

Acoustic Feature-Based Sentiment Analysis of Call Center Data

Master's Thesis Defense

By: Zeshan Peng

Advisor: Dr. Yi Shang

Roadmap

- Introductions
- Related works
- Proposed methods
 - Acoustic feature-based sentiment recognition using classic machine learning algorithms
 - Acoustic feature-matrix-based sentiment recognition using deep convolutional neural network
- Experiment results
- Conclusion and future works

Roadmap

- Introductions
 - Problem
 - Motivation
 - Solution
- Related works
- Proposed methods
- Experiment results
- Conclusion and future works

Introduction

- Sentiment analysis refers to the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information (Wikipedia)
- With the advancement of machine learning, sentiment analysis on audio signal has attracted attention

SENTIMENT ANALYSIS

Discovering people opinions, emotions and feelings about a product or service

Problem

 Identify whether a meeting has been successfully scheduled by the customer in a phone call conversation with a representative

Motivation

- Models can be used to identify customer's attitude and help monitor representative behaviors in real time during the process of a phone call conversation
- Hard to train sale representatives or build good relationships with customers without monitors
- Manpower is limited compared to the huge amount of data
- Sentiment analysis can help making better business decisions

Solution

- Two methods proposed
 - Acoustic feature-based sentiment recognition using classic machine learning algorithms
 - Feature-matrix-based sentiment recognition using deep convolutional neural network
- Machine learning models are developed by different learning algorithms for classification and performances are compared
 - SVM with cubic kernel
 - K-nearest neighbor
 - Neural network
 - Deep convolutional neural network

Roadmap

- Introductions
- Related works
 - Text-based approach
 - Acoustic feature-based approach
- Proposed methods
- Experiment results
- Conclusion and future works

Text-based Approach

Text corpora is huge and data are generated daily with an increasing speed

- Many models are proposed to capture text characteristics
 - Lexical based (A Naïve-Bayes Strategy for Sentiment Analysis on English Tweets, Gamallo, 2014)
 - Semantic based (Sentiment Analysis on Twitter, Kumar, 2012)
- Transcribe audio data into text and then do sentiment analysis on text data (Sentiment Analysis of Call Centre Audio Conversation using Text Classification, Ezzat, 2012)

Acoustic feature-based Approach

- Mel frequency cepstral coefficients
 - Mel Frequency Cepstral Coefficients For Music Modeling. (Logan, 2000)
 - Musical Genre Classification of Audio Signals. (Tzanetakis, 2002)
 - MFCCs are used for music genre classification
 - Automatic emotional speech classification. (Ververidis, 2004)
 - MFCCs are used for emotion recognition

Acoustic feature-based Approach

- Timbre and Chroma
 - Generating Music from Literature. (Davis, 2014)
 - Classify Music Audio With Timbre and Chroma Features. (Ellis, 2007)
 - "Chroma features are less informative for classes such as artist, but contain information that is almost entirely independence of the spectral features."
 - Unsupervised Approach to Hindi Music Mood Classification. (Patra, 2013)
- Pitch and speech rate
 - The Organizational Voice: The Importance of Voice Pitch and Speech Rate in Organizational Crisis Communication. (Waele, 2017)
 - Critically important when forming impressions

Roadmap

- Introductions
- Related works
- Proposed methods
 - Acoustic feature-based sentiment recognition using classic machine learning algorithms
 - Acoustic feature-matrix-based sentiment recognition using deep convolutional neural network
- Experiment results
- Conclusion and future works

Pre-processing and Cleaning

- Remove ringtone signal and other unrelated parts
 - Several methods have been tried, but none of them worked well
 - Manually

Pre-processing and Cleaning

- Remove ringtone signal and other unrelated parts
- Speaker Diarization
 - Split each audio record into segments by speaker turns using transcripts

Feature Extraction

- Prosody features
- Short-term features

Feature Extraction

- Prosody features
 - Pitch (or frequency)
 - Number of pauses (silence that lasts more than 0.3 seconds)
 - Speech rate (number of words spoken per second)
 Pause

Intensity

Duration

- Intensity (or loudness)
- Duration (total length of a segment)
- Jitter (variation of frequency)
- Shimmer (variation of amplitude)

Feature Extraction

- Short-term features
 - Mel-frequency cepstrum coefficients (MFCCs)
 - Chroma

– Timbre

Feature	Description
MFCCs	Mel Frequency Cepstral Coefficients from a cepstral representation where the frequency bands are not linear but distributed according to the mel-scale
Chroma	A representation of the spectral energy where the bins represent equal-tempered pitch classes
Timbre	The character or quality of a sound or voice as distinct from its pitch and intensity

Classification Model

- Build customer model & representative model
 - Based on the according segments group
- Classic machine learning algorithms
 - SVM with cubic kernel
 - K-nearest neighbor
 - Shallow feed forward neural network

Test Audio Record

hillion ha ha han an ailtean ai

Method 2 - Deep Learning

- Deep convolutional neural network has shown unprecedented performance on images, but it can be also used for non-image datasets, such as features in the text, for different classification tasks
- Feeding character-level feature matrix into deep convolutional neural network has achieved competitive results with current state-of-art methods (Zhang, 2015)

Deep Learning - 4 Conv. Layer Architecture

Roadmap

- Introductions
- Related works
- Data processing pipeline
- Experiment results
 - Dataset
 - Experiment design
 - Experiment results
- Conclusion and future works

Datasets

- 86 audio records (from 30 seconds to 8 minutes)
 - 2588 segments after speaker diarization
 - Around 30 segments per audio record

	Positive	Negative	Total
Audio Records	31	55	86
Segments	1284	1304	2588

Experiment Design

- Dataset split
 - Training (85%) Testing (15%)
- Learning algorithm
 - Support vector machine with cubic kernel
 - K-nearest neighbor
 - Shallow feed forward neural network
 - Deep convolutional neural network
- Validation
 - Five fold cross validation

Experiment Results – Per Segment

Customer Model vs. Representative Model

Customer Representative

Experiment Results – Per Record

Model Comparison Based On Majority Votes

·

Prediction Accuracy vs. Number of Convolutional Layers

1-D CNN vs. 2-D CNN On Different Pooling Kernel Size

Comparison On Different Window Size

Comparisons on Different Machine Learning Algorithms

Roadmap

- Introductions
- Related works
- Data processing pipeline
- Experiment design and results
- Conclusion and future works

Conclusions

- Short-term features, such as MFCCs, Chroma and timbre are good indicators for sentiment in our dataset
- Temporal information can be captured by feeding feature matrixes into deep convolutional neural networks to improve prediction accuracy

Contributions

- Two methods have been proposed and implemented in this work
- Different machine learning methods are compared based on experiment results
- Different parameter settings of training deep convolutional neural network on feature matrixes are experimented and results are compared

Future Works

- Automatic speaker diarization process
 - Transcripts are costly and time consuming
- Create better feature representation to feed into deep neural networks
 - Feature matrix is not the end
- Find better features
- Multimodalities
- Collect more data!!!

Thank You All For Attending!

