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Introduction

• Sentiment	analysis	refers	to	the	use	of	natural	language	
processing,	text	analysis,	computational	linguistics,	and	
biometrics	to	systematically	identify,	extract,	quantify,	and	
study	affective	states	and	subjective	information	(Wikipedia)	

• With	the	advancement	of	machine	learning,	sentiment	
analysis	on	audio	signal	has	attracted	attention



Problem

• Identify	whether	a	meeting	has	been	successfully	
scheduled	by	the	customer	in	a	phone	call	
conversation	with	a	representative

Yes No

Meeting	
Scheduled?

Audio	Records



Motivation

• Models	can	be	used	to	identify	customer’s	attitude	
and	help	monitor	representative	behaviors	in	real	
time	during	the	process	of	a	phone	call	conversation

• Hard	to	train	sale	representatives	or	build	good	
relationships	with	customers	without	monitors

• Manpower	is	limited	compared	to	the	huge	amount	
of	data

• Sentiment	analysis	can	help	making	better	business	
decisions



Solution

• Two	methods	proposed
– Acoustic	feature-based	sentiment	recognition	using	classic	machine	

learning	algorithms

– Feature-matrix-based	sentiment	recognition	using	deep	convolutional	
neural	network

• Machine	learning	models	are	developed	by	different	learning	
algorithms	for	classification	and	performances	are	compared

– SVM	with	cubic	kernel

– K-nearest	neighbor

– Neural	network

– Deep	convolutional	neural	network
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Text-based	Approach

• Text	corpora	is	huge	and	data	are	generated	daily	with	an	
increasing	speed

• Many	models	are	proposed	to	capture	text	characteristics

– Lexical	based	(A	Naïve-Bayes	Strategy	for	Sentiment	Analysis	on	
English	Tweets,	Gamallo,	2014)

– Semantic	based	(Sentiment	Analysis	on	Twitter,	Kumar,	2012)

• Transcribe	audio	data	into	text	and	then	do	sentiment	analysis	
on	text	data	(Sentiment	Analysis	of	Call	Centre	Audio	
Conversation	using	Text	Classification,	Ezzat,	2012)



Acoustic	feature-based	Approach

• Mel	frequency	cepstral	coefficients

– Mel	Frequency	Cepstral	Coefficients	For	Music	Modeling.	(Logan,	
2000)

– Musical	Genre	Classification	of	Audio	Signals.	(Tzanetakis,	2002)

• MFCCs	are	used	for	music	genre	classification

– Automatic	emotional	speech	classification.	(Ververidis,	2004)

• MFCCs	are	used	for	emotion	recognition



Acoustic	feature-based	Approach

• Timbre	and	Chroma

– Generating	Music	from	Literature.	(Davis,	2014)

– Classify	Music	Audio	With	Timbre	and	Chroma	Features.	(Ellis,	2007)

• “Chroma	features	are	less	informative	for	classes	such	as	artist,	but	contain	
information	that	is	almost	entirely	independence	of	the	spectral	features.”	

– Unsupervised	Approach	to	Hindi	Music	Mood	Classification.	(Patra,	2013)

• Pitch	and	speech	rate

– The	Organizational	Voice:	The	Importance	of	Voice	Pitch	and	Speech	Rate	
in	Organizational	Crisis	Communication.	(Waele,	2017)

• Critically	important	when	forming	impressions
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Method	1	– Classic	Machine	Learning



Method	1	– Classic	Machine	Learning

Clean/Segmentation



Pre-processing	and	Cleaning

• Remove	ringtone	signal	and	other	unrelated	parts

– Several	methods	have	been	tried,	but	none	of	them	worked	well

– Manually	



Pre-processing	and	Cleaning

• Remove	ringtone	signal	and	other	unrelated	parts

• Speaker	Diarization

– Split	each	audio	record	into	segments	by	speaker	turns	using	
transcripts

Customer	1

Representative	1

Customer	2

Representative	2

Customer	3

Representative	3 ...

...

Customer	Model

Representative	Model



Method	1	– Classic	Machine	Learning
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Feature	Extraction

• Prosody	features

• Short-term	features



Feature	Extraction

• Prosody	features

– Pitch	(or	frequency)

– Number	of	pauses	(silence	that	lasts	more	than	0.3	seconds)

– Speech	rate	(number	of	words	spoken	per	second)						Pause

– Intensity	(or	loudness)

– Duration	(total	length	of	a	segment)

– Jitter	(variation	of	frequency)

– Shimmer	(variation	of	amplitude)

Intensity Duration



Feature	Extraction

• Short-term	features

– Mel-frequency	cepstrum	coefficients	(MFCCs)

– Chroma

– Timbre
Feature Description
MFCCs Mel Frequency	Cepstral	Coefficients	from	a	

cepstral	representation	where	the	frequency	
bands	are	not	linear	but	distributed	according	

to	the	mel-scale

Chroma A	representation of	the	spectral	energy	where	
the	bins	represent	equal-tempered	pitch	classes

Timbre The	character	or	quality	of	a	sound	or	voice	as	
distinct	from	its	pitch	and	intensity
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Classification	Model

• Build	customer	model	&	representative	model

– Based	on	the	according	segments	group

• Classic	machine	learning	algorithms

– SVM	with	cubic	kernel

– K-nearest	neighbor

– Shallow	feed	forward	neural	network



Method	1	– Classic	Machine	Learning
Test	Audio	Record
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Method	2	- Deep	Learning

• Deep	convolutional	neural	network	has	shown	unprecedented	
performance	on	images,	but	it	can	be	also	used	for	non-image	
datasets,	such	as	features	in	the	text,	for	different	
classification	tasks

• Feeding	character-level	feature	matrix	into	deep	convolutional	
neural	network	has	achieved	competitive	results	with	current	
state-of-art	methods	(Zhang,	2015)
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Deep	Learning	- 4	Conv.	Layer	Architecture

1-D	convolutional	kernel	&	1-D	max	pooling	kernel
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Datasets

• 86	audio	records	(from	30	seconds	to	8 minutes)

– 2588	segments	after	speaker	diarization

– Around	30	segments	per	audio	record

Positive Negative Total

Audio	
Records

31 55 86

Segments 1284 1304 2588



Experiment	Design

• Dataset	split

– Training	(85%)	Testing	(15%)

• Learning	algorithm

– Support	vector	machine	with	cubic	kernel

– K-nearest	neighbor

– Shallow	feed	forward	neural	network

– Deep	convolutional	neural	network

• Validation

– Five	fold	cross	validation
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Experiment	Results
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Experiment	Results
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Conclusions

• Short-term	features,	such	as	MFCCs,	Chroma	and	timbre	are	
good	indicators	for	sentiment	in	our	dataset

• Temporal	information	can	be	captured	by	feeding	feature	
matrixes	into	deep	convolutional	neural	networks	to	improve	
prediction	accuracy



Contributions

• Two	methods	have	been	proposed	and	implemented	in	this	
work

• Different	machine	learning	methods	are	compared	based	on	
experiment	results

• Different	parameter	settings	of	training	deep	convolutional	
neural	network	on	feature	matrixes	are	experimented	and	
results	are	compared



Future	Works

• Automatic	speaker	diarization	process

– Transcripts	are	costly	and	time	consuming

• Create	better	feature	representation	to	feed	into	deep	neural	
networks

– Feature	matrix	is	not	the	end

• Find	better	features

• Multimodalities

• Collect	more	data!!!
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