MaskingNet for Car Image Masking

Yini Duanmu MS Defense Advisor: Dr. Yi Shang

Outline

- 1. Research Problem Description
- 2. Existing semantic segmentation approaches
- 3. MaskingNet: A new deep learning architecture
- 4. Experimental results
- 5. Summary

Research Problem Description

- The car image masking problem
- Carvana Image Masking Challenge Kaggle Data Science Competition
- Kaggle Dataset
- Technical Challenges

The car image masking problem

Input image

Target

Background: Online store segment out the products to display on website Task: Automatically remove the background, keep the foreground

Carvana Image Masking Challenge - Kaggle

- Time: 7/26/2017~9/27/2017
- My submission ranked 12th / 735, 1st place of silver medal my proposed Architecture #1 was used

#	∆pub	Team Name	Kernel	Team Members	Score 🔞	Entries	Last
1	▲1	best[over]fitting			0.997332	80	1y
2	₹1	bestfitting			0.997331	78	1y
3	▲1	lyakaap			0.997264	43	1y
4	A 3	80 TFlops			0.997232	82	1y
5	▲7	Kyle		1	0.997209	59	1y
6	₹3	JbestDeepGooseFlops		🔊 🛐 🛃 🖉	0.997190	76	1y
7	▲1	deepsystems.io			0.997151	12	1y
8	• 17	jizs		1	0.997138	16	1y
9	• 13	lizy		1	0.997126	25	1y
10	^ 20	David			0.997123	65	1y
11	▼5	Sukjae Cho			0.997115	42	1y
12	• 17	Onion x Potato		i	0.997085	20	1y

Kaggle Dataset

- Each vehicle has 16 images in different orientation
- Fixed camera position
- Different color, year, make, model combinations
- Training set: 5,088 images (318 vehicles)
- Test set: 100,064 images (6,254 vehicles)

Input images

Target

Technical Challenges

- Foreground and background may have similar color
- Need to infer the boundary based on contextual info.

Issues in results generated by SegNet:

Existing semantic segmentation approaches

Bottom-up image segmentation followed by Region Classification

- SDS
- Zoom-Out
- RCNN

Independently extract CNN features and do segmentation, then couple the result

- Hypercolumns
- Convolutional Feature Masking

Directly do pixel-wise classification

- U-Net
- SegNet
- MaskingNet a new approach proposed in my project

Architecture of U-Net

Loss function:

- Pixel-wised soft-max
- Cross Entropy

Disadvantages in U-Net

- 1. The spatial information loss lead by the Max-pooling
- 2. Lack of the ability to learn the correlation between the content and coordinates due to translation invariant.
- 3. Unet may not make good use of contextual information due to the limited receptive field.

Architecture of SegNet

Record max-pooling indices while max-pooling

Comparison between upsampling methods

Transposed Convolution

kernel

Up-sampling method of SegNet Spatial info. is kept by reusing the pooling indices. MaskingNet uses this method 14

MaskingNet: a new deep learning architecture

- 1. New Combination of reusing pooling indices and concat. Encoder feature map
- 2. New Coordinate Maps method
- 3. New Dilated Convolution method

Model	Max pool. indices	Coord. maps	Dilated Conv.
Arc. #1	√		
Arc. #2	√	Input layer	
Arc. #3	√	Mid-layer	
MaskingNet	√	Mid-layer	√

My Architecture #1:

New Coordinate Maps Method

- Insight
 Definition of Coordinate maps
 My Architecture #2

 New combinate
 - New combination of reusing pooling indices and concat. encoder feature map
 - New concat. coord. maps with input image

4 My Architecture #3

- New combination of reusing pooling indices and concat. encoder feature map
- New concat. coord. maps with mid-layer feature map

1. Insight

• Different parts have different spatial distributions

2. Definition of Coordinate maps

- Define X-Map as $I_X(x, y) = \frac{x}{w} 0.5$, where w is the width of the image
- Define Y-Map as $I_Y(x, y) = \frac{y}{h} 0.5$, where h is the height of the image
- Coordinate maps are constant, independent with the input image
- Subimage are cropped at the same position from input image, X-Map and Y-Map

3. My Architecture #2 ·

- New combination of reusing pooling indices and concat. encoder feature map
- New concat. coord. maps with input image

4. My Architecture #3

- New combination of reusing pooling indices and concat. encoder feature map
- New concat. coord. maps with mid-layer feature map

New Dilated Convolution Method

Motivation: Previous methods not good

Can't infer the car shape due to the limited receptive field

Regular Convolution vs. Dilated Convolution

Kernel

	6	14	17	11	3
	14	12	12	17	11
	8	10	17	19	13
	11	9	6	14	12
ĺ	6	4	4	6	4

Regular convolution stride=1, padding=1

13	11	18	10	7
2	4	6	8	6
15	7	14	7	11
6	6	7	7	5
11	5	12	2	5

Dilated convolution dilated=2, stride=1, padding=2

MaskingNet

Experimental Results

Training Parameters
 Evaluation metric
 Experimental results

1. Training Parameters

- Training set: 4071 images
- Validation set: 1017 images
- First 10 layers: pre-trained VGG-16
- Image size: 512x512
- Batch size: 4
- Optimizer: Adaptive Moment Estimation(Adam)
- Learning rate: initial 0.001, half for each 40 epochs
- Momentum: 0.9
- Total epochs: 250#
- Framework: Pytorch
- NVIDIA 1080Ti GPU, cuDNN v7

2. Evaluation metric

• Mean Dice Similarity Coefficient

Compare the agreement between predicted segmentation and ground truth

$$DSC = \frac{2 \times |X \cap Y|}{|X| + |Y|}$$

X: Predicted set of pixels Y: Ground truth The DSC is defined to be 1 with both X and Y are empty

3. Experimental results

Model	DSC Test set	Max pool. indices	Coord. maps	Dilated Conv.	#Parameters	Training Time ms/image	Test Time ms/image
U-Net	99.5604%				31,043,586	137.6	34.42
SegNet	99.6092%	√			29,444,162	165.13	30.50
Arc. #1	99.6932%	√			32,799,554	171.75	42.793
Arc. #2	99.6870%	√	Input layer		32,800,706	172.59	42.901
Arc. #3	99.6937%	√	Mid-layer		32,808,770	170.50	42.839
MaskingNet	99.7023%	~	Mid-layer	~	32,808,770	180.46	46.609

- Most of the pixels can be easily predicted gives the DSC very high number such as 99.56%, 99.60%
- 0.01% DSC difference/image \approx 60 pixels difference/image(The car approximately occupied 600,000 pixels in each image)
- Much more easy case than hard case, so there are significance differences between hard cases with the difference of 0.01% DSC

#	≙pub	Team Name	Kernel	Team Members	Score 🔞	Entries	Last
1	▲1	best[over]fitting		🖯 🎑 💓	0.997332	80	1y
2	▼ 1	bestfitting			0.997331	78	1y
3	▲1	Iyakaap			0.997264	43	1y
4	A 3	80 TFlops		🦻 💽 🚳	0.997232	82	1y
5	▲7	Kyle		- M	0.997209	59	1y
6	▼ 3	JbestDeepGooseFlops		💽 🌠 💽	0.997190	76	1y
7	▲ 1	deepsystems.io			0.997151	12	1y
8	~ 17	jizs		- Alexandre	0.997138	16	1y
9	~ 13	lizy		The second	0.997126	25	1y
10	^ 20	David			0.997123	65	1y
11	₹5	Sukjae Cho		2	0.997115	42	1y
12	▲ 17	Onion x Potato			0.997085	20	1y

Improvement of the Up-sampling Method

Model	1-DSC Test set	Max pool. indices	Coord. maps	Dilated Conv.	#Parameters	Training Time ms/image	Test Time ms/image
U-Net	0.4396%				31,043,586	137.6	34.42
SegNet	0.3908%	√			29,444,162	165.13	30.50
Arc. #1	0.3068%	√			32,799,554	171.75	42.793
Arc. #2	0.313%	√	Input layer		32,800,706	172.59	42.901
Arc. #3	0.3063%	√	Mid-layer		32,808,770	170.50	42.839
MaskingNet	0.2977%	~	Mid-layer	~	32,808,770	180.46	46.609

Up-sampling comparison: Reusing of max-pooling indices is better than using transposed convolution. Helps generate more accurate segmentation

Improvement of the Coordinate Maps Method

Model	1-DSC Test set	Max pool. indices	Coord. maps	Dilated Conv.	#Parameters	Training Time ms/image	Test Time ms/image
U-Net	0.4396%				31,043,586	137.6	34.42
SegNet	0.3908%	√			29,444,162	165.13	30.50
Arc. #1	0.3068%	√			32,799,554	171.75	42.793
Arc. #2	0.313%	√	Input layer		32,800,706	172.59	42.901
Arc. #3	0.3063%	√	Mid-layer		32,808,770	170.50	42.839
MaskingNet	0.2977%	~	Mid-layer	√	32,808,770	180.46	46.609

Encoding the Coord. Maps in the mid layer is better than not using them or encoding them in the input layer

Architecture-1 Reuse of pooling indices

Architecture-3 Reuse of pooling indices

Coord. Maps at middle

Improves the performance on some hard cases

Improvement of the Dilated Conv. Method

Model	1-DSC Test set	Max pool. indices	Coord. maps	Dilated Conv.	#Parameters	Training Time ms/image	Test Time ms/image
U-Net	0.4396%				31,043,586	137.6	34.42
SegNet	0.3908%	√			29,444,162	165.13	30.50
Arc. #1	0.3068%	√			32,799,554	171.75	42.793
Arc. #2	0.313%	√	Input layer		32,800,706	172.59	42.901
Arc. #3	0.3063%	√	Mid-layer		32,808,770	170.50	42.839
MaskingNet	0.2977%	~	Mid-layer	√	32,808,770	180.46	46.609

- Enlarge the receptive field to remove holes inside the car
- Dilated convolution helps to infer the shape of the car, even the boundaries are unclear in the RGB image

Model	DSC Test set	Max pool. indices	Coord. maps	Dilated Conv.
U-Net	99.5604%			
SegNet	99.6092%	√		
Arc. #1	99.6932%	√		
Arc. #2	99.6870%	√	Input layer	
Arc. #3	99.6937%	√	Mid-layer	
MaskingNet	99.7023%	ا ر	Mid-layer	√

- Train only once
- Didn't adjust hyper-parameters
- Only train 4/5 training images

Team Members	Score 🔞	Entries	Last
8	0.997332	80	1y
	0.997331	78	1y
	0.997264	43	1y
🦻 📐 🙉	0.997232	82	1y
- And	0.997209	59	1y
🔍 🛒 💽 🧟	0.997190	76	1y
	0.997151	12	1y
- And	0.997138	16	1y
1	0.997126	25	1y
	0.997123	65	1y
	0.997115	42	1y
	0.997085	20	1y

• Ensembled by many models

Summary

- Proposed a new end-to-end deep fully convolutional neural network architecture for semantic segmentation named MaskingNet.
 - New combination of reusing pooling indices and concat. encoder feature map
 - New concat. coord. maps with mid-layer feature map method
 - New dilated conv. method
- Experimental results show that MaskingNet outperforms state-of-the-art methods U-Net and SegNet. The error decreased by 32.3% compared with U-Net and 23.8% compared with SegNet.

Thank you !