed� and all surrounding points are still worse� Hence�

we would like to set c large enough so that some of its neighbor points will be better� This

means that� after � has been changed to ��� there exists x� in the neighborhood of x such

���



that

F �x� � � F �x�� � and F �x�� �� 
 F �x� �� �����

Replacing F �x� � by f�x �
P�

i�� �i 
 gi�x in ������ we get the following condition

before � changes�

F �x� � � f�x �
�X
i��

�i 
 gi�x � F �x�� � � f�x� �
�X
i��

�i 
 gi�x
� �����

and that after �i is updated to ��i � �i � c 
 gi�x�

F �x� �� � f�x �
�X
i��

��i � c
 gi�x
 gi�x �����

	 F �x�� �� � f�x� �
�X
i��

��i � c
 gi�x
 gi�x
�

where gi�x
� is the new violation value of the ith constraint at x�� From ����� and ������

we get

� � F �x�� �� F �x� � 
 c 

�X
i��

�i 
 gi�x
 �gi�x� gi�x
�

� c 	
F �x�� � � F �x� �P�

i�� �i 
 gi�x
 �gi�x� gi�x�
�����

When c is large enough to satisfy ����� for all x�� after updating � to ��� there exists

some point the neighborhood of x that has smaller Lagrangian value�

As an example� consider in Figure ���� the constraint violation of transition bandwidth

Tt in a typical search based on constraints derived from Johnston�s ��e �lter bank ������

Figure ���� shows that the value of violation on Tt can be extremely small� in the order

of ���� in the later part of the search� For such small violation values� the corresponding

Lagrange multiplier �Tt increases very slow without a large c� Using c de�ned in ����� to

increase �Tt� we see in Figure ���� that �Tt was increased signi�cantly three times when the
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Figure ����� The violation values of Tt during a search �left and the corresponding value of
�Tt �right�

condition for updating � was satis�ed� These saved at least half of the total search time for

the solution�

Finally� we notice in Line � of DLM that � is nondecreasing� This means that as the

search progresses� the �s grow� and more emphasis is placed on getting the search out of local

minima� This approach fails when the �s are so large that the search is brought to a totally

new terrain when Line � of DLM is applied� To cope with this problem� we measure the

relative values between f�x and
P�

i�� �i 
 gi�x and keep them within a reasonable range�

� �
P�

i�� �i 
 gi�x

f�x
� �threshold �����

If the ratio exceeds �threshold� then we divide all the �s by a constant r to regain the balance�

In our experiments� we set �threshold to be ��� and r be ��� and check �threshold every time �

is updated�

����� Experimental Results

In this section� we compare the performance of PO� QMF �lter banks designed by DLM

and those by Johnston ������ Chen et al� ����� Novel� simulated annealing� and genetic algo�

rithms ���	��
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Figure ����� Normalized performance with respect to Johnston�s ��e �left and ��e �right
QMF �lter banks for PO� �lters with a maximum of � ��bits per coe
cient
and di�erent number of �lter taps�

There are two parameters in a PO� �lter bank design� the maximum number of ��bits in

each �lter coe
cient and the number of �lter taps� In our experiments� we have varied one

while keeping the other �xed when evaluating a PO� design with respect to a benchmark

design� We have used closed�form integration to compute the values of performance metrics�

In contrast� Johnston ����� used sampling in computing energy values� Hence� designs found

by Johnston are not necessarily at the local minima in a continuous sense�

We have evaluated PO� designs obtained by DLM with respect to Johnston�s designs

whose coe
cients are ���bit real numbers� Using the performance of Johnston�s ��e design

as constraints ������ we ran DLM from �� di�erent starting points obtained by randomly

perturbing �% of all the coe
cients of Johnston�s design� Each run was limited so that each

��bit of the coe
cient was processed in a round robin fashion ��� times� We then picked the

best solution of the �� runs and plotted the result in Figure ����� which shows the normalized

performance of PO� designs with increasing number of �lter taps� while each �lter coe
cient

has a maximum of � ��bits� �The best design is one with the minimum reconstruction error

if all the constraints are satis�ed� otherwise� the one with the minimum violation is picked�

Our results show a design with �� taps that is nearly as good as Johnston�s ��e design� For

�lters with ��� ��� �� and �� taps� we used a starting point derived from Johnston�s ��e

design with �lter coe
cients �rst scaled by ������ and truncated to a maximum of � ��bits�
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Figure ����� Normalized performance with respect to Johnston�s ��e QMF �lter bank for
PO� �lters with �� taps and di�erent maximum number of ��bits per coe
cient�

and set the �lter coe
cients of the remaining taps to zeroes initially� The starting points

of �lters with longer than �� taps were generated similarly� except that a scaling factor of

������ was used instead� Our results show that� as the �lter length is increased� all the

performance metrics improve� except the transition bandwidth� which remains close to that

of the benchmark design�

With respect to Johnston�s ��e design ������ we set a limit so that each ��bit of the

coe
cient was processed in a round�robin fashion ��� times� and ran DLM once from the

truncated Johnston�s ��e design� �The scaling factor was ������ for �lters with ��� ��� ���

and �� taps� The scaling factor was ������ for the �lter with �� taps� Our results show

that our ���tap PO� design is slightly worse than that of Johnston�s� while our PO� designs

with �� taps or larger have performance that are either the same or better than those of

Johnston�s ��e design� In particular� the reconstruction error of our ���tap PO� design is

��% of Johnston�s ��e design� while that of our ���tap PO� design is only ��% of Johnston�s

��e design�

In the next set of experiments� we kept the same number of taps as Johnston�s ��e design

and increased the maximum number of ��bits in each coe
cient from � to �� We set a limit

so that each ��bit of the coe
cient was processed in a round�robin fashion ��� times� and

ran DLM once from the truncated Johnston�s ��e design� Figure ���� shows a design that is
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Table ����� Comparison of normalized performance of PO� �lter banks designed by DLM
with respect to those designed by Johnston and Chen� Columns ��� show the
performance of DLM using � ��bits for ���tap �lters and � ��bits for ���tap �lters
normalized with respect to that of Johnston�s ��e� ��d� and ��e �lter banks ������
Columns ��� show the performance of DLM using � ��bits normalized with
respect to that of Chen et al��s ���tap and ���tap �lter banks �����

Comparing with Johnston�s Comparing with Chen et al��s
Metrics DLM���e DLM���d DLM���e DLM��� DLM���
Er ���� ���� ���� ���� ����
Ep ���� ���� ���� ���� ����
Es ���� ���� ���� ���� ����
�p ���� ���	 ���� ���� ����
�s ���� ��	� ���� ���� ����
Tt ���� ���� ���� ���� ����

better than Johnston�s ��e design when the maximum number of ��bits per coe
cient is ��

In this case� the reconstruction error is ��% of Johnston�s ��e design� �The scaling factors

used are ������ for � bits� ������ for � bits� ��	��� for � bits� and ��� for � bits�

With respect to Johnston�s ��d and ��e designs� Table ���� shows improved PO� designs

obtained by DLM using a maximum of � ��bits per coe
cient and �� taps� No improvements

were found when the maximum number of ��bits is less than ��

Table ���� further shows improved PO� designs obtained by DLM with respect to Chen et

al��s PO� designs �with � ��bit coe
cients with �� and �� taps� respectively� and a maximum

of � ��bits per coe
cient� In these designs� we used Chen et al��s designs as starting points

and ran DLM once with a limit so that each ��bit was processed in a round�robin fashion

����� times�

Finally� we compare in Table ���	 the performance of ��e PO� �lter banks obtained by

DLM with a maximum of � ��bits per coe
cient� and the performance of ��e real�value �lter

banks obtained by Novel� simulated annealing �SA� and evolutionary algorithms �EAs

in Chapter �� Novel and DLM �nd solutions that is better than or equal to Johnston�s

solution in all six performance metrics� although DLM�s solution has larger reconstruction
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Table ���	� Comparison of normalized performance of ��e PO� QMF �lter banks designed
by DLM with respect to those designed by Novel� simulated annealing �SA�
and genetic algorithms �EA�Ct and EA�Wt�

Metrics DLM Novel SA EA�Ct EA�Wt
Er ���� ��	� ���� ����� ����
Ep ���� ���� ���� ����e� ����
Es ���� ���� ���� ����e� ����
�p ���� ���� ���� ����e� ����
�s ���� ���� ���� �	�� ����
Tt ���� ���� ���� ���� ����

error than Novel�s� SA and EA�Wt result in larger transition bandwidths than Johnston�s�

EA�Ct converges to designs with very small reconstruction errors� while other constraints

are violated signi�cantly� Considering the fact that the DLM design uses a maximum of

two additions in each tap rather than a complex carry save adder or a ���bit multiplier� the

design obtained by DLM has much lower implementation cost and can achieve faster speed�

To summarize� we have applied DLM to design multiplierless powers�of�two �PO� QMF

�lter banks� Our design method is unique because it starts from a constrained formulation

with the objective of �nding a design that improves over the benchmark design� In contrast�

existing methods for designing PO� �lter banks can only obtain designs with di�erent trade�

o�s among the performance metrics and cannot guarantee that the �nal design is always

better than the benchmark design with respect to all the performance metrics�

DLM e�ectively �nds high quality �lter�bank designs with very few ��bits for each �lter

coe
cient� allowing the design to be implemented in a fraction of the cost� For example

a design with a maximum of � ��bits per coe
cient can be implemented in two additions

in each tap� In contrast� a full ���bit multiplier is close to one order of magnitude more

expensive in terms of hardware cost and computational delay�
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��� Summary

In this chapter� we have applied our new discrete Lagrangian method �DLM to solve

discrete optimization problems that include the satis�ability �SAT� the maximum satis�a�

bility �MAX�SAT and the multiplierless QMF �lter�bank design problems� These problems

have all been formulated as discrete constrained optimization problems�

We extend the theory of Lagrange multipliers for continuous problems to discrete prob�

lems� With respect to problems in discrete space� we de�ne the concept of saddle points�

derive the Saddle Point Theorem� propose methods to compute discrete gradients� and in�

vestigate various heuristics in implementing DLM� We show the Fixed Point theorem which

guarantees that the algorithm will continue to search until a saddle point is found� DLM

belongs to the class of incomplete methods that attempts to �nd a saddle point if one exists�

but will not terminate if the problem is infeasible�

In our experiments� we have compared the performance of DLM with respect to some

of the best existing results in all three applications� Using a large set of SAT benchmark

problems archived in DIMACS� we have shown that DLM usually solves these problems

substantially faster than other competing local�search and global�search methods� and can

solve some di
cult problems that other methods cannot� In solving MAX�SAT problems�

we have compared the performance of DLM with that of GRASP� one of the best methods

for solving MAX�SAT� Our experimental results show that DLM solves these problems two

orders�of�magnitude faster and found better solutions for a majority of test problems in a

few seconds� Finally� in designing multiplierless QMF �lter banks� our experimental results

show that DLM �nds better designs than existing methods� Comparing with real�value �lter

banks� the multiplierless �lter banks designed by DLM have little performance degradation

and with very few ��bits for each �lter coe
cient� allowing the design to be implemented in

a fraction of the cost and execute much faster�

To summarize� DLM is a generalization of local search schemes that optimize the objec�

tive alone or optimize the constraints alone� When the search reaches a local minimum� the

Lagrange multipliers in DLM lead the search out of the local minimum and move it in the

direction provided by the multipliers� DLM also uses the value of an objective function �the
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number of violated constraints in the case of SAT problems to provide further guidance in

addition to the constraint violations� The dynamic shift in emphasis between the objective

and the constraints� depending on their relative values� is the key of Lagrangian methods�

DLM improves over existing discrete local� and global�search methods in the following as�

pects�

	 DLM can escape from local minima without random restarts� When a constraint is

violated but the search is in a local minimum� the corresponding Lagrange multipliers

in DLM provide a force that grows with the amount of time that the constraint is

violated� eventually bringing the search out of the local minimum� DLM may rely on

systematic restarts �that are not based on random numbers in the Lagrangian space

when the Lagrange multipliers grow large and the search space becomes rugged�

	 DLM escapes from local minima in a continuous trajectory� hence avoiding a break

in the trajectory as in methods based on restarts� This is advantageous when the

trajectory is already in the vicinity of a local minimum� and a random restart may

bring the search to a completely di�erent search space�

	 DLM is more robust than other local�search methods and is able to �nd feasible so�

lutions irrespective of its initial starting points� In contrast� descent methods have to

rely on properly chosen initial points and on a good sampling procedure to �nd new

starting points or by adding noise in order to bring the search out of local minima�

In short� the Lagrangian formulation and our discrete Lagrangian methods are based on

a solid theoretical foundation� and can be used to develop better heuristic algorithms for

solving discrete constrained optimization problems�
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	� CONCLUSIONS AND FUTURE WORK

��� Summary of Work Accomplished

Many important engineering and industrial applications can be formulated as nonlinear�

constrained or unconstrained� optimization problems� Improved solutions to these problems

can lead to signi�cant savings� In this thesis� we have designed e
cient methods to handle

nonlinear constraints and to overcome local minima� Using these methods� we have improved

existing nonlinear optimization methods in two forms� �nding better solutions at the same

cost� or �nding solutions of similar quality at less cost�

To summarize� we have made the following contributions in this thesis�

	 We have developed a new Lagrangian method with dynamic weight adaptation to

handle equality and inequality constraints in nonlinear optimization problems� and to

improve the convergence speed and solution quality of traditional Lagrangian methods

�Chapter ��

	 We have extended the traditional Lagrangian theory for the continuous space to the

discrete space� and have developed e
cient discrete Lagrangian methods� Our discrete

Lagrangian theory provides the mathematical foundation of discrete Lagrangian meth�

ods that does not exist in existing methods for handling nonlinear discrete constraints

�Chapter ��
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	 We have developed an innovative trace�based global�search method to overcome local

minima in a nonlinear function space� The trace�based global search relies on an exter�

nal traveling trace to pull a search trajectory out of a local optimum in a continuous

fashion without having to restart it from a new starting point� Good starting points

identi�ed in the global search are used in the local search to identify true local optima

�Chapter ��

	 We have developed a prototype� called Novel �Nonlinear Optimization Via External

Lead� that incorporates our new methods and solves nonlinear constrained and un�

constrained problems in a uni�ed framework� In Novel� constrained problems are �rst

transformed into Lagrangian functions� Then� the nonlinear functions are searched for

optimal solutions by a combination of global� and local�search methods �Chapter ��

	 We have applied Novel to solve neural�network design problems and have obtained

signi�cant improvements in learning feedforward neural networks� Arti�cial neural

networks have many applications� but existing design methods are far from optimal�

We formulate the neural�network learning problem as an unconstrained nonlinear op�

timization problem� and solve it using Novel� Novel has designed neural networks with

higher quality than existing methods� or have found much smaller neural networks with

similar quality �Chapter ��

	 We have applied Novel to design digital �lter banks and have obtained improved so�

lutions� Digital �lter banks have been used in many digital signal processing and

communication applications� We formulate the design of �lter banks as a constrained

nonlinear optimization problem and solve it using Novel� Novel has found better de�

signs than the best existing solutions across all the performance metrics �Chapter ��

	 We have applied Novel to solve discrete problems� including the satis�ability problem

�SAT� the maximum satis�ability problem �MAX�SAT� and the design of multipli�

erless �lter banks� Many problems in computer science� management� and decision

science can be formulated as discrete optimization problems� By formulating these

problem �SAT� MAX�SAT� and the design of multiplierless �lter banks into discrete

constrained optimization problems� Novel� particularly discrete Lagrangian method
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�DLM� has obtained signi�cant improvements over the best existing methods �Chap�

ter ��

��� Future Work

In this section� we present some possible avenues for research in the future�

	 Development of Trace�based Global Search for Solving Discrete Optimization problems�

We plan to extend the idea of our trace�based global search to solve discrete prob�

lems� Nonlinear discrete optimization problems have many local minima that trap

local search methods� A trace�based global search can help the search escape from lo�

cal minima� and avoid expensive local search in unpromising regions� We plan to study

di�erent forms of trace functions� identify their e�ectiveness� and investigate various

implementation issues�

	 Extension to Mixed�integer Programming Problems� We have developed methods that

solve continuous and discrete problems� respectively� Many application problems are

mixed�integer programming problems� which have mixed variable domains � some con�

tinuous and some discrete� We plan to extend our methods to solve these problems�

	 Applications of Novel� There are many applications that can be formulated as nonlin�

ear optimization problems� The merits of our method lie in its ability to �nd better

solutions for real�world applications� Di�erent applications have di�erent character�

istics� requirements� and implementation considerations� The theoretical work and

experimental results presented in this thesis provide a solid foundation for applying

Novel to new applications�
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APPENDIX A� EXPERIMENTAL RESULTS OF NOVEL ON SOME TEST FUNCTIONS

In this appendix� we demonstrate Novel�s capability of �nding good solutions by solving

some multidimensional nonlinear optimization problems� We �rst describe these problems�

which include �� widely used multi�modal simple�bounded test functions with known optimal

solutions ������ Then� we report the experimental results of Novel� and compare the results

with those obtained by multi�starts of gradient descent�
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Table A��� A set of multi�modal test functions�

Id� Name Dimension ' Global minima ' Local minima
� Six Hump Camel Back � � �
� Branin � � �
� Goldstein�Price � � �
� Shekel � � � �
� Shekel 	 � � 	
� Shekel �� � � ��
	 Rastrigin � � � ��
� Griewank � � � � ���
� Griewank �� �� � 	 ����
�� Hartman � � � N�A
�� Hartman � � � N�A

Table A�� lists the summary of these test functions� Most of them are low�dimensional

problems� with dimensions ranging from � to ��� Problems � to � only have a few local

minima� while Problems 	� �� and � have many� The number of local minima of problems

�� and �� are unknown�

First� we use multi�starts of gradient descent to solve these problems� The results of

multi�starts reveal the degree of di
culty in �nding global optima� For each problem� we

run gradient descent �� times from randomly generated initial points� Table A�� shows the

number of runs that �nd the optimal solutions� If the optimal solution is not found in ��

runs� the best solution obtained is shown in the parenthesis� A large number of success

implies that the global optimum is easy to �nd by gradient descents from random initial

points� Table A�� shows that multi�starts �nd the optimal solutions of Problems � through

�� ��� and ��� The optimal solutions of Problems 	� �� and � are not found�

A simple one�global�stage Novel is applied to solve these test functions� The trace�based

global�search phase of Novel has one stage� which is run for �� time units� Initial points

for the local�search phase� which uses gradient descent� are selected based on the trajectory

generated by the global�search stage� One initial point is selected in every one time unit of

global search� From these initial points� a total of �� gradient descents are performed� For

each problem� the range of each dimension is mapped to ���� ��� in which Novel performs the

���



Table A��� Experimental results of multi�starts of gradient descent on the test functions�
The number of runs that �nd the optimal solutions are shown in the table �out
of �� runs� If the optimal solution is not found� the best solution obtained is
shown in the parenthesis�

Problem Id� � � � � � � 	 � � �� ��
No� of Success � �� � � � � �����	 �	��� ����� � �

Table A��� Experimental results of Novel on the test functions� The index of the �rst local
descent of Novel that �nds the global minimum is shown in the table �out of ��
descents�

Problem Id� � � � � � � 	 � � �� ��
Index of First Success � � � � � � � ����� ���	� � �

global search� Novel always starts from the origin if it is not a global optimum� Otherwise�

Novel starts from ��� in each dimension�

The execution times of Novel and multi�starts are comparable� In Novel� the execution

time of global�search phase is only a small fraction of the time spent in gradient descents�

One gradient descent in Novel takes similar amount of time to one descent in multi�starts�

Hence� since both Novel and multi�starts perform the same number of descents� the execution

time of Novel is slightly longer�

Table A�� shows the index of the �rst local descent of Novel that �nds the global optimal

solution� For example� it takes one descent for Novel to �nd the optimal solution of Problem

�� and it takes � descents to �nd the optimal solution of Problem �� For Problems � and ��

the optimal solutions are not found by Novel� The best solutions obtained are shown in the

parenthesis�

To summarize� Novel �nds better solutions for the di
cult problems than multi�starts

in comparable amount of time� Novel �nds the optimal solutions of Problem 	� while multi�

starts do not� For Problems � and �� Novel �nds better solutions than multi�starts� although

���



both do not �nd the optimal solutions� Both Novel and multi�starts of gradient descent �nd

optimal solutions for the easy problems� Problems � to �� and Problems �� and ���
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