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COMPUTATIONAL PROTEIN STRUCTURE PREDICTION USING DEEP 

LEARNING 

Zhaoyu Li 

Dr. Yi Shang, Dissertation Advisor 

ABSTRACT 

Protein structure prediction is of great importance in bioinformatics and computational 

biology. Over the past 30 years, many machine learning methods have been developed for 

this problem in homology-based and ab-initio approaches. Recently, deep learning has 

been successfully applied and has outperformed previous methods. Deep learning methods 

could effectively handle high dimensional feature inputs in modeling the complex mapping 

from protein primary amino acid sequences to protein 2-D or 3-D structures.  In this 

dissertation, new deep learning methods and deep learning networks have been proposed 

for three problems in protein structure prediction: loop modeling, contact map prediction, 

and contact map refinement. They have been implemented in the state-of-the-art MUFOLD 

software and obtained significant performance improvement.  

The goal of loop modeling is to predict the conformation of a relatively short stretch of 

protein backbone. A new method based on Generative Adversarial Network (GAN), called 

MUFOLD-LM, is proposed. The protein 3-D structure can be represented using the 2-D 

distance map of 𝐶! atoms. The missing region in the structure will be a missing region in 

the distance map correspondingly. Our network uses the Generator Network to fill in the 

missing regions in the distance map based on the context, and the Discriminator Network 

will take both the predicted complete distance map and the ground truth as input to 
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distinguish between them. The method utilizes both the features and context of the missing 

loop region to make better prediction of the 3-D structure of the loop region. In experiments 

using commonly used benchmark datasets 8-Res and 12-Res, MUFOLD-LM outperformed 

previous methods significantly, up to 43.9% and 4.13% in RMSD, respectively. To the best 

of our knowledge, it is the first successful GAN application in protein structure prediction. 

The goal of contact map prediction is to predict whether the distance between two 𝐶" 

atoms (𝐶! for Glycine) in a protein falls within a certain threshold. It can help to determine 

the global structure of a protein in order to assist the 3D modeling process. In this work, a 

new two-stage multi-branch neural network based on Fully Convolutional Network and 

Dilated Residual Network, called MUFOLD_Contact, is proposed. It formulates the 

problem as a pixel-wise regression and classification problem. The first stage predicts 

distance maps for short-, medium-, and long-range residue pairs. The second stage takes 

the predicted distances from stage 1 along with other features as input to predict a binary 

contact map. The method utilizes the distance distribution information in the feature set to 

improve the binary prediction results. In experiments using CASP13 targets, the new 

method outperformed single stage networks and is comparable with the best existing tools.  

In addition to predicting contact directly using deep neural networks, a new method, 

called TPCref (Template Prediction Correction refinement), is proposed to refine and 

improve the prediction results of a contact predictor using protein templates. Based on the 

idea of collaborative filtering from recommendation system, TPCref first finds multiple 

template sequences based on the target sequence and uses the templates’ structures and the 

templates’ predicted contact map generated by a contact predictor to form a target contact-
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map filter using the idea of collaborative filtering. Then the contact-map filter is used to 

refine the predicted contact map. In experimental results using recently released PDB 

proteins, TPCref significantly improved the contact prediction results of existing 

predictors, improving MUFOLD_Contact, MetaPSICOV, and CCMPred by 5.0%, 12.8%, 

and 37.2%, respectively.  

The proposed new methods have been implemented in MUFOLD, a comprehensive 

platform for protein structure prediction. It provides a rich set of functions, including 

database generation, secondary and supersecondary structure prediction, beta-turn and 

gamma-turn prediction, contact map prediction and refinement, protein 3D structure 

prediction, loop modeling, model quality assessment, and model refinement. In this work, 

a new modularized MUFOLD pipeline has been designed and developed. Each module is 

decoupled from each other and provides standard communication protocol interfaces for 

other programs to call. The modularization provides the capability to easily integrate new 

algorithms and tools to have a fast iteration during research. In addition, a new web portal 

for MUFOLD has been designed and implemented to provide online services or APIs of 

our tools to the community. 
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CHAPTER 1. INTRODUCTION 

1.1 Protein and Protein Structure Prediction 

In biology, proteins are large biomolecules consisting of chains of amino acid residues. 

Proteins perform a vast array of functions with different structures. Understanding the 

three-dimensional structure of a protein is very important and helpful to understand the 

protein functions. In 1972, Anfinsen and his colleagues received the Nobel Prize for 

Anfinsen’s dogma: A protein’s native structure is uniquely determined by its amino acid 

sequence (Anfinsen, 1973). From that time, it became the biggest challenge in structural 

bioinformatics to predict a protein’s structure given only its amino acid sequence (Samish, 

Bourne, & Najmanovich, 2015). 

There are different levels of structural organization of a protein: protein sequence, 

secondary structure, tertiary structure, and quaternary structure. The protein sequence is a 

sequence of amino acid residues with each amino acid represented using a letter. The 

secondary structure is a form of local segments of a protein. It can be classified into alpha 

helix, beta sheet, and coil. A tertiary structure of a protein is the three-dimensional structure 

of the complete protein. A quaternary structure is a complex of multiple proteins. 

The problem of protein structure prediction and modeling has been actively applied in 

many areas such as drug design, protein classification, gene function annotation, and 

immunotherapy. The traditional experimental methods such as X-ray crystallography or 

Nuclear Magnetic Resonance (NMR) can give accurate structure of a protein but they could 

be very time-consuming and expensive (Johnson, Srinivasan, Sowdhamini, & Blundell, 

1994). 
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1.2 Protein Loop Modeling 

For the word “loop”, there are two different meanings. One is referred to as the segments 

that are not 𝛼-helix or 𝛽-sheet structures in secondary structure. Another one is referred to 

as the regions with insertions or deletions in the target sequence or templates. This research 

focuses on the second meaning in this research because in the homology protein modeling 

problem, the template may have gaps, which is a region that the amino acid has no atomic 

coordinates. In this case, it is important to reconstruct these missing regions for protein 

functions and dynamics studies (Ginalski, 2006). It is a small-scale 3D structure prediction 

since we know the protein sequence of the missing segments and we try to predict the 

structure from its sequence and its surrounding known structures. The quality of the 

complete protein prediction can be improved if we can fill in those missing regions very 

well. The prediction of those missing regions is called the loop modeling problem (Levefelt 

& Lundh, 2006). The following Figure 1.1 shows an example of loop modeling. The model 

on the left side is the initial model with a missing region, and the three models on the right 

side are the complete models with the missing region filled in by three different structures. 
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1.3 Protein Contact Map Prediction 

A protein contact map is a binary matrix representing the presence or absence of spatial 

contact between all pairs of amino acid residues of a protein. For a protein with length 𝐿, 

the contact map of it is a binary 𝐿 × 𝐿 matrix 𝐶, in which each element 𝐶#$ is defined by: 

𝐶#$ = 𝑓(𝑥) = +0, 𝑖𝑓	𝐷 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where 𝐷 is the Euclidean distance between 𝐶" atoms (𝐶! for glycine) of residue 𝑖 and 𝑗. 

The threshold is usually 8 angstroms.  

Similar to contact map, distance map is used in our research. Distance map is like 

contact map, where the former contains real distance values and the latter contains whether 

the distance is within a threshold. The following Figure 1.2 shows an example of the 

contact map (left) and the distance map (right) of protein 3A35-A. In this figure, the value 

-1 means the corresponding residues are missing in the PDB file. 

 
Figure 1.1 An example of loop modeling problem. The loop region can be filled in in 
different ways. 
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Contact map prediction is very important because it can help to determine the 3D 

structure of the protein (Vendruscolo, Kussell, & Domany, 1997). Knowing if two residues 

are in contact or not gives us a basic topology structure of the protein and can reduce the 

conformation searching space. In addition, distance map is also very useful since by 

applying Multidimensional Scaling algorithm we can convert a distance map to 3D 

structure (Jingfen Zhang et al., 2010). 

1.4 Protein Contact Map Refinement 

State-of-the-art contact prediction methods are not yet capable of correctly predicting 

all contacts for a given amino acid sequence. In order to improving the quality of predicted 

contact maps, we can add a post process after the predictions are done. The post process 

will use more information that may be missing in the prediction stage to refine the predicted 

contact maps.  

1.5 Contributions 

This thesis makes the following contributions: 

 
Figure 1.2 An example of contact map and distance map of protein 3A35-A. 
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1. For protein loop modeling problem, a Generative Adversarial Network (GAN) that 

can utilize the context information of the missing region from its templates and 

predict its distance map is proposed. The predicted distance map is converted back 

to 3D structure using Multidimensional Scaling algorithm. In our experiments, the 

GAN can improve the quality of the predicted missing region than without using 

GAN. To the best of our knowledge, it is the first successful GAN application in 

protein structure prediction. 

2. For contact map prediction problem, a new two-stages multi-branch network based 

on fully convolutional neural network and residual network has been proposed. The 

first stage predicts the distance maps and the second stage predicts contact map. 

Extensive feature engineering and experiments have been done to understand the 

problem and to find better configurations of the network.  

3. For contact map refinement problem, a new method, called TPCref (Template 

Prediction Correction refinement), is proposed to refine and improve the prediction 

results of a contact map predictor using protein templates. Based on the idea of 

collaborative filtering from recommendation system, TPCref creates a contact filter 

from the templates’ prediction results and the templates’ native structure. In our 

background evaluation, comparable methods for refining contact map predictions 

were not found. 

4. The new MUFOLD protein structure prediction platform has been designed and 

implemented. It was refactored and developed using Objected Oriented 

Programming language and was divided into several modules. Each module is 

decoupled with each other and communicated with each other using our own well-
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defined protocols. New tools or algorithms can be easily integrated and tested. 

Currently, our MUFOLD platform contains tools for protein structure prediction, 

secondary structure prediction, supersecondary structure prediction (Psi-phi angles, 

beta-turn and gamma-turn), and contact map prediction. 

5. A web services system for our tool has been designed and implemented. One general 

backend system was developed to manage jobs submitted by user on the server side. 

Multiple frontend web portals were developed for each tool in MUFOLD. The web 

portal has been used widely in our community and is constantly updated to provide 

the best services. 

1.6 Thesis Organization 

This thesis is organized into the following sections: 

1. Chapter 1 describes the introduction of computational biology and an overview of 

problems that this work focuses on. 

2. Chapter 2 describes the background and related work of protein loop modeling and 

protein contact map prediction. The basic background of deep learning and the 

applications of deep learning in computational biology are also reviewed.  

3. Chapter 3 introduces our tailored Generative Adversarial Network (GAN) for 

protein loop modeling. The proposed the GAN transforms the protein loop modeling 

problem into an image inpainting problem and outperforms all the previous 

predictors. 

4. Chapter 4 introduces our deep neural network for protein contact prediction. The 

network consists of 4 networks in total and they are divided into two stages. The 
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stage 1 focus on predicting distance map and the stage 2 focus on predicting contact 

map. 

5. Chapter 5 introduces our tool, TPCref, for protein contact map refinement. It 

explains how the idea of collaborative filtering is applied to the contact map 

refinement problem to utilize the knowledge of the classification results from 

predictions of template sequences.  

6. Chapter 6 introduces the development of our comprehensive protein prediction 

platform MUFOLD. It is an end-to-end platform that can predict the 3D structure 

from the protein sequence. It has four main modules: the database generation, 

template searching and selection, model generation, and model selection. This 

chapter covers the system architecture overview and the details of each module. This 

chapter also introduces the development of our web services. Three online tools are 

provided to the community: the secondary structure and supersecondary structure 

prediction server, the 3D structure prediction server, and the contact map prediction 

server.  

7. Chapter 7 summarizes all the previous work and describe the future work. 
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CHAPTER 2. BACKGROUND AND RELATED WORK 

2.1 Protein Distance Map and Multidimensional Scaling 

Usually the representation of the structure of a protein is using 3D coordinates for each 

atom in amino acid. Those coordinates can uniquely define the spatial locations of atoms 

in amino acid. However, this representation is orientation dependent. When the structure 

rotates, the values of coordinates change. A protein can have infinite such representations 

while all of them are identical after superimposing. In this work, another representation of 

the protein structure, which is a 2D distance map of 𝐶! atoms, is used. If the length of the 

protein sequence is 𝑁, the distance map will be a 𝑁 by 𝑁 matrix, in which each value is a 

real Euclidean distance of 𝐶! atoms of two amino acids. This representation is orientation 

independent and easier to handle in deep neural networks. 

Multidimensional Scaling (MDS) can be used to restore the protein 3D structure from 

its distance map (Jingfen Zhang et al., 2010). MDS is an efficient method for solving the 

graph realization problem. It can find a placement of points from another multidimensional 

space in the current multidimensional space, where the distances between points resemble 

the original dissimilarities. In our case, MDS can restore the 3D structure of 𝐶!  while 

preserving the distance constraints in the 2D space, as shown in the following figure. Then 

PULCHRA (Rotkiewicz & Skolnick, 2008) is used to build the full atom structure from 

the 𝐶! 	backbone structure. 
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2.2 Protein Loop Modeling 

In general, there are two main strategies for the loop modeling problem: ab initio 

method and template-based method. 

2.2.1 Ab-Initio Methods 

The ab initio method is also regarded as a mini protein folding problem (Fiser, Do, & 

Sali, 2000). It generally contains initial sampling and loop conformation selection. It first 

generates conformations by some statistical methods under geometry constraints and fit the 

loop conformation into the gap by loop closure algorithms. Then use some selection 

algorithm in terms of minimization of the energy functions to select the final 

conformations.  

ModLoop from MODELLER (Fiser et al., 2000) uses this method in their program. 

First, they build a straight line in the gap as the initial conformation of the loop, then use 

conjugate gradient minimization and simulated annealing to get the conformation with the 

lowest energy. The energy function is a sum of simple restraints in terms of distances and 

angles. Similar to ModLoop, another program Loopy (Xiang, Soto, & Honig, 2002) first 

 
Figure 2.1 A protein 2D distance map of 𝐶! atoms (left) and the corresponding 3D 
structure (right). They can be converted to each other. 
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generates loop conformations by sampling torsion angle pairs. Then it uses random tweak 

loop closure algorithm to close the loop. Later, RAPPER (de Bakker, DePristo, Burke, & 

Blundell, 2003) program generates the loop conformation by combining fragments. The 

fragments are sampled by residue specific 𝜙/𝜓 angles from one end of the loop towards 

the other end. Then they use anchor goodness-of-fit, SCWRL clash energy, and Samudrala-

Moult potentials for final selections. Similarly, multiscale modeling method (Olson, Feig, 

& Brooks, 2008) using lattice-based low-resolution models and all-atom simulation is  

proposed to generate initial loop conformations. Then a physical energy-based scoring 

function is used to do selection. RCD+ (Lopez-Blanco, Canosa-Valls, Li, & Chacon, 2016) 

program uses the random coordinate descent (Chys & Chacon, 2013) algorithm to generate 

initial loop conformations, then the conformations are ranked by a distance-orientation 

dependent energy filter. Top ranked loops are refined with the Rosetta energy function. 

2.2.2 Template-Based Methods 

This method is also called database or knowledge based method. It finds existing loops 

in database, like Loops in Protein (LIP) (Michalsky, Goede, & Preissner, 2003) or Loop in 

Membrane Proteins (LIMP) (Hildebrand et al., 2009) databases, or the self-generated 

database, by superimposing the stem region of the gap and then selects ones with low 

RMSD or sequence similarity. SuperLooper (Hildebrand et al., 2009) is a program that 

searches LIP and LIMP databases to find loop candidates. Then all the candidates are 

scored based on sequence criteria and the RMSD of overlap regions. A more advanced 

database search algorithm in FREAD (Choi & Deane, 2010) uses four main filters in 

database search phase: anchor 𝐶!  separations, sequence similarities, statistical energy 
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function, and anchor RMSD. It proves that the sequence similarities filter can dramatically 

improve the results. 

Some other tools use the combination of ab-initio and template based methods or use 

some other hybrid methods, for instance, NGK (Stein & Kortemme, 2013), Galaxy PS1 

(Park & Seok, 2012) and Galaxy PS2 (Park, Lee, Heo, & Seok, 2014). Among those 

methods, NGK performs sampling for the loop structure based on the idea of combining 

intensification of torsion and parameter annealing strategies. Both Galaxy PS1 and Galaxy 

PS2 are loop refinement methods that starts with an inaccurate loop structure. The energy 

of Galaxy PS1 is optimized for application to the refinement of template-based models, 

while Galaxy PS2 is developed for higher performance for the near native models. 

2.3 Protein Contact Map Prediction 

During the protein structure prediction, if we know the contact map then we can derive 

the structure topology by following the constraints in the contact map (Vendruscolo et al., 

1997). Therefore, researchers have been working the contact map prediction method for a 

long time. There are several time periods with different methods as the mainstream and the 

performance of prediction is growing continuously.  

2.3.1 Statistical Methods 

At the early stage, researchers were trying to apply pure statistical methods to predict 

contact map. There are two types of statistical methods: the local statistical methods and 

global statistical methods.  

The local statistical methods treat each pair of two residues in the sequence is 

statistically independent from each other. It is not widely used because it suffers from the 
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transitive effects between multiple residue pairs so that it cannot distinguish between direct 

and indirect correlation signals (Weigt, White, Szurmant, Hoch, & Hwa, 2009). The global 

statistical methods, on the other hand, consider all other residue pairs while predicting one 

pair.  

The global statistical model that is commonly used to describe this joint probability 

distribution is the Pott’s model (F. Y. Wu, 1982), and different types of methods were 

proposed to infer the parameters for the Pott’s model. Other than the traditional log-

likelihood maximization method, other direct coupling analysis (DCA) based method were 

proposed as well. For example, message passing DCA (mpDCA) in 2009 (Weigt et al., 

2009), pseudo-likelihood approximations (plmDCA) in 2011 (Ekeberg, Lövkvist, Lan, 

Weigt, & Aurell, 2013), mean-field inversion approximations (mfDCA) in 2011 (Morcos 

et al., 2011), and GaussianDCA in 2014 (Baldassi et al., 2014), etc. So far, pseudo-

likelihood is proved to be the most successful approximation for contact prediction, and it 

is widely implemented in different tools, such as the GREMLIN (Kamisetty, Ovchinnikov, 

& Baker, 2013) and CCMPred (Seemayer, Gruber, & Soding, 2014), or plmDCA, etc. 

2.3.2 Co-evolution of Protein Residues 

In biology, co-evolution means two species affect each other’s evolution. For example, 

in the following Figure 2.2, the crab and snail are co-evolved because when the crab has 

more powerful claws, the snail will have much thicker shells that can protect itself from 

the crab. 
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The same concept applies to protein residues. In proteins, random mutations occur in 

residues over time. When a residue mutates, to preserve protein’s function or structure, 

there is a compensatory residue mutates elsewhere in the protein, and this phenomenon is 

called correlated mutation. The key idea is those co-evolved positions are more likely to 

be in contact because they are closer to each other in 3D space (Godzik & Sander, 1989).  

2.3.3 Direct Coupling Analysis (DCA) 

The invention of DCA in 2009 was a breakthrough to predict contacts from sequences 

(Weigt et al., 2009). Different inference methods for DCA have been proposed and the 

following Table 2.1 is a summary of main DCA methods. 

 
Figure 2.2 An example of co-evolution in biology. 
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The mpDCA is computational expensive and only applicable to small proteins. It is not 

widely used for contact prediction now, but it is a breakthrough from traditional methods 

to DCA based methods. Later, mfDCA was proposed and it was around 100 times faster 

than mpDCA. Pseudo-likelihood-based methods were proposed later, and they were 

significantly outperformed previous methods. 

One disadvantage of DCA methods is that they require very large multiple sequence 

alignments to provide accurate contact predictions. This problem has been overcome by 

refining the initial DCA prediction with deep learning methods. 

2.3.4 Machine Learning Methods 

Multiple machine learning based methods have been proposed to learn the mapping 

between features and contact map, such as SVMCon (Cheng & Baldi, 2007) and SVM-

SEQ (S. Wu & Zhang, 2008) that are using support vector machine (SVM), PhyCMap (Z. 

Wang & Xu, 2013) that are using random forests. In recent years, many neural network or 

deep learning based methods have been proposed and they have improved the performance 

Table 2.1 Different methods for inferring DCA. 

DCA methods Tools Year 

Message passing algorithm (mpDCA) - 2009 

Original pseudo-likelihood approximations  GREMLIN 2011 

Naive mean-field inversion approximation (mfDCA) EVfold 
FreeContact 2011 

Sparse inverse covariance estimation PSICOV 2012 

Improved pseudo-likelihood method 
CCMPred 
plmDCA 
GREMLIN 

2013 

Related approach to mfDCA and PSICOV GaussianDCA 2014 
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significantly, such as NNCon (Tegge, Wang, Eickholt, & Cheng, 2009), DNCon (Eickholt 

& Cheng, 2012), and RaptorX (Sheng Wang, Sun, Li, Zhang, & Xu, 2016), etc. 

Another type of predictors has been proposed recently that are combining multiple other 

predictors’ results. This type of predictor is called meta predictor. Since each single 

predictor has its own algorithm and advantage, if they are combined then we can take 

advantage of each one’s features. There are several meta predictors. The PconsC (Skwark, 

Abdel-Rehim, & Elofsson, 2013) combines sequence features and predictions from 

PSICOV and plmDCA. The metaPSICOV (David T Jones, Singh, Kosciolek, & Tetchner, 

2014) and RaptorX all combine sequence features and predictions from PSICOV, mfDCA, 

and CCMPred, etc. The EPSILON-CP (Stahl, Schneider, & Brock, 2017) and NeBcon (B. 

He, Mortuza, Wang, Shen, & Zhang, 2017) combine fie and eight other predictors’ results, 

respectively.  

2.3.5 Evaluation Metrics 

There are many kinds of evaluation metrics depending on the purpose of using contact 

map. In this work the evaluation metrics in CASP community (Monastyrskyy, D'Andrea, 

Fidelis, Tramontano, & Kryshtafovych, 2014, 2016; Monastyrskyy, Fidelis, Tramontano, 

& Kryshtafovych, 2011) is followed. According to CASP definition, a contact means the 

distance of 𝐶" atoms (𝐶! for glycine) of two residues is less than 8 Å.  

The main performance metric is the mean precision, which is the ratio of the number of 

true contacts to the top scoring predicted contacts, as the following equation shows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

where the TP is the true positive contacts and FP is the false positive contacts. 
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Since the number of residue pairs is very large and it is not necessary to evaluate all of 

them. Therefore, all residue pairs are divided into three categories depending on the residue 

distance, i.e. the separation between two residues in the protein sequence. The definition 

of different contact ranges is shown in the following equation and we usually evaluate three 

ranges separately. 

𝐶𝑜𝑛𝑡𝑎𝑐𝑡	𝑅𝑎𝑛𝑔𝑒 = K
𝑠ℎ𝑜𝑟𝑡, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 < 6

𝑚𝑒𝑑𝑖𝑢𝑚, 6 ≤ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 23
𝑙𝑜𝑛𝑔, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 24	

 

In each contact range, we select the top 𝑁 scoring predicted contacts to evaluate and 𝑁 

depends on the length of the protein. Generally, we choose 𝑁 as the following values: 

𝐿/2, 𝐿/5,	and 10. 

There is another evaluation metric called F1 score used by CASP for ranking by default. 

F1 score is the harmonic mean of precision and recall in range of 0 and 1. It is defined by 

the following equation: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

The following Figure 2.3 shows an example of sample contact prediction output and the 

overview of all scores to be evaluated. In the sample predictions output, we can see in each 

line there are five values delimited by space. The first two values are the residue ID in the 

sequence. The next two values are the distance definition of in contact. Here it means two 

residues are in contact if the Euclidean distance of 𝐶"  atoms of these two residues is 

between 0 and 8 angstroms. The last value is the predicted probability of these two residues 

are in contact. We use the probability as the score to rank the predictions. 
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2.4 Predicted Contact Map Refinement 

2.4.1 Existing Methods 

In 3D protein structure prediction, refinement is a very common process since the 

prediction is not accurate enough to be comparable to the experimentally determined native 

structures. The goal of protein structure refinement is to make a starting structure closer to 

its native structure. There are many existing protein structure refinement tools such as 

GalaxyRefine (Heo, Park, & Seok, 2013) and 3DRefine (Bhattacharya, Nowotny, Cao, & 

Cheng, 2016) etc. 

However, to the best of our knowledge, there is no such work for the contact map 

prediction. Most of contact map predictors take sequence as input and give a contact map 

prediction directly. We are the first one to propose a tool that can be used for any other 

existing contact map predictors to do post process refinement.   

 
Figure 2.3 Example of contact map prediction output and the evaluation scores. 
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2.4.2 Evaluation Metrics 

The evaluation metrics for refined contact map are the same as traditional contact map 

as described in Chapter 2.3.5. Additionally, the diversity of predicted and refined contact 

maps was considered, as it has been shown to be an important consideration for protein 

structure prediction (B. He et al., 2017; Kinch, Li, Monastyrskyy, Kryshtafovych, & 

Grishin, 2016).  Diversity was evaluated as the Shannon entropy of the top-L predicted 

contacts (for all ranges together and for only long-range), with the contact map divided into 

a 10 by 10 grid (B. He et al., 2017), according to the following equation: 

𝐻 = −W𝑝% 𝑙𝑜𝑔& 𝑝%

'((

%)'

 

where H is the Shannon entropy, equal to a negative sum over each of the 100 contact 

map cells, and pe is the fraction of top-L predicted contacts within the e-th cell which were 

correctly predicted (Y. Li, Hu, Zhang, Yu, & Zhang, 2019). 

2.5 Deep Neural Networks 

In recently years, deep learning has made a huge impact on Computer Science and 

achieved unprecedented performance on many Machine Learning problems, such as image 

classification (Krizhevsky, 2012), speech recognition (Hinton et al., 2012), and natural 

language processing (Collobert & Weston, 2008). 

The development of Graphic Processing Unit (GPU) makes it possible to train very large 

neural networks faster. Generally, each deep neural network contains an input layer, hidden 

layers, and an output layer. The number of hidden layers can be very large so that the deep 

neural network can be trained with many parameters using a large amount of data. Those 
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hidden layers can extract the complex abstract representations of data automatically rather 

than human-designed representations. Many advanced deep neural network architectures 

have been proposed, such as Convolutional Neural Network (Krizhevsky, 2012), Recurrent 

Neural Network (Mikolov, Karafiát, Burget, Cernocký, & Khudanpur, 2010), and Residual 

Neural Network (K. He, Zhang, Ren, & Sun, 2015). They have shown great performance 

improvement in various fields. For bioinformatics, deep learning has also been applied to 

many problems and has achieved some good results, such as secondary structure prediction 

(S. Wang, Peng, Ma, & Xu, 2016), loop modeling (Z. Li, Nguyen, Xu, & Shang, 2017), 

quality assessment (J. Wang, Li, & Shang, 2017) and protein contact map prediction 

(Sheng Wang et al., 2016). 

2.5.1 Convolutional Neural Network 

In the fields of multiple data types processing, such as two-dimensional image 

processing and classification, the convolutional neural network (CNN) is an important 

architecture and has achieved great performance on ImageNet competition. It is inspired 

by the organization of the animal visual cortex. The basic architecture consists of the 

convolutional layer, followed by the pooling layer, and at the end some fully connected 

layers and the output layer. The convolutional layer contains multiple feature maps to 

extract features from the input data. Local connectivity and parameter sharing are common 

methods to reduce the number of parameters.  The pooling layer is to perform the non-

linear down sampling. The most common method is max pooling. After several 

convolutional layers and pooling layers, there is a fully connected layers to do the final 

decision. The architecture of convolutional neural network allows the network to learn 
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more and more abstract features in a higher level. The following shows the basic operation 

of convolution with a 3 × 3 kernel. 

 

2.5.2 Fully Convolutional Network (FCN) 

The fully convolutional network (FCN) was proposed in this paper (Shelhamer, Long, 

& Darrell) for image semantic segmentation. It can take input of arbitrary size and produce 

the correspondingly sized output. In traditional CNN classification network, there are fully 

connected layers at the end. The fully connected layers map the feature maps from 

convolution layer to a fixed length feature vector, for example, the AlexNet (Krizhevsky, 

2012). Therefore, the input size must be fixed because the output length is fixed. To solve 

this problem, FCN was proposed, and it transforms the fully-connected layers into 

convolution layers with kernel size 1 × 1 since the convolution operation doesn’t care 

about the input size and a 1 × 1 kernel can do an operation similar to fully connected layer 

for each pixel in the feature depth axis. The following Figure 2.5 shows an example of 

applying 1 × 1 kernel to get a same-sized output. 

 
Figure 2.4 Convolutional operation with a 3 by 3 kernel. 
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The network can be trained end-to-end using arbitrary size of input and in one forward 

propagation all the pixels can be predicted. 

2.5.3 Residual Neural Network (ResNet) 

The residual neural network is introduced recently in the ImageNet competition the 

results were quite impressive (K. He et al., 2015). The basic structure of this network 

architecture is the building block, in which there could be some other layers. If the input 

of a building block is 𝑋, then the output of this block is	𝑋 + 𝑋′, in which 𝑋′ is the non-

linear transformation of 𝑋. A function 𝑓 indicating the difference between the input and 

output of the building block is defined, then 𝑓 is called residual function. This feature of 

the network will give it the ability to learn something different from what the input has 

already encoded. Also, this network will handle the vanishing gradient problem very well. 

The basic structure of a building block is shown in the following figure. 

 
Figure 2.5 An example of using fully convolutional operation to get a pixel 
classification output. 
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The residual neural network is used in this work for the following reasons. First, the 

protein prediction problem is very complicated and there will be a very large number of 

parameters to be trained. In order to do so, very deep neural network is needed. Traditional 

network architectures are not able to handle this, while residual neural network, which is 

inspired originally by the highway network, can handle this very well. Second, the residual 

neural network is very similar to the recurrent neural network so that it is a good model to 

process sequential data. Third, this model has been tested in the most recent work and they 

have achieved great performance for prediction of contact map. We believe by making 

improvements based on the state-of-the-art work we can make a difference as well. 

2.5.4 Generative Adversarial Network (GAN) 

Generative Adversarial Network (GAN) was proposed recently as a new type of deep 

neural network (Goodfellow et al., 2014), in which two models are trained simultaneously: 

a generative model G that captures the data distribution, and a discriminative model D that 

estimates the probability that a sample came from the training data rather than G, and also 

provides gradients to model G. It is like a two-player game that G tries to generate more 

realistic results to fool D while D tries not to be fooled by G. 

 

Figure 2.6 Residual neural network building block structure. 
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CHAPTER 3. MUFOLD-LM: PROTEIN LOOP MODELING USING 
GENERATIVE ADVERSARIAL NETWORK  

3.1 Motivations 

Our method is inspired by the image inpainting problem, which is that given an image 

with a missing region, we need to construct the missing region to make the whole image 

look as real as possible (Yeh, Chen, Lim, Hasegawa-Johnson, & Do, 2016), as the 

following Figure 3.1 shows.  

 

Several machine learning approaches have been proposed to deal with this problem. 

Deep Convolutional Generative Adversarial Network (DCGAN) is recently used to do 

semantic image inpainting (Yeh et al., 2016). They proposed two loss functions: the 

perceptual and contextual losses. The perceptual loss ensures a perceptually realistic output 

 
Figure 3.1 Example of image inpainting problem. 
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image, and the contextual loss preserves similarity between the input corrupted image and 

the recovered image. 

The image inpainting problem is like our loop modeling problem. When a protein has 

missing region, the corresponding distance map will have a missing region as well, like 

what the following Figure 3.2 shows. The missing region is highly dependent on the 

existing region following some specific patterns. We will let the deep neural network to 

learn those underlying patterns, i.e. the context, and predict the missing region based on 

what has been learned.  

 

3.2 Problem Formulation 

The loop modeling problem is addressed as follows. Give a protein sequence S, in which 

M is a continuous segment and is it considered as the missing region. Our goal is to give 

the sequence S and the true coordinates of 𝑆 −𝑀 as the input and to predict the coordinates 

of the missing region M as the output. The M’ is used as the notation for the predicted 

missing region. 

 

Figure 3.2 The complete 2D representation of a protein (left) and the incomplete 
representation with a loop (right). 
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The evaluation metric is the root mean square deviation (RMSD) between M and M’, 

and the objective is to make it minimal. The RMSD value is calculated using the 

coordinates of the corresponding main chain atoms (N, Ca, C and O) between M and M’, 

as shown in the following equation Those atoms are generally the representative atoms of 

a protein and can be used to generate the full atom model. 

𝑅𝑀𝑆𝐷*++, 	= \ 1
|𝑀|W

‖𝑀	– 	𝑀′‖&
|.|

#)'

 

Both M and M’ need to be superimposed before calculation of RMSD. 

3.3 MUFOLD-LM System Architecture 

The MUFOLD_LM method can be divided into two parts: the template pool generation 

including subsequence extraction and alignment searching, and the neural network training 

and prediction. The term “target” is used to represent each protein with loop to be modeled. 

The following figure shows the overall system flowchart. 
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Per-target Training and Predicting 

MUFOLD_LM method trains one model for each target and then do prediction based 

on this target’s templates pool. Instead of picking the best patch as the template of the loop, 

it tries to learn the context of the loop region from a pool of candidate patches and predict 

the real loop region based on the learned context using deep learning techniques. It is still 

template based, but it has a more systematic way to better utilize information of many 

templates than previous methods. By using per-target training and predicting, the input 

features are prepared specifically for the input target and the information can be fully 

utilized in the network.  

 

Figure 3.3 The flowchart of our loop modeling method. 
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Subsequence Extraction 

Given a target sequence, the loop region is located first and a subsequence with a length 

of 50 residues is extracted, in which the loop region will be in the middle. For example, if 

the loop length is 8, then there will be 21 residues on each side of this loop in the 

subsequence. 

Alignment Searching 

For each target subsequence, it is fed into alignment searching tools to get a pool of 

candidate templates. The alignment tools will search the Protein Database Bank (PDB) 

database and do a sequence similarity comparison to find similar templates. The results 

may contain incomplete structures, so a filter is applied to keep those with complete 

structures and 3D coordinates as the final templates. PSI-BLAST (Altschul et al., 1997) 

and HHSearch (Soding, 2005) are used for the alignment searching. In addition, all native-

like templates in the results are excluded to make sure there is no ground-truth structures 

included. The templates do not have to cover a large portion of the target protein and they 

do not have to be statistically significant with small E-values. As long as they can cover 

the missing loop and its flanking region, even the templates with insignificant E-values can 

help. 

Network Training 

In order to fit the templates into a neural network, all the template candidates are 

converted into 50 by 50 distance maps. The distance map can be treated as an image in the 

following training. For each distance map the corresponding loop region is taken out and 
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the loop region is predicted based on the context of the rest of the distance map. More 

details are described in the following Deep Network Structure section. 

Prediction 

After the training, a model for the target subsequence is finished. When doing 

prediction, the incomplete distance map for the target subsequence will be the input, and 

the predicted loop region will be the output. Then MDS is used to restore the 3D structure 

of this 50-length segment and calculate the RMSD between the loop region’s structure and 

its true structure to see the performance. 

3.4 Deep Neural Network Structure 

MUFOLD_LM deep network contains two sub-networks: The Generator Network, and 

the Adversarial Discriminator Network. Two networks are trained simultaneously. The 

whole network structure is shown in the following figure. The term “native” is used to 

denote the ground truth structure. 

 

 

Figure 3.4 Network structure for protein loop modeling using GAN. 
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3.4.1 Generator Network 

As shown in the above figure, the Generator Network consists of two parts: the 

convolutional half to capture the context information of the input into a latent 

representation in the middle (the blue box), and the de-convolutional half (the term “de-

convolutional” sometimes has different meaning (Zeiler, Krishnan, Taylor, & Fergus, 

2010)); in our paper, it means the transpose of the convolution) to reconstruct the missing 

region from the latent representation. 

Convolution 

Unlike the traditional convolutional networks, MUFOLD_LM network keeps the input 

dimension all the time during the convolutional process, i.e. only the number of channels 

changes, but the height and width are always the same with the input and output. It has 

been showed that keeping the dimension can give better performance since the latent 

representation in the middle can capture and keep more information (Masci, Meier, Cireşan, 

& Schmidhuber, 2011). There are 5 layers in this part and each layer contains a convolution 

operation, a Batch Normalization (BN) operation (Ioffe & Szegedy, 2015), and a rectified 

linear unit (ReLU) activation function (Glorot, Bordes, & Bengio, 2011).  

De-convolution 

This part of the network can be understood as a transpose convolution with learned 

filters. It is like an up-sampling but with the same height and width. The intuition behind 

this is the convolutional part captures the context information layer by layer and aggregates 

it into the latent representation, and the deconvolution will try to make use of the context 

information in the latent representation as much as possible to generate the missing region. 
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There are 5 layers in this part and each layer contains a de-convolution operation, a Batch 

Normalization (BN) operation, and a rectified linear unit (ReLU) activation function.  

For the Generator Network, there is no pooling layer and fully connected layer. The 

final output layer is generating a 2D matrix, which can be treated as an image with only 1 

color channel. The kernel size for all layers is 3 by 3 with stride 1, and the number of filters 

in each layer is noted in Fig. 4. The generated output in our actual implementation is the 

missing region plus an overlap region on each side. The overlap size we use is 5 so that if 

the input loop length is𝑛 , the predicted loop length will be 𝑛 + 10. In this way, the 

generated results can have a better binding to its context. 

3.4.2 Adversarial Discriminator Network 

MUFOLD_LM’s Adversarial Discriminator Network is a deep neural network with 4 

convolutional layers and 1 fully connected layer. The input is a 50 by 50 distance map, and 

the output is the probability whether the input is generated by Generator Network or real. 

In this network, each convolution layer contains a convolution operation, a Batch 

Normalization (BN) operation, and a rectified linear unit (ReLU) activation function. 

For the Adversarial Discriminator Network, the kernel size is 4 by 4 with stride 2 in 

order have a larger receptive field with fewer number of layers. The number of filters in 

each layer is noted in the above figure 

3.4.3 Implementation and Training 

The whole network is trained to minimize the RMSD between the generated missing 

region and the ground truth to make the generated missing region more realistic. In order 
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to achieve this, two loss functions are defined: the reconstruction loss and the adversarial 

loss.  

Reconstruction Loss 

The reconstruction loss is to measure the similarity of the reconstructed missing region 

and the ground truth. The L2 distance between the predicted distance map of missing region 

and the distance map of ground truth is used. In the following equation, z is the input to the 

Generator Network (G), x is the ground truth.  

𝐿𝑜𝑠𝑠/%0+1 	= ‖𝐺(𝑧)	– 	𝑥‖&& 

Adversarial Loss 

The adversarial loss is to pick the best distribution according to the training set. During 

the training, the Adversarial Discriminator Network (D) is trained to maximize 𝑙𝑜𝑔(𝐷(𝑥)), 

where x is the ground truth, i.e. the probability of correct distinction between the generated 

result and the ground truth. In the meantime, the Generator Network (G) is trained to 

minimize 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) in which z is the input to G: 

𝑀𝑖𝑛
2
𝑚𝑎𝑥
3

𝐸4∈6 𝑙𝑜𝑔c𝐷(𝑥)d + 𝐸7∈8 𝑙𝑜𝑔c1	– 	𝐷(𝐺(𝑧))d 

The adversarial loss is therefore defined as: 

𝐿𝑜𝑠𝑠9:; 	= 	𝑙𝑜𝑔c1	– 	𝐷(𝐺(𝑧))d 

The overall loss function is defined as: 

𝐿𝑜𝑠𝑠9** 	=	 𝐿𝑜𝑠𝑠/%0+1 +𝐿𝑜𝑠𝑠9:; 

The program is implemented using Tensorflow v1.0 (Abadi et al., 2016). For the 

training process, the Generative Network is trained at every step and the Adversarial 

Discriminator Network is trained at every 10 steps, which turns out to be the best 
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configuration. The Adam optimizer is used with the learning rate 0.0001 (Kingma & Ba, 

2015). Early stopping is used to determine when to stop the training. The number of 

templates varies from 250 as the minimum to 617 as the maximum, with 415 on average. 

The template candidate dataset for each target is randomly divided into the training set and 

the validation set with the ratio of 9:1. 

3.5 Evaluation 

3.5.1 Benchmark Dataset 

The benchmark for loop modeling performance used in our experiment is a dataset 

including 40 backbone perturbed targets from this paper (Park et al., 2014). In this dataset, 

20 targets have an 8-length missing region in the structure (8-Res benchmark), and another 

20 targets have a 12-length missing region in the structure (12-Res benchmark). The rest 

of the structure in a protein is known. Totally there are 40 targets, but there are two targets, 

2SGA from 8-Res benchmark and 1C5E from 12-Res benchmark, that we can’t make the 

missing region in the middle in subsequence extraction process, therefore we exclude those 

two targets in our experiments. 

Since MUFOLD_LM deep network contains a Generative Network and an Adversarial 

Network, the performance of the single Generative Network without the adversarial part is 

tested to see if the Adversarial Network can really help and how much it can help to 

improve the performance. The first experiment is called Exp_noGAN. Then the whole 

network with both networks trained simultaneously is tested, which is called Exp_GAN. 

MUFOLD_LM’s results are compared with other state-of-the-art loop modeling tools 

including NGK, Galaxy PS1, and Galaxy PS2.  
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3.5.2 Results 

The results for 8-Res benchmark are shown in Table 1, the results for 12-Res benchmark 

are shown in Table 2. All experiments were executed 10 times and the average RMSD 

scores are reported. The unit for all numbers is Å. 

 

From the 8_Res benchmark results, we can see our method with GAN gets the best 

average result compared to other tools. It has an almost 44% improvement to the best of 

other tools, i.e. Galaxy PS2. In addition, our GAN method gets the smallest standard 

deviation, which means our network prediction is more stable without too many outliers. 

For the experiment without GAN, it can already beat other tools, and after adding GAN, 

the results get even better. 

Table 3.1 Loop modeling results on 8-Res benchmark. 

PDB* NGK Galaxy PS1 Galaxy PS2 Exp_noGAN Exp_GAN 
135L 3.9 3.7 4.3 1.2 1.2 
1ALC 1.3 1.4 1.4 0.3 0.3 
1BTL 0.4 1.3 0.9 0.4 0.6 
1CEX 2.1 2.0 1.8 0.7 1.1 
1CLC 0.4 0.4 0.3 1.6 0.6 
1DDT 3.7 2.0 1.5 1.9 1.5 
1EZM 4.3 4.2 3.8 2.1 2.2 
1HFC 0.7 1.0 0.9 0.5 0.9 
1IAB 1.0 2.2 1.8 0.8 1.3 
1IVD 2.7 3.6 2.2 1.5 1.7 
1LST 1.2 1.1 1.1 1.5 1.2 
1NAR 1.4 2.1 1.8 2.5 2.7 
1OYC 1.1 1.6 1.7 0.7 0.7 
1PRN 8.3 6.9 8.8 1.9 1.0 
1SBP 0.9 0.8 0.8 1.1 1.0 
1TML 1.1 1.1 0.6 2.0 2.1 
2CMD 1.9 4.0 2.3 1.0 0.9 
2EXO 1.5 1.0 1.1 1.1 0.6 
5P21 1.7 1.9 1.9 0.8 0.5 
AVG. 2.08 2.23 2.05 1.24 1.15 

STD. DEV 1.89 1.60 1.91 0.64 0.65 
*For PDB 2SGA, the loop region can’t be made in the middle of subsequence, so it is excluded here. 
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From the 12_Res benchmark results, we can see our method with GAN gets the best 

average result compared to other tools as well. The Galaxy PS2 has the result better than 

our method without GAN, but it has the disadvantage that it needs initial loop information 

to do refinement while our method can predict the missing region directly. Also, our 

method gets the smallest standard deviation in the same way as in 8-Res benchmark. 

 

Two cases are further visualized: 1CLC from 8-Res benchmark, and 1BN8 from 12-Res 

benchmark, to see the differences between the predictions without GAN and the predictions 

with GAN as shown in Table 3. For all visualizations, the yellow model is the ground truth. 

The visualized models are superimposed already. From the visualization, it is observed that 

the GAN can make the prediction results smoother and more similar to the ground truth. 

For example, in the case of 1BN8, there is a small clash in the Exp_noGAN predicted 

Table 3.2 Loop modeling results on 12-Res benchmark.  

PDB* NGK Galaxy PS1 Galaxy PS2 Exp_noGAN Exp_GAN 
1A8D 3.7 4.5 3.1 2.8 2.7 
1ARB 1.7 2.1 1.9 1.7 2.1 
1BHE 1.7 2.3 3.5 2.8 3.2 
1BN8 1.1 4.3 1.1 3.0 1.7 
1CB0 0.9 5.7 0.9 1.1 1.7 
1CNV 6.3 6.4 6.5 3.1 2.0 
1CS6 1.1 1.7 1.6 3.8 4.0 
1DQZ 7.5 1.5 3.3 2.0 2.6 
1EXM 1.1 3.0 1.3 0.5 0.6 
1F46 2.6 4.5 3.8 3.0 2.7 
1I7P 1.9 2.8 1.7 1.6 1.3 
1M3S 3.2 4.3 2.7 1.9 2.0 
1MS9 1.8 1.8 1.8 1.0 1.4 
1MY7 0.9 2.4 1.0 2.0 2.2 
1OTH 0.8 1.1 0.9 2.4 2.2 
1OYC 0.7 2.7 1.2 0.5 0.4 
1QLW 6.0 2.5 2.9 4.3 2.9 
1T1D 1.3 2.5 1.5 2.4 2.6 
2PIA 0.7 4.5 0.7 3.5 1.4 
AVG. 2.37 3.19 2.18 2.28 2.09 

STD. DEV 2.07 1.48 1.43 1.07 0.88 
*For PDB 1C5E, the loop region can’t be made in the middle of subsequence, so we it is excluded here. 
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structure, which is fixed in the Exp_GAN predicted structure. In the case 1CLC, the 

predicted result without GAN is dramatically different, while in Exp_GAN the generated 

result is much better. 

 

The intermediate results for case 1ALC with 8-length missing region are also visualized 

to see what is going on during the training. We use the model trained at each step to do a 

prediction on the input and to visualize the predicted distance map. In the following figure, 

the eleven distance maps are the intermediate results extracted from some specific training 

steps. The last distance map in red box is the ground truth. It can be observed that the 

missing region is filled in gradually. At the very beginning, it is like random values and 

has no relationship with the context. As the training goes, more and more values can be 

filled in together with the surrounding regions and the patterns of the filled in values get 

closer and closer to the ground truth. 

Table 3.3 Loop modeling visualization of 2 loop region structures from Exp_noGAN and 
Exp_GAN. 

PDB Exp_noGAN 
(Yellow is ground truth) 

Exp_GAN 
(Yellow is ground truth) 

1CLC 
(8_Res) 

 
RMSD: 1.6 

 
RMSD: 0.6 

1BN8 
(12_Res) 

 
RMSD: 3.0 

 
RMSD: 1.7 
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3.6 Conclusion 

It is a novel approach for protein loop modeling using GAN. A Generative Network is 

used to produce prediction results, and an Adversarial Discriminator Network is used to 

distinguish if the result is generated by Generator or is the ground truth. Two networks are 

trained simultaneously. The network can learn the context of the loop region and predict 

the result based on that. The 3D protein structure is represented using 2D distance map in 

the neural network, which can be treated as image and is easier to handle. MDS is used to 

restore the 3D structure from 2D distance map. Experiments show that our overall method 

can achieve the best performance on both 8-Res benchmark and 12-Res loop benchmark. 

 

Figure 3.5 Visualization of intermediates predicted results for case 1ALC. (The first four 
distance maps are at training steps 1, 100, 200, 300 respectively, the fifth to the eleventh 
distance maps are at training steps from 600 to 2400 with 300 incremental steps. The 
last one in red box is the ground truth). 
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The use of Adversarial Discriminator Network also gives better performance than using 

the single Generator Network. 

As the first successful application of GAN in bioinformatics, MUFOLD_LM opens a 

door for many other GAN applications in analysis and prediction problems of biological 

sequences structures, such as protein contact prediction and 3D genome structure 

prediction. 
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CHAPTER 4. MUFOLD-CONTACT: PROTEIN RESIDUE-RESIDUE 
CONTACT MAP PREDICTION  

4.1 Motivations 

We know that a contact map is a binary matrix. If we treat it as a binary image, then 

each pixel in this image can be classified into two categories: in contact or not in contact. 

It is like a pixel-wise image classification. The most common pixel-wise image 

classification problem is image segmentation (Shelhamer et al., 2017), in which the input 

is an image and the output is a same size matrix with each pixel being classified into 

different categories. For example, if there are a desk and a chair in an image as input, then 

all pixels belong to the desk will be classified into one category and all the pixels belong 

to the chair will be classified into another category. The following Figure 4.1 shows the 

concept of image semantic segmentation.  

 

 
Figure 4.1 Example of image semantic segmentation. 
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Inspired by image segmentation problem, our network is designed to do pixel-wise 

classification for protein contact map prediction.  

Another problem we are facing is each protein has different length. For a traditional 

neural network, the input dimension should be fixed because if there is a fully connected 

layer at the end, the number of neurons for the fully connected layer is fixed. The 

convolution operation doesn’t require the fixed dimension. Inspired by Fully 

Convolutional Network (FCN) (Shelhamer et al., 2017), we designed our network to be 

able to accept any length of protein as input and predict the corresponding size of contact 

map as output.  

4.2 Problem Formulation 

The protein residue-residue contact map prediction problem is addressed as follows. 

Given a protein sequence 𝑆 = {𝑅', 𝑅&, … , 𝑅<}. In the sequence, 𝑅#  represents the 𝑖th 𝐶" 

atoms (𝐶! for glycine) of amino acid residue and the length of the sequence is 𝐿. Our goal 

is to predict a 𝐿 × 𝐿 matrix 𝐶, in which each 𝐶#$ represents whether the distance of 𝑅# and 

𝑅# are within a threshold. If the distance is in the threshold, 𝐶#$ is 1, otherwise 𝐶#$ is 0. This 

matrix 𝐶 is called the predicted contact map of protein sequence 𝑆. 

4.3 Input Features  

The features are all generated from the sequence only and can be categories into two 

kinds: the 1D features and the 2D features. The 1D feature means the feature vector is for 

each amino acid in the sequence. The 2D feature means the feature vector is for each amino 

acid pair in the sequence. Assume the input sequence has length 𝐿, then the dimension for 
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1D feature is 𝐿 × 𝑁 in which 𝑁 is the length of the feature vector, the dimension for 2D 

feature is 𝐿 × 𝐿 × 𝑁 in which 𝑁 is the length of the feature vector. 

In the following table, all the features that are used in our program are summarized, 

along with the dimension, the software used to generate the feature, and the database if 

needed in the feature generation. 

Table 4.1 Overview of all features used in our contact map prediction program. 

# Feature Name Dimension Software Database (if any) 

1 PSSM 20 BLAST-2.7.1+ uniref90_042016 

2 SS 3 Psipred_4.0 Profile from 1 

3 SA 1 metaPSICOV 2.0.3 Profile from 1 

4 Multiple Sequence 
Alignment (MSA) 

- HHsuite-2.0.16 uniprot20_2016_02 

5 ALN Stats L × L × 3 metaPSICOV 2.0.3 → alnstats MSA from 4 

6 HHM Profile 30 Hhsuite-2.0.16 → hhmake MSA from 4 

7 CCMPred L × L CCMPred MSA from 4 

8 EVFold L × L freecontact-1.0.21 MSA from 4 

9 PSICOV L × L PSICOV MSA from 4 

10 metaPSICOV L × L metaPSICOV 2.0.3 From 2, 3, 5, 7, 8, 9 

11 shapeString 8 frag1d PSSM from 1  

12 Raw Co-evolution 
Statistics 

L × L × 441 cov21stats MSA from 4 

13 Physicochemical 
Features  

5 Fixed values - 

 

4.3.1 Dataset 

In our research process, two different datasets were tried as training and validation 

datasets. The first one is a smaller one that is a subset of RaptorX’s training dataset (Sheng 
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Wang et al., 2016). This smaller dataset is called version 1. The second one is a larger 

dataset that is a subset of CullPDB (G. Wang & Dunbrack, 2003), and it is called version 

2. 

Dataset Version 1 

In this version there are totally 3799 samples and it is a subset from RaptorX’s training 

dataset. The length of all samples is limited to larger than 50 and shorter than 300. All 

features are calculated by us with the following parameters.  

Blast is manually executed using three iterations. The first two iterations are searching 

against the none-redundant sequence database to get a profile with e-value 1e-3. The last 

iteration is searching against PDB sequence database with the previous profile as input and 

e-value 1.1e4 to get as many as possible alignments with known structures. HHBlits is 

executed using three iterations with e-value 1e-3 and is searching against UniProt20 

database. The other tools are all using the default parameters. 

Dataset Version 2 

In this version, a subset of CullPDB is generated with the following parameters: 

Table 4.2 Database PDB25 generation parameters 

Database date 2018-09-18* 

Maximum percentage identity 25% 
Minimum resolution 0.0 
Maximum resolution 3.0 
Maximum R-value 1 
Minimum chain length 40 
Maximum chain length 700 
Skip entries non-X-ray, CA-only 

* To be able to test on CASP13 targets, we later manually remove all entries that are released after 2018-
05-01. 
 



42 
 

Since the maximum percentage identity is 25%, this dataset is called PDB25. Totally 

there are 13116 entries in this database. The following filtering are applied to the dataset: 

1. Manually remove all entries that are released after 2018-05-01 so that the training 

dataset won’t have any homology or native structure of CASP13 targets. In this way, 

the CASP13 targets can be used to compare the performance. 

2. Remove all entries with Not A Number (NaN) values in the generated features or 

with missing features.  

After the filters above, finally the version 2 dataset has 10896 entries and the following 

figure shows the length distribution of all samples. 

 

During our experiments, it is shown that sometimes the training curve was fluctuated 

sharply on this dataset. After investigation on the fluctuation point, it is found to be caused 

by some training samples with too many missing values in it or the sample itself is too 

short. Some more filtering rules are applied: 

 

Figure 4.2 Length distribution of all samples in original dataset version 2. 
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1. Limit the length of training sample in range 50 and 500. 

2. Calculate the percentage of missing residues in the protein sequence. If the 

percentage is equal or greater to 5%, the training sample will be removed. 

After the above filters, there are 5250 samples left. The new length distribution is shown 

in the following: 

 

4.3.2 Features Introduction 

A brief introduction of every feature is given in this section. 

1. Position-Specific Scoring Matrix (PSSM): Each amino acid has a length-20 feature 

vector. It is generated by BLAST based on the amino acid frequencies of every 

position in the multiple sequence alignment (D. T. Jones, 1999). Each score in the 

feature vector represents the frequency of substitution occurs in the multiple 

sequence alignment. All scores are scaled from -10 to 10 with positive values 

indicate more frequent substitution and negative values indicate less frequent 

substitution. The following figure shows a snippet of an example PSSM file. 

 
Figure 4.3 Length distribution of all samples in filtered dataset version 2. 
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Figure 4.4 An example of PSSM output file. 

2. Secondary Structure (SS): Secondary structure is a small structure segment with 

specific patterns in a protein. It can be classified into eight classes or three classes. 

In our program we use the three-classes definition, i.e., helix (H), strand (E) and coil 

(C).  PSIPred (D. T. Jones, 1999) is used to generate secondary structure prediction 

and use one-hot encoding as representation. 

3. Solvent Accessibility (SA): Each protein has a 3D structure so in the space, some 

residues can be touched by water and some cannot. For those that can be touched by 

water are called exposed residues, and those cannot be touched by water are called 

buried residues. Solvent accessibility indicates whether the residue is predicted as 

exposed or buried. Same as secondary structure, one-hot encoding is used as 

representation. 

4. Multiple Sequence Alignment (MSA): This is an intermediate result in our feature 

generation. MSA is a set of amino acid sequence alignments and they are all like the 

query target sequences. It is generated by HHBlits from HHSuite toolkit and used 

to generate many other features (Remmert, Biegert, Hauser, & Söding, 2011).   

5. Alignment Statistics: We use three alignment statistics, i.e. the mean contact 

potential, normalized mutual information and mutual information. Those features 

are for each amino acid pair and each statistic is an 𝐿 × 𝐿 × 1 matrix. Those features 
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are generated by tool ‘alnstats’ from metaPSICOV toolkit based on the multiple 

sequence alignment we generated before (D. T. Jones, Singh, Kosciolek, & Tetchner, 

2015). 

6. Hidden Markov Model (HHM) Profile: It is a profile generated by ‘hhmake’ for 

profile-profile comparison in protein sequence searching (Remmert et al., 2011). 

Each amino acid has a length-30 feature vector. 

7. CCMPred: It is a score matrix from Direct Coupling Analysis (DCA) on multiple 

sequence alignment (Seemayer et al., 2014). DCA is the basic and the most popular 

method for contact map prediction now. There are different inference methods for 

DCA and CCMPred score is generated based on pseudo-likelihood maximization 

method.  

8. EVFold: This is another score matrix generated by an algorithm based on the mean-

field approximation of DCA (mfDCA). The tool used for this feature is freecontact  

(Kaján, Hopf, Kalaš, Marks, & Rost, 2014).  

9. PSICOV: This is another score matrix generated by sparse inverse covariance 

estimation (D. T. Jones, Buchan, Cozzetto, & Pontil, 2012). 

10. metaPSICOV: This is a toolkit for contact map prediction by combining different 

coevolution methods (D. T. Jones et al., 2015). We use their output in stage 2 as one 

kind of score matrix. 

11. ShapeString: This is a predicted eight states features based on the discrete state of 

dihedral angles (Zhou, Shu, & Hovmoller, 2010). The eight-state Shape Strings are 

defined as shown in the following figure and this feature is generated by tool Frag1D.  
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12. Raw Co-evolution Statistics: From above we use three different kinds of 

evolutionary coupling scores, i.e. CCMPred, PSICOV, and EVFold. All those scores 

are all inferred from Direct Coupling Analysis and are compressed to an 𝐿 × 𝐿 × 1 

matrix. This raw score is the intermediate results during the inference. For each 

residue pair 𝑅#$ there is an 21 × 21 weight matrix with each weight represents the 

co-evolution statistic between 21 types of amino acid at position 𝑖 and 21 types of 

amino acid at position 𝑗.  

13. Physicochemical Features: For each amino acid there is length-5 fixed value feature 

vector which is pre-calculated based on the physical and chemical features of each 

amino acid type in nature. Because the values are always fixed if the amino acid 

type is determined therefore this is like a kind of sequence encoding method. 

 

Figure 4.5 Assignment of eight-state Shape Strings as eight clustered regions with 
specific boundaries on the Ramachandran plot. 
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In order to utilize all the useful information from the features and make the model 

learning process more efficient, for the features that are real continues values, all values 

are normalized to a range between -1 and 1. The experiments showed that after 

normalization the network converged better and faster, and among all normalization 

methods that have been tried, this min and max scaler normalization got the best 

performance. 

4.4 Deep Neural Network Structure 

Deep learning techniques are used for contact map prediction in order to utilize the 

information from multiple sequence alignments. The intuition behind this is among all the 

features, the most important and informative features will be selected by deep network 

automatically through the training process. Different network structures have different 

abilities. It is not possible to directly tell which network structure is the best one for protein 

contact map prediction until most of them have been tried. Some other important 

hyperparameters can affect the network performance drastically, such as the learning rate 

scheduler, the optimization method, or the data augmentation methods. All of those should 

be fine-tuned to gradually improve the model’s performance. 

Our development of the deep networks can be divided into to three stages. In the first 

stage, regression is tried for each residue pair to get a distance map prediction. The 

generative adversarial network is also tried to make the distance distribution more realistic. 

In the second stage, classification is tried for each residue pair. Each residue pair will be 

classified into either in contact or not in contact. In the third stage, the distance map 

prediction and binary contact map prediction are combined. The distance map can provide 
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more information of overall distribution of all residue pairs and that information is 

beneficial to do binary contact classification.  Combining them together gives the best 

performance for now. In the following sections, the details of each stage are covered. 

4.4.1 Predicting Distance Directly 

Protein contact map reflects the physical distance of a protein. If the distance can be 

predicted, then it is easy to derive the contact map. Inspired by this idea,  regression is done 

on the last layer.  

Input Features 

For this network, the following features are generated from the sequence as the input, 

and each sequence has the real distance map as the ground truth.  

1. Features for each residue includes the Position-Specific Scoring Matrix (PSSM), 

secondary structure prediction, and solvent accessibility prediction, the dimension 

of those features are 20, 3, and 3, correspondingly. Therefore, for each residue, the 

feature vector length is 26. 

2. Features for each residue pair includes the evolutionary coupling score from 

CCMPred, the mutual information, and the contact potential, the dimension of those 

features are all 1 for each. Therefore, for each residue pair, the feature vector length 

is 3 and for a protein sequence with length L, the feature dimension is 𝐿 × 𝐿 × 3. 

Network Structure 

Inspired by ResNet (K. He et al., 2015), the residual block is used to build the network 

and make it very deep. As shown in the following Figure 4.6, the input to the network has 

the dimension of 𝐿 × 𝐿 × 55. For each residue 𝑅# in the sequence it has a length-26 feature 
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vector, then for each residue pair 𝑅#𝑅$ it has a length-52 feature vector by concatenating 

the feature vector of 𝑅#  and 𝑅$ , leading to a 𝐿 × 𝐿 × 52  feature input. After further 

concatenating with the 𝐿 × 𝐿 × 3 feature for residue pairs, the input to the network has the 

dimension of 𝐿 × 𝐿 × 55 . The output of the network is an 𝐿 × 𝐿 × 1  distance map 

prediction, in which each pixel, i.e. residue pair, has a positive real value.  

 

In addition to residual blocks, the idea of fully convolutional network is applied so that 

the feature maps in each layer will always be 𝐿 × 𝐿 to retain the length of the protein. 

The input features will go through a network branch with 3 residual blocks and each 

residual block has a kernel size of 17 × 17. A large kernel size is used to capture the global 

features as much as possible since the long-range contact map prediction is more important 

and harder to predict. The output feature map size of this branch is 𝐿 × 𝐿 × 64. The input 

features will also go through another network branch with only a 1 × 1  convolution 

operation to make the output feature map size to 𝐿 × 𝐿 × 64. After concatenation, the 

feature size will be 𝐿 × 𝐿 × 128 and it will go through the third network branch. The third 

network branch is consisted of 30 residual blocks, i.e. 60 convolutional layers since each 

residual block has two convolutional layers. The kernel size of the third branch is 3 × 3 

 
Figure 4.6 Network structure for distance map prediction. 
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and the feature map size will be kept 𝐿 × 𝐿 × 128 until the last two layers with a reduction 

from 128 to 64 and further to 1 as in the final output.  

The loss function used in training is mean square error (MSE). The optimizer is Adam 

with learning rate 1e-4. Training batch size is 1, i.e. for each iteration there is only one 

training sample go through the forward propagation and to calculate the gradients to update 

the weights of the network. The main reason is each protein has different length. Although 

the convolutional operation is length independent, we can’t process a batch of protein with 

various length at once. The activation function in this network was ReLU and all batch 

normalization layers were removed since our batch size is 1. The training set is using the 

dataset version 1 as described in previous sections.  

The targets in CASP11 were used as testing set (Liu, Wang, Eickholt, & Wang, 2016). 

The state-of-the-art at that time was RaptorX-contact (Sheng Wang et al., 2016) and their 

intermediate results are also distance map. To compare the performance, we first applied 

multidimensional scaling on the distance map to get the 3D structure (Jingfen Zhang et al., 

2010). The Global Distance Test Total Score (GDT-TS) was used to evaluate the model 

quality, which is a similarity score between the predicted model and the native model 

(Zemla, 2003). The GDT-TS is in range 0 to 1 and the higher score, the better quality. The 

following Table 4.3 shows the average GDT-TS between our method and RaptorX.  

 

There were some good predictions in the testing set, for example, protein 2G1U had a 

predicted distance map that was like the native by simply eyeball observation. If converted 

Table 4.3 GDT-TS results between our model and RaptorX on CASP11 testing set 

 RaptorX-contact Ours 

Average GDT-TS 0.3331 0.2917 
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to 3D structures they had a GDT-TS score 0.6643, and after superimposed two structures, 

we can see the general structure was successfully predicted and generated. This example is 

shown in the following Figure 4.7. 

 

Although there were several cases with good prediction results, the overall results are 

not good enough at that time since our network was preliminary. It proved that the idea of 

predicting distance map could work if the model was further fine-tuned. This model was 

improved later for the following versions of our networks. 

4.4.2 Predicting Contact Map Directly 

Although distance map can be used to reconstruct 3D structure using multidimensional 

scaling, there are multiple constraints in the distance map. The deep neural network can 

predict the distance value for each residue pair but cannot guarantee the physical distance 

constraints. The MDS fails if the distance map is disturbed. Therefore, the contact map 

derived from the distance map may not accurate and may cause clashes in the protein. It is 

the same situation in our previous experiment that some distance map prediction fails the 

MDS algorithm. 

Based on the above observation, another network to do pixel classification is designed 

and developed, i.e. each residue pair will be classified to either 0 or 1.  

 
Figure 4.7 An example testing case 2G1U of our distance map prediction model. 
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This model is the one used to participate in CASP13 in 2018.  

Input Features 

For this network, the following features are generated from the sequence as the input, 

and each sequence has the real distance map as the ground truth.  

1. Features for each residue, the features include the Position-Specific Scoring Matrix 

(PSSM), secondary structure prediction (3 states), solvent accessibility prediction (1 

state), and the physicochemical features with dimension of 5. Therefore, for each 

residue, the feature vector length is 29. We call this set of features 1D feature. 

2. Features for each residue pair, includes three evolutionary coupling scores from 

EVFold, PSICOV, and CCMPred respectively, and the mutual information, the 

normalized mutual information, and the contact potential, the dimension of those 

features are all 1 for each. Therefore, for each residue pair, the feature vector length 

is 6 and for a protein sequence with length L, the feature dimension is 𝐿 × 𝐿 × 6. 

We call this set of features 2D feature. 

Network Structure 

Unlike the previous network, instead of concatenating all features together in advance, 

the 1D and 2D features are processed separately. To be more specific, the 1D features are 

processed at the early stage in the network, then the results will be combined with the 2D 

features in the later stage in the network. The following Figure 4.8 shows a flowchart of 

the features used in this network. 
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The following Figure 4.9 shows the network structure. The 1D features will be 

processed by a branch with 3 residual blocks. The filter size is 9 × 9 and the number of 

feature map is 32. The output size of this branch is 𝐿 × 32, in order to combine it with 2D 

features, a residue-wise concatenation like outer product is done. Assume 𝑅#  is the 𝑖th 

residue in the sequence, so the 𝑅# has a length-32 feature vector. After the outer layer, the 

output size is 𝐿 × 𝐿 × 64, in which each residue pair 𝑅#$ has a length-64 feature vector 

from the concatenation of 𝑅# and 𝑅$. In the second 2D residual block branch, there are 6 

residual blocks with kernel size 5 × 5 and the output feature map size is 128. At the last 

stage of the network, there are three 1 × 1 convolutional layers which are doing a depth-

wise fully connected operation. The number of feature map is 128 → 64 → 32 → 2. The 

 
Figure 4.8 The features flowchart in network. 
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final activation function is SoftMax and the number of categories is 2. In this way, each 

residue pair will be classified into one of two categories, i.e. in contact or not in contact.  

 

The training set for this version of network is dataset version 1 for participation in 

CASP13, and this model is called the baseline. The baseline model has been kept 

improving after CASP13 with the following major updates: 

1. Dataset version 2 is used to train the model. It is a larger dataset with 5250 training 

samples, while in dataset version 1 there are only 3799 training samples. This gives 

us around 5% improvements on long range top L/5 prediction precision on the 

testing set. 

2. For the multiple sequence alignment searching tool HHBlits, we use a newer official 

released database. This gives us improvements on medium and short ranges 

prediction precision. 

The loss function used is weighted cross entropy. The weights for class 0 and 1 are 0.1 

and 0.9 respectively because a contact map is imbalanced and the amount of 0s is larger 

than amount of 1s. The optimizer is Adam and the learning rate is 1e-4. The batch size is 

1. i.e. for each iteration only one training sample is used to calculate the gradients and 

 
Figure 4.9 Network structure to predict binary contact directly. 
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update the weights in the network. A learning rate scheduler is also used in the training. 

The initial training epoch is set to 15, the learning rate changes based on the epoch: 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 = K
1𝑒 − 6, 75%	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑒𝑝𝑜𝑐ℎ𝑠
1𝑒 − 5, 50%	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑒𝑝𝑜𝑐ℎ𝑠
1𝑒 − 4, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The testing performance will be discussed in the next Evaluation Results section. 

4.4.3 Two-Stage Multi-branch Network 

The distance map prediction and binary contact map prediction have been done 

separately. The distance map prediction is informative but not very accurate. The binary 

contact map prediction may lose the distance distribution information since the final classes 

are only 0 and 1. Based on these intuitions, a two-stage multi-branch network to combine 

the distance map and binary contact map prediction has been designed and developed. 

In the two-stage multi-branch network, there are two stages. In the first stage, multiple 

networks predict the distance map for short, medium, and long range separately. Those 

predicted distance maps are then combined with our initial feature set in the second stage 

to predict the binary contact map. The distances are used as the intermediate results for 

contact prediction in the whole process. 

The following figure shows the overall structure of the two-stages multi-branch network.  
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Input Features 

Three more features are added in this version of network. In addition to all the features 

mentioned in the last Predicting Contact Map Directly section, the metaPSICOV output, 

the Hidden Markov Model (HHM) profile and Shape String are added. The HHM profile 

and Shape String are for each residue and they have the dimension of 30 and 8 respectively. 

The metaPSICOV output is for each residue pair and the dimension is 𝐿 × 𝐿 × 1. The final 

size for the 1D features is 𝐿 × 67 and for the 2D features is 𝐿 × 𝐿 × 7. 

Stage 1: Distance Map Prediction 

The basic structure of this network is like previous networks. There are 1D and 2D 

features, 1D features will be processed first, but instead of combining the output with 2D 

features directly, the 2D features will be processed before the combination. The following 

Figure 4.11 shows the structure of this network. 

 
Figure 4.10 Network structure of the two-stages multi-branch network. 
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In this network, the 1D feature set will go through a branch with three residual blocks, 

the number of the feature map is 32 for all convolution layers with kernel size 9 × 9. The 

output size of this branch is 𝐿 × 32 and then after the residue-wise concatenation the 

feature size is 𝐿 × 𝐿 × 64. The 2D feature set will go through another branch with three 

residual blocks, the number of the feature map is 16 for all convolution layers with kernel 

size 5 × 5. The output size of this branch is 𝐿 × 𝐿 × 16. After concatenate the output of 

those two branches, the feature will go through the main network with 12 dilated residual 

blocks (Yu & Koltun, 2015), and the number of feature map is 128 for all convolution 

layers with kernel size 5 × 5 except the last two 1 × 1 convolution layers, which are doing 

a fully connected operation for each residue pair and reducing the dimension from 128 to 

64, and further to 1 at last. The dilation in the dilated residual blocks is 4. The activation 

function in the last layer is ReLU to get positive real values as the distance map prediction. 

The dilated residual network is the traditional residual block with dilated convolution 

layers. The dilated convolution (Yu & Koltun, 2015) is also known as àtrous algorithm 

(Fowler, 2005). It can greatly increase the size of receptive field in the convolutional layers. 

 
Figure 4.11 Network structure for distance prediction in the first stage in the two-
stages multi-branch network. 
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The basic idea is to adding spaces between points in the kernel. The following Figure 4.12 

shows the kernel points and the corresponding receptive fields in dilated kernel. From left 

to right, the dilation is 0, 1, and 3 respectively. 

 

In this network, different dilation values have been tried and it is found that the best 

performance with dilation set to 4. In order to keep the input and output of a convolution 

layer the same size, the stride size is 1 for all layers and the padding size is calculated as in 

the following equation: 

𝑝 =
𝑑 × (𝑘 − 1)

2  

where the 𝑑 is the dilation size, 𝑘 is the kernel size. 

Three networks with the same network structure will be trained for short, medium, and 

long-range prediction respectively. The intuition behind this is to let each network focus 

on each range to utilize the feature information.  

Stage 2: Binary Contact Map Prediction 

The output from stage 1 will be combined with the original feature set as the input to 

the network in stage 2. There are three distance map predictions in stage 1 so the additional 

 
Figure 4.12 Dilated kernels and the receptive fields. 
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features to stage 2 have the dimension 𝐿 × 𝐿 × 3. The network structure used in stage 2 is 

the same as that in section Predicting Contact Map Directly except that the input size is 

different. 

4.5 Evaluation Results 

There are two datasets used to evaluate the performance. The first dataset is the CASP13 

targets. The training set is dated before the start date of CASP13 so there are no native 

structures, i.e. the ground truth, contained in our training set. However, not all CASP13 

targets have native structures, only 19 out of all targets are used because CASP has 

officially released the native structures for those 19 targets. The second dataset is a set of 

sequences with PDB structures released between 2019-04-01 and 2019-04-20. It contains 

50 sequences and this dataset is called NewPDB50_Testing in this dissertation. 

CASP13 Dataset 

The following table shows the target list used for this evaluation. 

 

In our testing, domains are not used in those targets. It is slightly different from CASP 

official evaluation because the domain definition was not available when we started our 

early evaluation. The whole sequence of each target will be used as input. The performance 

of all other groups is evaluated by us because their predictions are publicly available to 

download. 

Table 4.4 Target list used for contact map evaluation. 

T0950, T0951, T0953s1, T0953s2, T0954, T0955, T0957s1, T0957s2, T0958, T0960, T0963, 
T0966, T0968s1, T0968s2, T1003, T1005, T1008, T1011, T1016 
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CASP13 Dataset Results 

Because the CASP is using the long-range top L/5 predictions to rank the group by 

default, only the results for this specific metric are showed. The long-range contacts are 

also more important than shorter range because they are hard to predict, and they decide 

the global structure of a protein.  

The progress can be divided into several milestones: 

1. Predict distance map directly. 

2. The baseline model we used to participate in CASP13 to predict contact map 

directly. 

3. Using a larger training set. 

4. Cleaning and filtering the training set. 

5. Using a newer HHBlits database to generate MSA. 

6. Two-stage multi-branch network with four networks in stage 1 (four networks are 

for short-, medium-, long-, and full-range distance predictions). 

7. Two-stage multi-branch network with three networks in stage 1 (the same as 

milestone 6 but with the full-range distance prediction network removed). 

The following Table 4.5 shows the long-range top L/5 predictions precision for each of 

the milestone and the corresponding rank in CASP13 using the precision value. 

Table 4.5 The long-range top L/5 precision for each milestone and the corresponding 
ranks. 

Milestone Long-range top L/5 Rank 

1 38.38% 38 

2 49.25% 28 

3 49.51% 28 

4 53.73% 19 
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5 55.68% 17 

6 63.81% 14 

7 66.62% 8 
 
From the testing result, our current two-stages multi-branch model gets the best 

performance and it has 35.27% increase of the baseline model, i.e. the model we used to 

participate in CASP13. The following Figure 4.13 shows the plots of our milestone results 

and the corresponding ranks. 

 

In addition, other four widely used downloadable tools are chosen to compare the 

performance without proposed methods.  All tools are downloaded and installed on our 

server to test. Online servers are excluded since we don’t know if their training set contains 

natives of our testing set. The four tools are: 

1. FreeContact 

2. PSICOV 

3. CCMPred 

 
Figure 4.13 The graph for long-range top L/5 precision for each milestone and the 
corresponding ranks. 

 



62 
 

4. metaPSICOV2 

The following table shows the performance of the comparison. 

Table 4.6 Contact prediction precision comparison with other tools using CASP13 
targets. 

Tools 
Long Medium Short 

L/2 L/5 L/10 L/2 L/5 L/10 L/2 L/5 L/10 
FreeContact 0.071 0.092 0.147 0.077 0.105 0.165 0.085 0.093 0.124 

PSICOV 0.224 0.279 0.365 0.155 0.233 0.365 0.155 0.225 0.365 
CCMPred 0.227 0.277 0.395 0.174 0.266 0.411 0.175 0.225 0.395 

metaPSICOV 0.337 0.450 0.526 0.404 0.562 0.747 0.409 0.576 0.784 
MUFOLD 
Contact_D 0.282 0.408 0.482 0.295 0.384 0.482 0.204 0.258 0.335 

MUFOLD 
Contact_C 0.388 0.492 0.574 0.411 0.578 0.763 0.382 0.536 0.742 

MUFOLD 
Contact 0.542 0.666 0.726 0.458 0.615 0.663 0.443 0.675 0.752 

 
The following figure shows the visualization of the results: 

 

Figure 4.14 Chart of contact prediction precision. 

NewPDB50_Testing Dataset 

In order to have a fairer comparison of each predictor, we decided to make a new testing 

dataset with the recently released PDBs to avoid homologies. We selected all PDBs that 
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are released between 2019-04-01 and 2019-04-20. Of those structures, only those with 

length between 100 and 400 and maximum sequence identity of 30% were considered.  

CD-Hit was further applied to remove duplicate chains.  Finally, 50 sequences were 

selected randomly as our evaluation dataset. 

NewPDB50_Testing Dataset Results 

For this dataset, other five widely used tools are chosen to compare the performance.  

All tools except RaptorX-Contact are downloaded and installed on our server to test. The 

five tools are: 

1. EVfold 

2. CCMPred 

3. metaPSICOV2 

4. ResPRE (Y. Li et al., 2019) 

5. RaptorX-Contact (online server) 

The following table shows the performance of the comparison. 

Table 4.7 Contact prediction precision comparison with other tools using 
NewPDB50_Testing targets. 

Method 
Long Medium Short 

L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2 

EVfold 0.111 0.153 0.212 0.083 0.106 0.12 0.077 0.074 0.079 

CCMpred 0.412 0.589 0.661 0.205 0.353 0.496 0.173 0.293 0.432 

MetaPSICOV 0.591 0.733 0.783 0.407 0.606 0.733 0.379 0.591 0.728 

ResPRE 0.779 0.868 0.89 0.522 0.763 0.852 0.376 0.651 0.787 

RaptorX-
Contact 0.799 0.875 0.899 0.547 0.766 0.849 0.465 0.721 0.815 

MUFold-
Contact 0.756 0.861 0.906 0.506 0.747 0.843 0.461 0.723 0.828 
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From the above table,  MUFold-Contact performed significantly better than EVfold, 

CCMpred, and MetaPSICOV, and it is better than ResPRE on short-range cases, slightly 

worse on medium-range cases, and is comparable on long-range cases.  Compared to 

RaptorX-Contact, MUFold-Contact is slightly better on short-range L/10 and L/5 cases and 

slightly worse on other cases. Overall, MUFold-Contact is comparable with the two deep 

learning methods ResPRE and RaptorX-Contact.  

4.6 Application: Contact Guided Modeling 

MUFOLD_Contact is used in our in house comprehensive protein structure prediction 

platform, MUFOLD, to assist the 3D structure modeling process. For introduction of 

MUFOLD please refer to Chapter 6 in this dissertation. The traditional template-based 

protein structure prediction methods rely on the quality of templates. If there is no good 

template found in the database, the quality of the predicted protein structure could be very 

poor. This is where the MUFOLD_Contact can help since the contact map provides the 

global topology of the sequence and this topology information can be used as constraints 

to refine the predicted protein structure.  

There are some related works that use this idea in their protein structure prediction 

application. Crystallography & NMR System (CNS) (Brunger, 2007; Brunger et al., 1998) 

is a tool that uses distance geometry simulated annealing protocol to import the residue 

pair constraints in modeling process. Confold2 (Adhikari & Cheng, 2018) is based on CNS. 

C-I-TASSER (Zheng et al., 2019) is another contact guided protein structure prediction 

tool.  
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In order to demonstrate the usefulness of MUFOLD_Contact results and also to improve 

the performance of MUFOLD, we implemented an iterative contact map guided modeling 

based on Rosetta (Rohl, Strauss, Misura, & Baker, 2004). Our method is very preliminary  

but shows some good sign of the performance. The method architecture is shown in the 

following Figure 4.15. 

 

Figure 4.15 Flowchart of contact map guided modeling. 

Firstly, the structure prediction from MUFOLD is used as the initial structure in this 

process. Then the contact map prediction will be used as atom constraints to a set of residue 

pairs in the sequence. The set of residue pairs in each iteration is decided by a sequence 

distance threshold of 10, which means in the first iteration, only residue pairs within 

sequence distance of 10 will be given constraints, and in the second iteration, only residue 

pairs within sequence distance of 20 will be given constraints, etc. Experiments showed 

this iteration process gave better results because it is a continues refinement process from 

the local structure to global structure rather than refining on global structure directly. 

Rosetta is used in the relaxation process. 

We have performed experiments on some of CASP13 targets and the first results we 

found is this method only works on hard target, which is the sequence with no good 

templates. This is consistent with our previous assumptions. Each target was run five times 

to get five separate results. The following Table 4.8 shows the preliminary results. 
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Table 4.8 CASP13 results on contact map guided modeling. 

Target Initial Model Best Worst Avg 
T0951 0.9164 0.7961 0.7481 0.7664 
T1016 0.7698 0.7661 0.7141 0.7404 
T0966 0.5508 0.1153 0.0600 0.0804 
T0958 0.3929 0.4156 0.2825 0.3299 

T0957s2 0.3703 0.4430 0.3623 0.4000 
T0968s2 0.2217 0.3370 0.1848 0.2313 
T0953s1 0.2118 0.3125 0.2396 0.2694 
T0968s1 0.2034 0.3008 0.2436 0.2733 
T0957s1 0.1728 0.1836 0.1420 0.1645 
T0954 0.1484 0.1155 0.0760 0.0917 
T0950 0.1440 0.1988 0.0885 0.1259 

T0953s2 0.0796 0.1139 0.0927 0.1026 
T0963 0.0522 0.0962 0.0687 0.0846 
T0960 0.0394 0.0842 0.0635 0.0726 
Avg 

(Excluded first three targets) 
0.1851 0.2365 0.1677 0.1950 

 

The corresponding results are also showed in the following Figure 4.16. 

 

Figure 4.16 CASP13 results on contact map guided modeling. 
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In Table 4.8 and Figure 4.16, targets are sorted by the GDT-TS of the initial model. The 

“Best”, “Worst”, and “Avg” columns mean the best, worst, and average GDT-TS in the 

five runs.  From the results we have preliminary results that our method works better on 

hard targets than easy targets. Without considering the first three targets in the table, our 

contact map guided modeling can give 5.35% improvement on average and 27.77% 

improvement if ideally the best result in five runs could be chosen. Potential value of our 

MUFOLD_Contact results are proved to be helpful to assist the structure prediction. 

4.7 Summary 

In this chapter the progress of our deep learning based contact map prediction method 

has been shown. The idea of Fully Convolutional Network (FCN) is applied to make the 

network be able to accept various length of protein and the idea of Residual Network is to 

make it deeper. Different ways have been explored to get the contact map prediction from 

the sequence. The first way is to predict distance map directly from the sequence and 

pairwise features. It suffers from the regression precision and the distance range limits. The 

second way is to predict contact map directly. Each residue pair is classified into two 

classes. It suffers from the loss of information from the features set. The third way is a two-

stages multi-branch network that is to combine the previous two ideas and use distance 

map predictions as an additional feature to predict contact map. There are two stages, the 

first stage for distance map predictions using multiple networks for different range of 

residue pairs, the second stage for contact map prediction. In addition, more features and 

dilated convolution are introduced to get a better performance. The third way is proved to 

be the best current model. It is also demonstrated that our preliminary results showed using 
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our predicted contact maps as constraints in the structure prediction for targets without 

good templates can give better results than single template-based modeling.  
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CHAPTER 5. TPCREF: PREDICTED CONTACT MAP 
REFINEMENT 

5.1 Motivations 

Most current state-of-the-art contact prediction methods are not yet capable of correctly 

predicting all contacts for a given amino acid sequence. In addition, most of existing 

contact prediction methods are based on co-evolutional information, which are extracted 

from sequences only. They lack using the information from templates, while it is well 

known that templates carry the most important structural information in the tertiary 

structure modeling. Therefore, if we can find a method to utilize those templates’ structural 

information there is a chance that we can refine and improve the quality of predicted 

contact map of the target sequence. Additionally, since existing contact predictors have 

different methods and use different features, it is more important to make the refinement 

independent of the existing predictors so that we can put it after the contact map prediction 

as a post process. 

Since the definition of templates is those have similar structures to the target sequence. 

Each of the templates has a similarity score defined by the searching tool. The similar idea 

happens in the recommendation system, especially the user-based collaborative filtering. 

Before we present our method, let’s take a brief look at the basic process of user-based 

collaborative filtering. 

As showed in the following figure, there are multiple users and items. Each user has a 

score for each item. In order to predict the score of 𝑈' for 𝐼𝑡𝑒𝑚', we perform the following 

process: 
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1. Find a set of users that are most similar to 𝑈' and also have rated a score for 𝐼𝑡𝑒𝑚'. 

The similarity score between 𝑈' and 𝑈1 is defined as 𝑆𝑖𝑚'1; 

2. To predict the score 𝑆'&, a weighted average of other scores for this item from other 

similar users is calculated. This weighted average score will be used as the predicted 

score of 𝑈' for 𝐼𝑡𝑒𝑚'. 

Our template-based predicted contact map refinement method is inspired by the idea 

from user-based collaborative filtering. For a predicted contact map, we can assume there 

is a quality score for each predicted residue pair. In order to get this quality score matrix, 

we can find a set of similar predicted contact maps, of which each residue pair already has 

a quality score of the contact map predictor. If the quality scores of the predicted contact 

map is 𝑈', then the quality scores of those similar predicted contact maps are other similar 

users.  

Under the inspiration of user-based collaborative filtering, TPCref (refinement by 

template prediction correction), a general method for refinement which can be applied to 

any contact prediction method, is proposed in this research.  It refines a method’s prediction 

for a given target sequence by utilizing knowledge of misclassified contacts from 

 

Figure 5.1 An table to illustrate the idea of user-based collaborative filtering. 
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predictions for template sequences.  In our background evaluation, comparable methods 

for refining contact map predictions were not found, and we are the first to utilize idea from 

collaborative filtering to help the refinement process. 

5.2 Problem Formulation 

The predicted contact map refinement problem is addressed as follows. Give a protein 

sequence S and an existing contact map predictor 𝑃, we can have a contact map prediction 

𝐶. We don’t know how 𝑃 works but 𝑃 should be able to take the sequence 𝑆 as input and 

predict 𝐶. Then TPCref takes the contact prediction 𝐶 as input, and also has the access to 

call predictor 𝑃 during the refinement. The final refined contact map prediction 𝐶= will be 

outputted as the final contact map prediction of sequence 𝑆. 

5.3 Overall Architecture 

TPCref consists of contact prediction using the contact prediction method of interest, 

template selection, and assembly of a target contact-map filter, depicted as a flowchart in 

the following Figure 5.2.  

 

Figure 5.2 The flowchart of TPCref 
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As we can see from the flowchart, there are three major components. First, given a target 

sequence and a contact map predictor, we can get an initial target contact map prediction. 

Then in the second part, there are 20 template sequences selected from the Blast results. 

Those 20 templates have native structures in the PDB databank so we can extract the native 

contact maps of them. In the meantime, those 20 template sequences will also get their 

predicted contact maps by the given contact map predictor. Then a contact map filter is 

created by using the information from 20 templates’ native contact map and predictions. 

Finally, the contact map filter will be fused to the original target contact map prediction to 

get the refined contact map prediction. 

5.4 Refinement Process 

Given a target sequence and an existing contact map predictor, TPCref performs the 

following processes to get the final refined contact map prediction. 

5.4.1 Template Selection 

Templates of a target protein sequence are generated using an iterative, three-stage Blast 

search process.  The first and second stages perform a Blast search on the non-redundant 

(NR) sequence database, with the results of the first stage acting as the starting point of the 

second.  The third stage utilizes the results of the second stage to search in a database 

containing sequences with known structures in the PDB database.  The top 500 or fewer 

templates returned from the Blast are clustered by their full-sequence identity to yield about 

20 final templates. The lowest E-value members of resulting clusters are used. 
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5.4.2 Contact Map Prediction Using an Existing Method 

After 20 most similar templates are selected, we need to do contact map prediction as 

well as real contact map extraction for each of them. We tested an extensive set of existing 

contact prediction methods, including EVfold, CCMpred, MetaPSICOV, ResPRE, and 

MUFold-Contact.  These methods were selected because their software could be 

downloaded to perform the extensive computation and experiments. Because RaptorX-

Contact method is only offered through an online server, we could not apply TPCref to it. 

5.4.3 Template Contact Map Filters Generation 

The contact prediction by an existing method for each of the templates will be used to 

form a template contact map filter.  The filter is of the same size as the contact map and 

the generation process is as follows. 

For each template 𝑇#, we have the contact map prediction 𝑃# from previous step, and the 

corresponding native contact map 𝑁# which is extracted from the PDB structure. To build 

a filter 𝐹# for this template, the following equations are applied. 

For short and medium range residue pairs 𝑅(𝑚, 𝑛): 

𝐹#(𝑚, 𝑛) = 𝑃# × 2 × (𝑁#(𝑚, 𝑛) − 0.5) 

For long range residue pairs	𝑅(𝑚, 𝑛): 

𝐹#(𝑚, 𝑛) = 𝑃# × 𝑁#(𝑚, 𝑛) 

By applying the above equations, for each short and medium residue pair position in the 

filter, if this position in the template’s native contact map is 1 (in contact), then set the 

value to the predicted contact probability by the existing method. If this position in the 

template’s native contact map is 0 (not in contact), then set the value to -1 times the 
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predicted contact probability by the existing method (thus penalizing false positives). For 

each long residue pair position in the filter, the only difference is when this position in the 

template’s native contact map is 0 (not in contact), set the value to 0 instead of -1 times the 

predicted contact probability. 

The predicted probabilities were used to construct the template filters rather than the 

true contacts in order to exploit behaviors which are characteristic of the method being 

refined. 

5.4.4 Predicted Contact Map Refinement 

Now for each template 𝑇#  there is a filter 𝐹# . For each residue pair (𝑚, 𝑛) , the 

corresponding value 𝐹#_?1 in the filter can be treated as a quality score of the predictor for 

that specific residue pair. It is like a rating system that templates act as other similar users, 

and template filter acts as the ratings of those users. By taking the “quality 

recommendations” from other templates we can do a prediction of the quality scores 𝐶𝐹?1, 

which is the contact filter of the original contact map. This comparison of this idea and 

traditional user-based collaborative filtering is showed in the following Figure 5.3.  

 

Figure 5.3 Comparison between the TPCref contact map filter generation and the 
traditional user-based collaborative filtering. 
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In traditional collaborative filtering, the prediction is a weighted average of other users’ 

ratings and the weight is the similarity between the user to be predicted and other similar 

users. In our problem, we set the weight to the percent coverage of each template’s 

respective sequence on the target sequence as returned from the Blast search process. Then 

each residue pair position in the target contact map filter is set to the weighted average of 

the aligned position’s value from all individual template filters covering that position. 

Finally, each position in the target filter was scaled by the natural log of the number of 

covering templates, in order to reinforce positions with more contributions from template 

filters. 

The final contact prediction of the target protein is the sum of the initial contact map 

prediction by an existing method and the target contact map filter, while negative values 

were set to 0 and all values were normalized to be in the range of 0 to 1. 

5.5 Evaluation Results 

5.5.1 Dataset 

To compare the performance of using TPCref and without using TPCref, we use the 

NewPDB50_Testing dataset to test. The details of NewPDB50_Testing dataset is 

introduced in Chapter 4.5. 

5.5.2 Results 

TPCref was applied to the predictions of five methods (EVfold, CCMpred, 

MetaPSICOV, ResPRE, MUFold-Contact), utilizing the same set of templates. The 

prediction accuracy of the refined contact predictions is reported in the following Table 

5.1. Compared to the results in Table 4.7 that are without TPCref,  we can see that TPCref 
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significantly improved on the baseline accuracy in nearly every case. The improvements 

of accuracy compared to without TPCref is showed in the following Figure 5.4. As shown 

in the figure, all values are positive means TPCref can improve the accuracy of predicted 

contact map on every metric. 

 

Figure 5.4 Improvements after applying TPCref 

Notably, for the long L/5 accuracy results, TPCref achieved improvement on all existing 

methods. In this result, MUFold-Contact+TPCref obtained the highest accuracy, 

outperforming all existing methods, including RaptorX-Contact.  

Table 5.1 TPCref refined contact prediction precision comparison with other tools using 
NewPDB50_Testing targets. 

Method 
Long Medium Short 

L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2 
EVfold  

+ TPCref 0.634 0.744 0.799 0.480 0.691 0.766 0.397 0.674 0.775 

CCMpred  
+ TPCref 0.743 0.808 0.827 0.530 0.755 0.808 0.420 0.709 0.801 

MetaPSICOV  
+ TPCref 0.716 0.827 0.863 0.522 0.766 0.857 0.441 0.728 0.843 

ResPRE  
+ TPCref 0.842 0.903 0.915 0.566 0.820 0.898 0.391 0.707 0.863 

MUFold-C  
+ TPCref 0.845 0.904 0.915 0.582 0.834 0.887 0.477 0.778 0.861 
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Among all the metrics, long L/5 is the most important one and is used by CASP to rank 

groups by default. The long L/5 accuracy results for each method from Table 4.7 and the 

corresponding refined results from Table 5.1 are summarized in the following Figure 5.5.  

All methods showed improvement in long L/5 accuracy when TPCref was applied, though 

the state-of-the-art methods had less room to improve. 

 

Figure 5.5 Long L/5 results comparison of NewPDB50_Testing targets. 

As described in Chapter 2.4.2, diversity if another metric to evaluate the performance 

of contact map refinement. The diversity of the refined contact predictions is reported in 

following Table 5.2 and 5.3. In every case, the diversity of contact-map predictions 

increased with TPCref. Refinement of the ResPRE and MUFold-Contact contact-map 

predictions achieved only minor increases in diversity, similar to the results for prediction 

accuracy.  This is notable, as it has been hypothesized that template-based techniques may 

contribute to a lack of diversity in predicted contact maps (Y. Li et al., 2019).  

Table 5.2 Shannon entropy of contact map predictions by MUFOLD-Contact and existing 
methods. 

Method All Long 
EVfold 0.044 0.207 

CCMpred 0.507 0.675 
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MetaPSICOV 0.928 0.799 
ResPRE 1.146 1.040 

RaptorX-Contact 1.080 1.044 
MUFold-Contact 1.110 0.981 

 

Table 5.3 Shannon entropy of contact map predictions by TPCref and existing methods. 

Method All Long 
EVfold + TPCref 0.630 0.931 

CCMpred + TPCref 1.062 1.079 
MetaPSICOV + TPCref 1.082 0.944 

ResPRE + TPCref 1.198 1.113 
MUFold-C + TPCref 1.169 1.092 

 

5.6 Summary 

In this chapter we proposed TPCref, a method for the refinement of contact predictions.  

Starting with a target sequence and a prediction method, this method utilizes contact 

predictions made on a set of clustered templates to produce a refined target contact-map 

prediction.  For a refinement method to be effective, it should improve or at least maintain 

performance compared to the baseline prediction.  This method was applied to the contact 

predictions from five methods (EVfold, CCMpred, MetaPSICOV, ResPRE, and MUFold-

Contact) on a dataset of 50 sequences with recently released PDB structures, which is 

called NewPDB50_Testing.  This selection of methods used for evaluation includes a 

diverse set of approaches, with performances spanning a wide range.  TPCref showed 

increased performance in both accuracy and diversity of contact predictions in nearly every 

metric considered.  This performance suggests that TPCref is suitable for application to 

contact predictions from a wide variety of methods. 
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CHAPTER 6. MUFOLD PLATFORM DEVELOPMENT 

In this chapter, the comprehensive protein structure prediction platform, MUFOLD, and 

its architecture, functionalities, methods and algorithms, are introduced. 

6.1 Introduction 

MUFOLD is a solution for protein structure prediction (Jingfen Zhang et al., 2010). It 

provides an end-to-end solution for various structure prediction tasks. There are many 

similar platforms like Rosetta (Rohl et al., 2004), QUARK (Xu & Zhang, 2012), 

MULTICOM (J. Li et al., 2014), I-TASSER (J. Yang & Zhang, 2015), etc. MUFOLD can 

help experimental biologist to have a better understanding of protein structures and 

accelerate the process of experiments.  

In general, MUFOLD is one of the template-based modeling methods (Fiser, 2010). The 

basic idea is for a new sequence target, MUFOLD tries to search and find a set of similar 

sequences with known structures according some similarity measurement. Those similar 

structures are called templates. Some targets are easy to model if a very similar known 

structure can be found in database. Some targets are hard to model if there are no similar 

known structures. 

6.2 Contributions 

1. The original MUFOLD source codes that was written in C a long time ago have 

been factored. The idea of Objected Oriented Programming has been introduced and 

all codes have been rewritten using C++ and Python. 
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2. Different modules have been decoupled by their functions. Each module can talk 

with each efficiently other using our own well-defined protocols. This design also 

gives us the ability to add or change functions in each module much easier so that it 

is possible to have a fast testing iteration if there are new ideas or tools that we would 

like to use. 

3. More tools have been integrated to provide more functionalities. New tools that have 

been added include a new deep learning based loop modeling method, a new deep 

learning based secondary structure and supersecondary structure predictor, a new 

deep learning based contact predictor, and a new quality assessment method, etc. 

6.3 System Architecture Overview 

The whole pipeline of MUFOLD structure prediction can be divided into five modules 

as shown in the following Figure 6.1. Each module can run individually or can be integrated 

to other tools using our pre-defined API protocol. Each module will be gone over in details 

in the following sections. 

 

Figure 6.1 System architecture of MUFOLD pipeline. 

6.4 Database Preparation 

Multiple alignment searching tools are using in MUFOLD, i.e. Blast (Altschul et al., 

1997), HHSearch (Soding, 2005), and CNFSearch (Ma, Peng, Wang, & Xu, 2012). 

MUFOLD uses its own generated databases for Blast and HHSearch and uses the 
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CNFSearch’s official released database for CNFSearch. Here we briefly describe the 

process of own database preparation and the details can be found in the MUFOLD_DB 

paper (Z. He et al., 2014). 

The first step is to synchronize all the new released PDB files from PDB bank to local 

storage. It is important to keep a copy of all released PDB files for the convenience of data 

processing. Then a list of redundant PDB chains is got and all the information in PDB file 

is extracted to a separate file in our own format. The information what are extracted 

includes secondary structure, coordinates, Psi-phi angles, etc. Sequences are extracted from 

PDB file to a FASTA file as well. The Blast database will be built from those redundant 

sequences. Then, PSI-Blast is used on each sequence to get a multiple sequence alignment 

and a profile. An HHM database is generated from the MSA and profile for HHSearch. 

6.5 Template Searching and Selection 

Since MUFOLD is a template-based modeling method, the first step is to search and 

find similar templates and select the best templates for modeling.  

For template searching, MUFOLD has integrated three alignment searching tools: Blast, 

HHSearch, and CNFSearch. Blast is a sequence-sequence searching tool, while HHSearch 

is a sequence-profile or profile-profile searching tool which considers the structural 

information during the searching process. CNFSearch is an algorithm based on Conditional 

Neural Fields. 

Basically, the Blast contains three iterations. The first two iterations search on a none-

redundant sequence database to generate a sequence profile. The last iteration will take this 

profile as input and search on our own generated PDB sequence database to get a final 
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alignment result. The HHSearch takes the profile from Blast’s first two iterations as input 

and does a profile-profile search on our own generated HHM PDB database to get the 

alignment result. In addition, HHSearch is used twice with different searching mode: global 

search and local search. Therefore, two HHSearch alignments outputs are used. CNFSearch 

takes the query target sequence as input and searches on its own database to get the 

alignment result.  

6.5.1 Template Selection 

All the templates are divided into two types: the global (master) templates, and the local 

(fragment) templates. The master template is usually one template that is the best choice 

for the query sequence. The fragment templates will be used to create a candidate pool to 

fill in the missing areas or un-aligned part by the master template in the query target.  

Each alignment searching tool has its own ranking algorithm and it is not comparable 

between each other’s results. Therefore, a naïve consensus method is implemented to select 

templates from all three tools outputs. The intuition behind the consensus method is better 

templates have a higher probability to be more similar between each other (Fink, Kosecoff, 

Chassin, & Brook, 1984). For each template, the normalized TM-scores are calculated with 

all the other templates individually, then select the ones with higher scores. The normalized 

TM-scores mean the raw TM-score is normalized by the target length 𝐿 (Sitao Wu & Zhang, 

2007).  

Master Alignment 

There are 30 master alignment candidates and 10 from Blast result, 10 from HHSearch 

global search result, and 10 from CNFSearch result. For each tool, all the alignments are 
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ranked by their own ranking algorithm. To ensure the quality of master alignment, a 

coverage threshold is used to filter the master alignment. The default coverage threshold is 

50% but in case of some very hard targets with only a few numbers of templates, the 

threshold value is gradually decreased until there are at least 10 templates available.  

Then for each of the 30 master template candidates, the existing aligned 𝐶! coordinates 

are extracted from the template’s PDB file. The sequence ID for each 𝐶!  atom is re-

numbered to the corresponding target sequence ID. This step will make sure when we 

calculate the consensus TM-score, the correct structures are compared.  

A 30 × 30  consensus score matrix will be calculated for all 30 master template 

candidates. Each score in the matrix is the normalized TM-score of each pair of models. 

The average consensus score is calculated using the following equation and is used to select 

the top 10 master templates. Each master templates will lead to generated model at the end. 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑆𝑐𝑜𝑟𝑒# =
1
29W𝑇𝑀𝑠𝑐𝑜𝑟𝑒#$

&@

$)'

 

In the above equation, 𝑇𝑀𝑠𝑐𝑜𝑟𝑒#$ is the normalized TM-score of templates 𝑇# and 𝑇$. 

Fragment Alignment 

Fragment alignments are used to fill in the missing areas or un-aligned part by the master 

template in the query target. For example, if the master alignment only covers the 90% of 

the target sequence, then the rest of 10% sequence will be covered by further searching in 

the fragment alignment pool.  

All fragment alignments are from Blast and HHSearch alignment results, excluding the 

selected master template. For each gap in the query target, several patches from the 
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fragment alignments pool will be searched and evaluated by some metrics (details in the 

later loop modeling section).  

6.5.2 Template Representation 

In MUFOLD, all templates are represented using distance matrix generated from its 

coordinates. The values in the distance matrix represent the real physical distance of each 

amino acid pair in the 3D structure. The advantages of using distance matrix are for the 

convenience of manipulating structures in 2D data rather than 3D data. At the end of 

modeling, we can use multidimensional scaling to convert distance matrix back to 3D 

structure (Jingfen Zhang et al., 2010).  

6.6 Loop Modeling 

Since we can’t ensure all master alignments can cover the whole range of query target 

sequence, there are always missing areas or un-aligned part left. Those areas are called 

gaps. The gap has sequence data but doesn’t have structure data. The method to fill in those 

gaps are called loop modeling. It is a very import step in MUFOLD since it ensures the 

completeness of a model, otherwise the model generated will be incomplete (Levefelt & 

Lundh, 2006). 

Generally, all gaps are divided into two types: the gaps in the sequences, and on the 

terminal ends. For the gap in the sequence, it is usually not very large and have context on 

both gaps ends. For the gap on the sequence terminal ends, it could be very large and there 

is no context on one gap end.  
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6.6.1 Loop Modeling by Fragment Alignments Searching 

In this method, only the gaps that are longer than three are considered. For the gaps that 

are smaller than three, the shortest path method described in the next section is used. For 

each gap in the query sequence that has no structural data, the gap ends are extended by 

three residues on both sides. For example, if the original gap length is 5, then the extended 

length is 11. The extended residues have structural data and will be used to select the best 

patches. In the following Figure 6.2, on the left side it shows a template sequence with a 

gap in it. The gap is then extended by three residues on both sides and the patch will need 

to be able to cover the whole length of the extended gap. 

 

To find the patch candidates, the program first searches the all fragment alignments to 

find segments that can cover the whole extended gap. As shown in the right side in Figure 

6.2, the blue square is the distance matrix of the template sequence. The gap will be two 

bands with no values as shown in the white area. The patch’s distance matrix is shown in 

orange and the extended three residues will be the areas A, B, C, and D.  

For the patch candidate’s selection, it is done by a score called the root mean square 

distance (RMSD) of the overlap regions of the patch and the template sequence, i.e. the six 

 
 

Figure 6.2 Illustration of overlap regions in distance matrix in loop modeling. 
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residues with three on each end. A smaller RMSD value indicates the overlap region 

between the patch and the template is more similar. Before calculating the RMSD, the six 

residues in the patch will be superimposed to the corresponding six residues in the template 

sequence. After the superimposing, the RMSD of the overlap region is calculated and used 

to sort the patch candidates. The patch candidate with the smallest RMSD will be selected 

for the gap. 

The patching process will be based on distance matrix, as shown on the right side in 

Figure 6.2. The following Figure 6.3 shows an example of patching a gap in a distance 

matrix of a master template. 

 

In the above Figure 6.3, the blue area in the square on the left side is the distance matrix 

of a master template with a gap in it, the orange area is the patch we select for this gap. The 

square on the right side is the distance matrix after the patch and the master template are 

merged. The blue area is fixed and only the gap area will be filled using the patch’s distance 

matrix. 

 
 
Figure 6.3 Illustration of loop modeling process by patching a gap in the distance 
matrix. 
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6.6.2 Loop Modeling by Shortest Path 

For the gaps that are smaller than three residues, the distance is estimated by shortest 

path distance. According to the property of protein structure, each two adjacent 𝐶! atoms 

have the average distance of 3.8 angstrom (Reese et al., 1996). In theory, any two 𝐶! atoms 

can be connected by multiple adjacent 𝐶! atoms. When we know the number of adjacent 

𝐶!  atoms on the path, we can get the path with the shortest distance of all connecting 

adjacent 𝐶! pairs (Jingfen Zhang et al., 2010). This can be done on a distance matrix to fill 

in the small gaps since the shortest path will easily overestimate the distance if the gap is 

too large, especially those on the terminal end. 

6.7 Model Generation 

MUFOLD’s model generation is mainly based on the distance matrix of 𝐶! atoms. Side 

chains are added back the 𝐶!  model later. There are two methods implemented in 

MUFODL for model generation: the fully extended method and the distance matrix based 

method. 

6.7.1 Method 1: Fully Extended Model Generation 

The idea of fully extended method is straightforward. It is still a template-based method 

and the template is extended on both sides as the final model. Filly extended method is 

simple, but it provides a quick and fast model generation to evaluate the template quality 

and it performs good if we can get good templates. 

The following Figure 6.4 shows an illustration of how the fully extended modeling 

method works. The first blue line is the query target sequence. The second light orange line 

is one of the templates we find. The dark orange regions in the template, i.e. 𝐴	and 𝐵 are 
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the aligned regions to the target sequence. To get the fully extended model, the aligned part 

in the template is extended as far as possible on the two ends but not over the length of the 

target sequence. The final fully extended model will be the regions 𝐴′ and 𝐵′ and the 

sequence IDs will be re-numbered to align with the IDs in the query target sequence. 

 

In the fully extended modeling method, the extended area may disturb the quality of the 

whole structure if it is very different from the native structure of the query target. If the 

extended area is very long it will dominate the model as well, which makes the fully 

extended modeling quality poor. 

6.7.2 Method 2: Distance Matrix Based Model Generation 

The distance matrix is the key data structure in this method. From the previous 

description that all the templates are represented using distance matrix and loop modeling 

is done via distance matrix as well. In this section the process of generating models from 

distance matrix by iterative multidimensional scaling (MDS) is covered.   

Iterative MDS 

It is known that given a distance matrix, the 3D structure can be derived form it by 

MDS. However, from our experiments, sometimes MDS can distort the helix and beta sheet 

 
Figure 6.4 Illustration of how fully extended modeling method works. 
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units of a 3D structure. To solve this problem, an iterative process is used to keep the retain 

the structure of helix and beta sheets. Using iterative MDS can help to make the structure 

more protein-like. 

The following Figure 6.5 shows the process of iterative MDS. In the figure, DM is short 

for distance matrix. The 𝐷𝑀9*#A1?%1B on the upper left corner is the input distance matrix 

to the iterative MDS. From this 𝐷𝑀9*#A1?%1B by applying MDS we can get a 3D model, 

then from this 3D model we build the distance matrix called 𝐷𝑀?+:%*. At this point if we 

apply MDS on 𝐷𝑀?+:%* again we may get a structure with helix and beta sheet distorted. 

Therefore, we add an SSE replacement step to replace the areas of the helix and beta sheet 

in 𝐷𝑀?+:%* with the corresponding values in 𝐷𝑀9*#A1?%1B and the new distance matrix is 

called 𝐷𝑀?+:%*_CC%_/%,*90%:, from which we can get another model by applying MDS. The 

helix and beta sheet areas are predicted from sequence by PSIPred. Then the RMSD of 

those two models are calculated. Iteration stops when the RMSD converges or up to 5 

iterations totally. 
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Fixing the Mirror Case 

For a distance matrix MDS can output two results in the 3D space and they are mirror 

to each other. In MUFOLD, it only needs the one that keeps the global topology of the 

template used for modeling, rather than the mirror one. To solve this problem, we introduce 

the determinant of orthogonal matrix of the template’s coordinates and MDS output’s 

coordinates. The following shows the process of our mirror fixing algorithm. 

 

 
Figure 6.5 Process of iterative MDS in distance matrix based modeling. 

 

 
Figure 6.6 The process of fixing mirror case. 
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In the above figure, the coordinates from template and from MDS output will be aligned 

and cut to the same size. Then after doing Procrustes we can get the orthogonal matrix 𝑇. 

We get the determinant 𝑣 = 𝑑𝑒𝑡	(𝑇). If 𝑣 equals to 1 then this MSD output is not a mirror, 

otherwise, it is mirror and we need to switch the 𝑥 and 𝑧 axes.  

Building Full Atom Model 

Since MUFOLD does all the operations using the distance matrix of 𝐶!  atoms, the 

generated model is coarse grained 𝐶! model. For better further use of the model it is needed 

to have a full-atom model with side chains. This process is done by a third-party tool 

PULCHRA (Rotkiewicz & Skolnick, 2008).  

6.8 MUFOLD Modules Design 

MUFOLD is designed using object oriented programming (OOP) idea. The modules are 

showed in the following Figure 6.7. The basic data structures are all encapsulated in the 

Data Objects module. All other modules are decoupled and can communicate with each 

other with a pre-defined communication protocol. In a word, the new design make the 

MUFOLD platform very easy to add new tools, develop new methods, do fast development 

iterations, and reuse the code bases.  
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Figure 6.7 MUFOLD  modules design 

6.9 Model Quality Assessment 

Each master alignment will generate a model candidate. In current version, we set the 

number of master alignment to 10 so finally 10 models will be evaluated and ranked by 

quality. This evaluation is done by our quality assessment module. 

There are two types of model quality assessment methods in MUFOLD, the single 

model QA, and consensus model QA. The single model QA generates a single score for 

each model, and the score is used to rank. The consensus model QA generates a consensus 

score matrix and the average consensus score is used to rank. For CASP13, single model 

QA with two machine learning regressor is used: the random forest regressor and Ridge 

regressor. The features for each model are as follows: 

1. Predicted secondary structure and solvent accessibility scores; 
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2. Scores generated by dfire and dDfire (Y. Yang & Zhou, 2008), DOPE (Shen & Sali, 

2006), RW and RWplus (J. Zhang & Zhang, 2010), HOPP (Sims & Kim, 2006), 

Opus (Y. Wu, Lu, Chen, Li, & Ma, 2007), Proq2 (Uziela & Wallner, 2016), and 

Proq3 (Uziela, Shu, Wallner, & Elofsson, 2016); 

6.10 Web Services Development 

It is very important to contribute to the community by providing online services for 

others to use your tools. It can prove the performance of your tools and others can use your 

tool online directly without downloading and installing a lot of files. To use our servers, 

the user can provide their email address so that the user will get notification when the job 

is submitted and finished. 

The web portal is freely available for educational purposes and can be found here: 

http://dslsrv2.eecs.missouri.edu/~zlht3/. 

6.10.1 Web Server Architecture 

The web services system contains three parts: the frontend webpages, the backend 

requests processing system, and the job management system. The overall architecture is 

shown in the following Figure 6.8. This architecture is universal for all our different 

services since we have multiple different runners to handle different jobs and it can be 

easily adapted to new tools. For example, the same architecture was used in CASP13 for 

our participation in server modeling prediction, the refinement, and the quality assessment. 

All of them worked very well. 
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When a user submits a target query via the web page or APIs, the request will be handled 

by our request processing system, which is written in PHP. The request will be put into a 

job queue and marked the job type. If there are the same type jobs running, the new jobs 

will be waiting in the queue. Our job management system has a listener to the job queue to 

detect unfinished jobs. If there is an unfinished job to be executed, the job listener will pop 

it from the queue and call corresponding runner to run the job. When the job is finished by 

the runner, the listener will update the status of the job and send notifications to users if 

needed. In addition, our frontend webpages have implemented AJAX features to display 

the real-time status of user’s job without refreshing the webpages.  

6.10.2 MUFOLD SSW - Secondary Structure and Supersecondary Structure 

Prediction Server 

This server is to provide services for protein secondary structure, backbone torsion angle 

predictions, and beta-turn/gamma-turn predictions, which can provide important 

 
Figure 6.8 Web server architecture. 
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information for protein 3D structure prediction and protein functions. This server has four 

runners integrated to provide services: MUFold-SS (Fang, Shang, & Xu, 2018a), MUFold-

Angle (Fang, Shang, & Xu, 2018b), MUFold-BetaTurn (Fang, Shang, & Xu, 2018b) and 

MUFold-GammaTurn (Fang, Shang, & Xu, 2018a). Here, these four new software tools 

are made available to the community through one easy-to-use web service, called 

MUFOLD Secondary Structure Webserver (MUFOLD-SSW). 

The first version of MUFold-SSW was released in June 2017. Since then, there have 

been about 100-150 submissions per month from dozens of sites around the world. 

A user can submit a sequence at our web interface, and the submit-ted job will be queued 

on the server to run sequentially.  

Input 

The input to MUFold-SSW includes up to 10 sequences in the FASTA format, type of 

predictions (SS, TA, BT, and/or GT), and optionally user email address and job name. The 

following Figure 6.8 shows the job submission page. The web interface has 1) user email 

address, 2) the job name, 3) the job type, 4) the sequence to be submitted, and at the bottom 

there is a button to submit. A user can also click on an example sequence link to submit an 

example job or click to see an example result. 
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Output 

After a job is submitted, it will be assigned a unique job ID and a web URL to track the 

job status. If the user submits a valid email address, they will receive the job running status 

link in the email and use their email to track the job. The following Figure 6.10 shows an 

example email notification when the job is submitted and finished. 

 
Figure 6.9 MUFOLD_SSW server job submission page. 
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On the job running status webpage, the real-time job status and job running logs are 

displayed. The following Figure 6.11 shows the job status page. The web interface shows 

1) the job summary, 2) real-time job status, and 3) real-time job running logs. 

 

 
Figure 6.10 The email notifications when a job is submitted and finished. 

 

 
Figure 6.11 MUFOLD_SSW server job running status page. 
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When the job is finished, the user will receive another email notification with the link 

to the job result page. The result webpage includes a job summary, detailed prediction 

results, distributions and histograms of the results, and links to download all the result files. 

The following Figure 6.12 shows the job result page. The web interface shows 1) the 

navigation menu, 2) job summary, 3) job status, 4) the results navigation tabs to show 

running logs, results, and results download links, 5) the prediction results, 6) the 

distributions and histograms of all predictions, and 7) the raw text output. 

 

6.10.3 MUFOLD 3D Structure Prediction Server 

This server is the one used to participate in CASP13 competition for 3D structure 

prediction category. It provides several APIs for CASP official use and submits modeling 

results to CASP server automatically without any human interference. This server will 

receive the target name, target sequence, and submission email via a POST request. Our 

backend will process the request and save the job information to the queue and send 

 
Figure 6.12 MUFOLD_SSW server job result page. 
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confirmation back to CASP. Our job management system is monitoring the job queue and 

once there is a job in pending, it will call our prediction toolkit MUFOLD to generate the 

top 5 models. After MUFOLD is finished, the job management system will reformat those 

models to the standard CASP format and send them to the submission email address. This 

server worked smoothly during the CASP13 competition and never missed any single 

target query. 

Currently this server can only accept requests by POST API call. We will open the 

access to the public with a frontend user interface once in the future. 

6.10.4 MUFOLD Contact Prediction Server 

This is the server used to participate in the CASP13 competition for the residue-residue 

contact prediction category. It provides several APIs for CASP official to use and submits 

the predicted results to the CASP server automatically. It works in the same way as our 

previous two servers. When a new job is submitted by API, our backend will process it and 

put it into the job queue. The job management system will read the job queue and run any 

pending jobs. When the job is finished, the job management system will reformat the 

results and submit it to the specified CASP submission email address. The same as our 

modeling server, this server worked very well and smoothly during the CASP13 

competition without human interference. 

The same as 3D structure prediction server, currently this server can only accept 

requests by POST API call. We will open the access to the public with a frontend user 

interface once in the future. 
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6.10.5 Server Usefulness 

Since the release of our server, there are 8,351 different submissions  from 1,521 users 

from all over the world until the end of April 2020. See the following Figure 6.13 for a 

world map of visitor from Google Analytics.  

 

Figure 6.13 World map of MUFOLD server visitors. 

We also keep receiving feedbacks from the users and use their feedbacks to make the 

server more stable. For example, the following Figure 6.14 shows the most recent email 

we received from one of our users. We are very pound that our server can make 

contributions to the community and their feedbacks are also very helpful to use to improve 

the server. 
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Figure 6.14 Recent feedback received from our server user. 

6.11 Summary 

In this chapter, the design and the development of our comprehensive protein prediction 

platform, the MUFOLD, is introduced. It contains several tools for different type of protein 

prediction tasks, such as secondary structure and supersecondary structure prediction, loop 

modeling toolkit, template-based 3D structure prediction, contact map prediction, and 

quality assessment toolkit. The system pipeline is written in object-oriented programming 

language C++ and Python to decouple each module and to make it easier for new tools and 

algorithms to be tested in the whole pipeline in a fast iteration.  
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The web portal is also introduced to provide several online services to the community. 

The web service system consists of three major parts: the frontend, the backend, and the 

job management system. The frontend provides a user-friendly and easy to use web 

interface for users to submit their jobs. The backend handles all web and API requests and 

manage the job queue on the server side. The job management system is responsible to 

arrange the executions for each job, provide real-time status, and generate results report 

when the job is finished. This architecture can be easily adapted to other web services in 

the future. More specifically, the web services system provides three services: the 

secondary and supersecondary structure prediction, i.e. angles, beta turn, and gamma turn; 

the 3D structure modeling service; and the contact map prediction. The first one is publicly 

available now and the last two are specifically for CASP competition purpose by API call. 

In the near future we will open the access to the last two servers to the public. More services 

are on the way and the goal is to provide a unified web portal of all our tools for the 

community.  
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CHAPTER 7. SUMMARY AND FUTURE WORK  

7.1 Summary 

In this thesis, two deep learning based methods for protein loop modeling and contact 

map prediction, and the development of two projects, the MUFOLD platform and the web 

portal for our tools, have been proposed.  

For the loop modeling problem, MUFOLD_LM method is the first successful GAN 

application in bioinformatics. The network consists of a generator and an adversarial 

discriminator. The generator generates the predictions of the missing region based on the 

existing region’s context, and the discriminator try to sharp the generated distance map of 

the missing region to make it more protein like. The predicted distance map is converted 

back to 3D structure using MDS algorithm. It is proved that the GAN architecture improves 

the quality of the predictions and significantly reduce the standard deviation for all 

predictions. The feasibility has been verified so that the similar GAN architecture could be 

applied to other bioinformatics problems as well. 

For the contact map prediction, progress of improving the performance of our baseline 

model in CASP13 gradually has been shown. Different ways of getting contact map 

predictions are explored. The current best proposed model is a two-stages multi-branch 

network to combine the distance map prediction and the binary contact map prediction to 

fully utilize the information from the features set. We have been in the top range of all 

groups that are using the almost same features set and we believe by integrating more 

advanced features, such as the raw score, and by tailoring the network structure we can 

keep improving the performance of our model. 
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For the predicted contact map refinement, TPCref employed new methods to use protein 

templates information and contact predictions on these templates to improve prediction 

accuracy on the original target protein. It is general and can be applied over any existing 

method. Significant improvement has been shown in our experimental results. 

The development and functions of our comprehensive protein structure prediction 

platform, MUFOLD has also been shown. It has been refactored using object-oriented 

programming language to decouple multiple modules. It provides us the opportunities to 

try new ideas and tools and get feedback in fast pace. The basic template-based pipeline 

has been finished and multiple tools have been integrated including the secondary structure 

and supersecondary structure predictor, the 3D structure modeling using different 

modeling methods, the contact map predictor, and the model quality assessment tools. In 

addition, it is very important to have our tools being tested by others and make 

contributions to the community as well. A web services system including the backend, 

frontend, and the job management system, has been designed and implemented. Users can 

submit their jobs online or via APIs request and get notified when the job is finished, 

without downloading and installing a ton of tools, databases, and third-party dependencies 

on their own computer. It can be easily adapted to our new tools in the future since the 

well-designed system architecture and the easy-to-use user interfaces. 

Finally, here is the list of publications related to the work in this research (in 

chronological order): 

1. Chao Fang*, Zhaoyu Li* (co-first author), Dong Xu, Yi Shang. "MUFold-SSW: A 

New Webserver for Predicting Protein Secondary Structures, Torsion Angles, and 

Turns." Bioinformatics 36, no. 4 (2020): 1293-1295. 
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2. Ruffolo, Jeffrey, Zhaoyu Li, and Yi Shang. "MUFold-Contact and TPCref: New 

Methods for Protein Structure Contact Prediction and Refinement." In 2019 IEEE 

International Conference on Bioinformatics and Biomedicine (BIBM), pp. 90-93. 

IEEE, 2019. 

3. Wang, Wenbo, Zhaoyu Li, Junlin Wang, Dong Xu, and Yi Shang. "PSICA: a fast 

and accurate web service for protein model quality analysis." Nucleic acids research 

47, no. W1 (2019): W443-W450. 

4. Zhaoyu Li, Son Nguyen, Dong Xu, Yi Shang. "Protein Loop Modeling Using Deep 

Generative Adversarial Network." In Tools with Artificial Intelligence (ICTAI), 

2017 IEEE 29th International Conference IEEE, 2017 

5. Wang, Junlin, Zhaoyu Li, and Yi Shang. "New Deep Neural Networks for Protein 

Model Evaluation." In 2017 IEEE 29th International Conference on Tools with 

Artificial Intelligence (ICTAI), pp. 309-313. IEEE, 2017.  

6. Son Nguyen, Zhaoyu Li, Yi Shang. "Deep Networks and Continuous Distributed 

Representation of Protein Sequences for Protein Quality Assessment." In Tools with 

Artificial Intelligence (ICTAI), 2017 IEEE 29th International Conference IEEE, 

2017. 

7. Son Nguyen, Zhaoyu Li, Dong Xu, and Yi Shang. "New Deep Learning Methods 

for Protein Loop Modeling." IEEE/ACM Transactions on Computational Biology 

and Bioinformatics (2017). 
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7.2 Future Work 

There are some further experiments ongoing as the future work in terms of loop 

modeling, contact map prediction, etc. 

7.2.1 Loop Modeling 

As the first successful application of GAN in bioinformatics, our loop modeling work 

opens a door for many other GAN applications in analysis and prediction problems of 

biological sequences structures, such as protein contact prediction and 3D genome 

structure prediction (Z. Li et al., 2017). Future work will be done to make our method more 

general to all problems. Our GAN study also has room for improvement. In our method, 

the loop region must be in the middle of the input subsequence. In future work, an input 

parameter indicating the loop region can be applied to solve this problem. In addition, the 

training for GAN sometimes is not stable. More advanced GAN training methods can 

improve the training stability.  

7.2.2 Contact Map Prediction 

Using Generative Adversarial Network 

Since GAN has been proved to be helpful in the loop modeling problem to have a better 

distance map prediction, it is worth to try GAN for contact map prediction. Our two-stage 

multi-branch network uses predicted distance map from stage 1 as intermediate features 

and GAN can be used in stage 1, it could improve the final contact map prediction accuracy. 

The intuitions behind the idea that GAN can improve the protein’s complete distance 

map are as follows. First, distance map is not random value matrix. Each distance has 

relationship with other distances and all the distances must be comply with some 
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distributions or patterns to be a protein-like distance map. The GAN can be used to learn 

this distribution inside the proteins. Second, the values in the distance map can range from 

0 to a very large value, and the maximum value for each protein is different because it 

depends on the size of protein in the 3D space. The traditional deep neural network can 

predict distance, but it may be scaled down or up. The GAN can be used to learn the right 

scaling factors in a protein’s distance map to make sure the predicted distance map is in 

the right scale. Third, we trained the distance map prediction network using mean square 

error (MSE) loss, which has been proved to get blurry results in the prediction for images. 

It is intended to get a minimum loss for all pixels in the image so the sharpness of pixels 

could be sacrificed. It is the same situation for distance map prediction. The MSE loss will 

make the network try to predict values that have a minimum difference on average, which 

makes the predicted distance map blurry. The GAN has been proved to be able to solve 

this problem in image inpainting problem. The filled in image patch looks sharper than 

without using GAN.  

One problem to be resolved is our network take various size of proteins as input and 

predict the same size output. However, in a traditional GAN the discriminator network will 

have fully connected layers at the end and generate a true or false value, which means the 

input size to the discriminator network should be fixed. This is also a problem for some 

image inpainting problem if the input images have different sizes. PatchGAN has been 

proposed to solve this problem in pix2pix (Isola, Zhu, Zhou, & Efros, 2017), and this idea 

was first introduced in paper (C. Li & Wand, 2016).  The basic idea of PatchGAN is to use 

a sliding window to get a fixed size subset of the whole output of generator so that the 

discriminator can have a fixed size input no matter what the size of generator’s output. The 
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following Figure 7.1 shows the basic idea of using PatchGAN in our distance map 

prediction network. 

 

Template Assisted Contact Map Prediction 

Current contact map prediction methods are all using sequence database to get the 

multiple sequence alignments. The sequence database can give a large number of 

homologous sequences but most of them don’t have known structures. The traditional 

template-based 3D structure prediction methods reply on the know structures, which 

inspires us that if we import know structures in the contact map prediction, we would get 

better results.  

To prove our idea is feasible, some experiments have been done. For the CASP13 testing 

set, there are structure predictions from other servers available, and the good models are 

almost all based on templates. If we derive the contact prediction from those model 

 
Figure 7.1 The idea of using PatchGAN in distance map prediction network. 
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predictions, it is like we use the information from the templates. If the results are not too 

bad, it means the template information can help. 

The following table shows the testing results using CASP13 targets in terms of Long-

range top L/5. The top L/5 predictions are selected by distance. Best-In-Pool means we use 

the best predicted model among all the server models to calculate contact map. Best-In-

150 means we use the best predicted model among the set-150 provided by CASP for 

quality assessment purpose. Accordingly, the Best-In-20 means among the set-20 provided 

by CASP.  

 

The accuracy for Best-In-Pool is as high as 70.61%, which shows the advantage of using 

templates for contact prediction. If the same templates that are used for modeling can be 

used in the contact map prediction, the final prediction accuracy could be significantly 

improved. The future work is to figure out a way to integrate the template information in 

the process of contact map prediction. 

DeepCov Raw Score for Contact Map Prediction 

DeepCov is a new published contact map predictor using the raw covariance scores as 

input to a deep neural network to do contact map prediction (D. T. Jones & Kandathil, 

2018). In this paper they proposed the raw score that is derived from the multiple sequence 

alignment directly and this is the only features used. The raw score has been proved to 

carry more information and can improve the performance. After CASP13, it is also noticed 

Table 7.1 The average accuracy for contact derived from best predicted model in the 
pool in CASP13. 

 Best-In-Pool Best-In-150 Best-In-20 
Average accuracy 70.61% 70.61% 66.14% 
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that many top groups were using the raw score as their inputs as well and they all performed 

very well.  

For the raw score, each residue pair has a covariance matrix with dimension of 21 × 21. 

For a protein of length 𝐿, the raw score feature has the size of 𝐿 × 𝐿 × 21 × 21, which is 

very large. In the future work, we will add this feature to our current pipeline and figure 

out a way to reduce the dimension.  

7.2.3 Predicted Contact Map Refinement 

TPCref offers a highly customizable framework for contact refinement, which can be 

tuned according to the purposes of its user.  In the experiments described in Chapter 5, 

several parameters were fixed in the interest of evaluating a variety of methods in a 

reasonable amount of time.  However, there are several parameters (e.g. template clustering 

method, number of templates, template filter weighting, etc.) which might be varied in 

order to achieve improved performance.  For example, utilizing a greater number of 

templates should provide more information and result in further improvements through 

refinement.  Similarly, a more sophisticated template weighting scheme might better 

incorporate the information contained in the template filters. 

A notable drawback to TPCref is the substantial increase in computation time required 

for its application.  To use the method as described above involves prediction of contacts 

for an additional 20 sequences.  For methods with long runtimes, this may be prohibitive.  

However, in such cases some refinement could still be achieved with a reduced number of 

templates, in order to reduce computational overhead. 
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7.2.4 A Unified Web Portal for All Our Tools 

Since a web services system including the frontend, backend, and job management 

system has been implemented, it is essential to make it a unified web portal for all our 

current and future tools. Currently, the MUFOLD_SSW server is publicly available for the 

community, the 3D structure modeling server and the contact map prediction server are 

available for CASP competition purpose by providing APIs. In order to provide a unified 

web portal, in the near future we will open access to all our tools via the user-friendly and 

easy to use web interfaces. At the same time, APIs call will be kept in case others want to 

use it in their own scripts and for the future CASP competitions. By the unified web portal, 

we believe we can make our tools more accessible and make the community much stronger. 
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