
	

	

		

TigerAware	Android:	An	Improved	Mobile	
Survey	and	Notification	System	

	

A	Project	

Presented	to	

The	Faculty	of	the	Graduate	School	

At	the	University	of	Missouri

In	Partial	Fulfillment	

Of	the	Requirements	for	the	Degree	

Master	of	Science

Implemented	and	Defended	by:	

							Weiliang	Xia	
Prof.	Yi	Shang,	Advisor	

May	2019

	

i	

TABLE	OF	CONTENTS	

List	of	Figures	...	iii	

List	of	Tables	...	v	

Acknowledgements	..	vi	

Abstract	...	viii	

1.	Introduction	..	1	

1.1	Problem	Description	...	1	

1.2	Proposed	Solution	..	4	

2.	Related	Works	...	8	

2.1	Firebase	and	storage	structure	...	8	

2.2	ResearchStack	...	12	

2.2.1	ResearchStack	Backbone	..	13	

2.2.2	ResearchStack	Skin	...	17	

2.3	ResearchKit	...	19	

2.3.1	ResearchKit	Active	tasks	...	19	

2.4	Relationships	between	ResearchStack	and	ResearchKit	..	25	

3.	TigerAware	Android	Design	...	27	

3.1	TigerAware	System	architecture	..	27	

3.2	TigerAware	Android	architecture	...	28	

3.2.1	Flow	charts	..	28	

3.2.2	Authentication	..	29	

3.2.3	Parse	Survey	...	31	

3.2.4	Launch	Survey	...	35	

3.2.5	Upload	results	...	36	

	

ii	

3.3	Site	maps	..	37	

3.4	Functions	and	algorithms	...	42	

3.4.1	Question	types	..	42	

3.4.2	Notifications	...	48	

3.4.3	Suspension	..	53	

4.	System	performance	evaluation	..	57	

4.1	Different	framework	for	question	types	..	58	

4.2	Notifications	performance	evaluation	..	59	

4.3	Suspension	performance	evaluation	..	59	

5.	Conclusion	and	Future	Work	...	61	

6.	References	..	63	

	

	 	

	

iii	

LIST	OF	FIGURES	

Figure	1	Main	frameworks	about	TigerAware	Android	..	8	

Figure	2	Progression	of	survey	steps	stored	in	database	...	9	

Figure	3	The	structure	of	surveys	in	Firebase	...	10	

Figure	4	The	structure	of	answers	in	Firebase	...	11	

Figure	5	The	structure	of	users	in	Firebase	..	12	

Figure	6	The	backbone	1.1.1	API	..	14	

Figure	7	The	programming	structure	of	tasks	..	15	

Figure	8	Task,	steps,	results	structure	..	15	

Figure	9	A	sample	instruction	step	...	16	

Figure	10	The	programming	structure	of	step	...	16	

Figure	11	The	structure	of	onActivityResult	...	17	

Figure	12	The	structure	of	ResearchStack	Skin	..	18	

Figure	13	The	structure	of	ResearchKit	(cited	from	http://researchkit.org)	19	

Figure	14	A	gait	and	balance	task	...	24	

Figure	15	Relationships	between	ResearchStack	and	ResearchKit	..	26	

Figure	16	TigerAware	system	architecture	and	components	...	27	

Figure	17	TigerAware	Android	architecture	flowcharts	...	28	

Figure	18	Firebase	..	29	

Figure	19	Process	about	signInWithEmailAndPassword	..	30	

Figure	20	Process	about	signInWithEmailAndPassword	..	30	

Figure	21	Firebase	authentication	..	31	

Figure	22	Users	in	firebase	...	31	

Figure	23	Blueprints	in	firebase	..	31	

	

iv	

Figure	24	Programming	of	get	instance	of	FirebaseDatabase	..	32	

Figure	25	Parse	survey	section	1	..	32	

Figure	26	Parse	survey	section	2	..	33	

Figure	27	ERD	for	the	storage	structure	...	34	

Figure	28	Flowcharts	for	the	storage	structure	..	34	

Figure	29	Flowcharts	for	launching	survey	...	35	

Figure	30	On	Activity	Result	...	36	

Figurer	31	Flow	charts	for	uploading	results	..	37	

Figure	32	First	activity	..	37	

Figure	33	Registration	page	..	38	

Figure	34	Main	activity	...	39	

Figure	35	Survey	page	..	40	

Figure	36	Suspend	window	page	..	41	

Figure	37	Site	map	..	41	

	

	

	 	

	

v	

LIST	OF	TABLES	

Table	1	The	list	of	functions	planned	to	be	implemented	in	TigerAware	Android	4	

Table	2	The	list	of	functions	and	algorithms	planned	in	TigerAware	Android	7	

Table	3	Active	tasks	in	ResearchKit	(cited	from	http://researchkit.org)	20	

Table	4	ResearchStack	Supported	Anwersformat	..	43	

Table	5	The	list	of	functions	and	algorithms	about	System	performance	57	

Table	6	The	performance	comparison	along	the	framework	changes	of	TigerAware	58	

Table	7	The	performance	comparison	about	different	algorithms	for	notifications	59	

Table	8	The	performance	comparison	about	different	algorithms	for	suspension	60	

Table	9	The	list	of	my	contributions	...	62	

	

	

	

vi	

ACKNOWLEDGEMENTS	

Firstly,	I	would	thank	my	parents	for	the	support	of	my	study,	and	the	extend	my	sincere	gratitude	

to	my	supervisor	Yi	Shang,	 for	his	kind	guidance,	not	only	 to	 this	project,	but	also	 though	my	whole	

oversea	study,	and	my	life.	Two	years	goes	really	fast,	I	want	to	say,	as	the	first	time	I	talked	to	professor	

Shang,	“talking	with	you	for	one	moment	is	much	better	than	reading	books	for	ten	years.”		

Second,	I	want	to	say	thank	you	to	my	girlfriend,	Jiachen	Ji,	she	must	have	no	awareness	about	

my	graduation	paper.	So	I	want	to	say	here,	“I	will	return.	I	will	find	you.	Love	you.	Marry	you.	And	live	

without	shame.”	

I	 want	 to	 thank	 Nickolas	 Wergeles,	 Dr.	 Tim	 Trull,	 Luke	 Guerdan,	 Connor	 Rowland,	 William	

Morrison,	Handrianto	Yohanes	Patrik	and	everyone	I	missed	in	the	lab.	I	cannot	forget	the	happiness	

when	I	show	Luke	around	the	China,	I	cannot	forget	the	summer	I	worked	together	with	Patrik,	Peng,	

Yang,	Junlin	and	Zhaoyu	and	our	students	in	the	summer	camp.	I	cannot	forget	the	patient	and	detailed	

explanation	from	Will	and	Connor	and	their	powerful	help,	and	thank	Nick	for	leading	me	to	the	“Hello	

world”	 in	 JAVA	 and	 thank	 Tim,	 Denis,	 and	 Hannah	 for	 the	 great	 opportunity	 and	 happiness	 for	

collaboration.	

I	want	to	thank	Siyang	Liu,	in	the	first	semester	for	this	project,	it	is	him	who	guided	me	to	android	

development	and	helped	me	a	lot.	I	cannot	forget	the	happiness	when	we	solved	the	first	bug	together	

right	before	the	meeting	and	it	was	a	null	pointer	error.	

I	want	to	thank	Joshua,	Lewis,	in	the	second	semester	for	this	project,	we	worked	every	Saturday	

on	the	first	 language	learning	application	and	went	to	kinds	of	restaurants	for	celebration,	and	meet	

	

vii	

professor	Roxana	for	more	detail	about	that	application	and	it	did	help	us	build	a	great	foundation	about	

the	basic	framework	for	TigerAware.	

I	want	to	thank	Mohan	Li,	Shiqi	Wang,	and	Runnan	Dong	in	the	third	semester	for	this	project,	

we	stay	together	at	Friday	and	I	work	with	Mohan	on	Saturday	for	so	much	fun	and	joy.	

Finally,	I	want	to	thank	everyone	in	the	lab	for	everything	you	bring	to	me.	

	 	

	

viii	

ABSTRACT	

From	healthcare	to	community	assessment,	mobile	phones	have	become	an	important	tool	in	

many	research	areas	by	collecting	a	variety	of	data,	such	as	daily	steps,	walking	distance	and	GPS	data.	

TigerAware	 is	 a	 new	 cross	 platform	 system	developed	 for	 conducting	mobile	 surveys	 and	 collecting	

sensor	data	via	smartphones.	TigerAware	 iOS	 implementation	 is	based	on	ResearchKit	 from	Apple,	a	

software	framework	for	medical	research	study	apps,	whereas	its	Android	implementation	is	based	on	

ResearchStack,	a	ResearchKit-like	SDK	and	UX	framework	for	apps	on	Android.	ResearchStack	is	designed	

to	help	developers	and	researchers	with	existing	apps	on	iOS	more	easily	adapt	those	apps	for	Android.		

The	goal	of	this	project	is	to	adapt	TigerAware	iOS	apps	to	Android	with	the	same	functionality,	

and	pilot	some	new	features	on	Android.	Based	on	ResearchStack	BackBone	and	Skin,	several	custom	

question	types,	such	as	an	image	question	type,	have	been	implemented	to	support	a	variety	of	question	

types	and	active	tasks	for	various	research	studies.	A	conditional	random	selection	algorithm	has	been	

developed	to	handle	survey	notifications	with	more	flexibility,	such	as	scheduling	random	notification	

with	breaks.	A	new	algorithm	has	been	developed	to	handle	suspension	windows	in	different	situations,	

such	as	suspending	over	midnight.		Finally,	a	new	date	detection	algorithm	has	been	developed	to	handle	

the	start	time	and	end	time	correctly.

	

1	

1.	INTRODUCTION	

First,	let	us	briefly	introduce	TigerAware	before	we	move	on	to	TigerAware	Android.	In	this	big	

data	era,	scientists	are	trying	to	gather	as	many	data	as	they	can,	especially	insightful	new	data	to	draw	

more	 clear	 conclusions.	 The	 old	 way	 is,	 handing	 out	 paper	 surveys,	 asking	 participants	 to	 answer	

questions	in	a	certain	time	and	certain	place.	However,	this	way	is	hard	for	following	up	surveys,	while	

requiring	a	 lot	of	budget,	 though	 it	 is	 good	 for	a	one	 time	questionnaire.	 Thus,	over	 the	past	 years,	

researchers	start	to	rely	more	and	more	on	smartphones,	websites	and	these	kind	of	new	way	to	gather	

novel	data.	Smartphones	are	cheap	and	convenient	source	for	people	to	communicate,	for	information	

exchanging	and	gathering.	Moreover,	this	kind	of	modern	device	usually	equipped	with	a	wide	range	of	

sensor	to	get	the	 information	outsides	the	world,	such	as	motor	activities,	 fitness,	cognition,	speech,	

hearing,	hand	dexterity,	and	vision.	Researchers	can	use	Accelerometer	

Gyroscope	sensor	to	detect	the	motion	of	participant	while	they	are	finishing	a	specific	task,	they	

can	also	use	GPS	data	to	judge	the	user	behavior,	filter	out	the	unreliable	information	and	so	on.	In	a	

word,	researchers	can	use	smartphone	surveys	to	approach	different	kinds	of	specific	research	questions.	

Thus, survey based on smartphone applications become more and more popular, From health to

community assessment, from science to engineering, they have become a cornerstone in many research

areas.

1.1	Problem	Description		

Smartphone applications can collect	a	variety	of	new	data,	such	as	daily	steps,	walking	distance	

and	GPS	data	compared	with	old	paper	 surveys.	However,	 smartphone-based	studies	are	difficult	 to	

develop	 and	 deploy,	 because	 they	 usually	 require	 on-sites	 teams	with	 the	 researchers	 to	meet	 the	

	

2	

specific	study	purpose,	which	may	cause	a	major	portion	of	research	budgets.	Current	platforms	for	data	

collection,	are	either	 limiting	 researchers	by	 just	providing	a	 fixed	platform	and	 lack	 the	 flexibility	of	

develop,	 modify	 and	 integrate	 with	 the	 new	 data	 collected	 or	 requiring	 on-sites	 teams	 with	 the	

researchers	[2][3].	For	example,	a	health	related	research	team	may	need	a	survey	about	blood	alcohol	

level,	using	external	sensor	such	as	Bluetooth	breathalyzer.	Upon	data	arrival,	researchers	may	also	need	

to	visualize	and	interact	with	data	in	different	ways.	The	software	development	to	accommodate	these	

needs	is	time	consuming	and	expensive,	taking	a	large	portion	of	research	budget.	To	solve	this	problem,	

an	innovative	system	called	TigerAware	is	developed.	TigerAware	is	a	cross	platform	system	which	allows	

researchers	to	create	a	variety	of	surveys,	question	types	by	themselves,	collecting	a	wide	range	of	data	

including	but	not	limited	to	question	responses,	on	device	sensor	data,	such	as	GPS	data,	and	external	

sensor	data,	such	as	blood	alcohol	level	from	a	Bluetooth	breathalyzer.		

However,	the	main	SDK	ResearchKit	used	in	TigerAware	can	only	support	IOS	System,	thus	an	

Android	based	on	application	is	needed.		

Even	using	a	similar	SDK	for	Android,	there	are	still	few	challenges	towards	achieving	the	same	

functionality	as	IOS	system	or	reaching	some	specific	research	study	goals.	The	following	is	the	list	about	

the	problems	we	have	to	solve	comparing	to	the	current	most	similar	survey	framework,	Research	Stack	

based	on	three	aspects:	question	types,	notifications	and	suspension.	

	 	

	

3	

(1)	Question	types:	

Static	vs	dynamic:	as	for	basic	questions,	there	are	two	main	problems,	one	problem	is,	most	

question	 types	 supported	 in	 Research	 Stack	 are	 static,	 but	 in	 TigerAware	 Android,	 we	 need	 more	

dynamic	questions,	which	means	researchers	

Can	 change	 the	 question	 settings	 to	 achieve	 their	 study	 use.	 For	 example,	 a	multiple	 choice	

question	in	Research	Stack	is	a	question	user	can	select	one	or	more	than	one	choices,	but	in	TigerAware	

Android,	this	question	may	be	a	strict	single	choice	question	or	a	more	flexible	multiple	choice	question	

based	on	how	researcher	set	this	question	for	their	study	use.	

Basic	questions	vs	custom	questions:		

There	are	only	few	limited	question	types	in	ResearchStack	which	are	not	enough	for	some	study	

use.	Then	some	new	question	types	are	needed.	However,	there	are	few	examples	or	explanations	about	

how	to	create	a	new	question	type	based	on	Research	Stack	framework.	

(2)	Notifications:	

The	origin	Research	Stack	Backbone	frame	lack	the	ability	to	receive	and	create	notifications	on	

the	device.	However,	 in	 order	 to	 tell	 participants	 to	 take	 surveys	on	 time,	 each	 survey	needs	 a	 few	

notifications	 scheduled	 before	 it.	 They	 can	 be	 random	 notifications	 and	 schedule	 notifications.	 To	

achieve	the	goal	of	research	study,	random	notification	need	to	be	scheduled	during	a	period	of	time	

and	 scheduled	 notification	 need	 to	 be	 scheduled	 at	 a	 certain	 time.	However,	 both	 of	 them	 are	 not	

support	in	Research	Stack	Backbone.		

Moreover,	even	for	the	current	TigerAware	android	system,	which	has	the	ability	of	schedule	

notifications,	 for	the	purpose	of	some	specific	study	use,	more	functions	need	to	be	added.	Random	

	

4	

notifications	 need	 to	 be	 scheduled	 with	 fifteen	 minutes	 break,	 scheduled	 notifications	 need	 to	 be	

scheduled	based	on	number	of	days	instead	of	schedule	based	on	the	end	day.	

(3)	Suspension:	

According	to	notification	system,	an	advanced	suspension	system	is	needed	to	block	notifications	

for	participants	when	they	do	not	want	to	be	bothered.	During	the	suspend	window,	there	should	not	

be	any	notifications	showing	to	the	participants	even	random	notifications	and	scheduled	notifications	

are	scheduled	at	that	time.		

Moreover,	even	 for	 the	current	TigerAware	android	 system,	which	has	 the	ability	of	 suspend	

notifications	based	on	two	timestamps	during	one	day,	 it	 still	 lack	 the	ability	of	scheduling	one	time	

suspension	instead	of	scheduling	it	over	and	over	again.	

Table	1	The	list	of	functions	planned	to	be	implemented	in	TigerAware	Android	

Functions	 Requirements	

Questions	 Dynamic	and	custom	questions	

Notifications	 Schedule	notifications	with	15	minutes	break	

Suspension		 Schedule	one	time	suspension		

1.2	Proposed	Solution	

Like	we	just	mentioned	above,	the	main	SDK	ResearchKit	used	in	TigerAware	can	only	support	

IOS	System,	thus	an	Android	based	on	application	is	needed.	The	overall	goal	of	this	Android	application	

	

5	

is	to	make	it	easier	to	adapt	the	existing	functions	on	iOS	into	android	with	the	same	functionality,	and	

develop	the	new	features	together	with	TigerAware	IOS	to	help	some	study	specifics.	 In	more	detail,	

TigerAware	Android	 is	using	a	similar	 framework	called	ResearchStack	(while	TigerAware	 IOS	 is	using	

ResearchKit)	to	accommodates	these	needs	we	mentioned	above.	To	reach	the	same	functionality	as	

TigerAware	 IOS,	 we	 implement	 ResearchStack	 Backbone,	 and	 to	 achieve	 the	 same	 structure	 as	

TigerAware	IOS,	we	implement	ResearchStack	Skin	in	android	application.	As	for	some	functions	which	

are	not	supported	by	ResearchStack	but	ResearchKit,	which	is	still	common,	because	these	two	SDKs’	

functions	are	not	one	to	one,	we	implement	it	 into	TigerAware	Android	by	defining	and	adding	extra	

modules	 into	ResearchStack.	 In	Chapter	 three	and	 four,	we	will	 talk	about	how	we	 implement	 these	

functions	in	more	detail.

TigerAware	Android	can	also	be	easily	 incorporated	 into	 the	existing	TigerAware	System	with	

minor	design	and	changes	by	using	the	similar	SDK	we	mentioned	above.	Furthermore,	the	platform	is	

highly	configurable,	allow	researchers	to	design,	develop	and	deploy	their	own	question	types	using	the	

existing	modules.		

By	using	the	similar	SDK	Research	Stack,	most	questions	can	be	implemented	directly	with	minor	

changes	 and	 the	 following	 is	 the	 table	 towards	 the	 solutions	 in	 three	 aspects:	 question	 types,	

notifications	and	suspensions.	

(1)	question	types:	

a) The	first	problem	is	TigerAware	needs	dynamic	survey	design	and	handling	system,	to	solve	

this	 problem,	 TigerAware	 Android	 uses	 two	 ways:	 one	 way	 is	 to	 rewrite	 the	 question	

framework	 to	 make	 the	 question	 itself	 dynamic	 by	 adding	 more	 parameters.	 These	

	

6	

parameters	all	come	from	TigerAware	Dashboard,	after	research	create	their	own	surveys,	

these	parameters	will	go	along	with	questions	into	Firebase	then	be	received	by	TigerAware	

Android.	For	example,	a	text	slide	question	which	can	only	show	text,	after	we	changed	the	

framework,	an	option	called	“show	image”	can	be	added	into	this	question.	If	a	text	slide	

question	contains	“show	image”	option,	it	may	show	images	going	along	with	this	survey.	In	

this	way,	we	make	the	question	itself	dynamic.	

Another	way	is	to	keep	the	question	static	but	create	a	new	dynamic	question	which	can	

select	static	questions	dynamically.	For	example,	in	ResearchStack,	there	are	two	multiple	

choice	 questions.	 One	 is	 single	 answer	 question,	 another	 is	 single	 or	 multiple	 answer	

question.	 Then	 in	 order	 to	 dynamically	 make	 multiple	 questions	 based	 on	 study	 use.	

TigerAware	Android	create	a	new	multiple	question	type	which	contain	a	parameter	called	

“allow	multiple”.	If	allow	multiple	is	set	to	be	true,	TigerAware	Android	will	choose	single	or	

multiple	answer	question,	otherwise	it	will	switch	to	single	answer	question.	

b) The	second	problem	is	some	questions	researcher	need	for	their	study	use	are	not	supported	

by	ResearchStack.	To	solve	this	problem,	TigerAware	Android	takes	two	actions	based	on	

different	 situations.	 If	 a	 new	 question	 type	 is	 similar	 to	 an	 existing	 question	 type,	 then	

modifying	that	existing	question	type	is	better,	if	a	new	question	type	is	totally	different	with	

those	 existing	 question	 types	 supported	 by	 Research	 Stack,	 then	 creating	 a	 new	 custom	

question	type	is	better	although	it	will	cost	more	time	and	work	than	just	modifying.	

(2)	notifications:	

To	ensure	at	least	fifteen	mins	break	between	notifications,	there	are	two	algorithms	planned	to	

be	implemented	for	this	situation:	the	latest	start	time	algorithm	and	the	conditional	random	selection	

	

7	

algorithm.	Both	of	them	can	solve	the	problem	of	scheduling	random	notifications	with	at	least	fifteen	

minutes	 break	 problem	 and	we	will	 talk	 about	 them	 later	 in	 the	 chapter	 three,	 System	 design	 and	

implementation.	

(3)	suspension:	

To	achieve	the	ability	of	scheduling	one	time	suspension	instead	of	scheduling	it	over	and	over	

again.	We	need	to	import	a	smart	algorithm	to	calculate	the	start	date	and	end	date	based	on	the	start	

time	and	end	time	and	compare	the	suspend	date	and	time	together	with	current	date	and	time	instead	

of	 only	 compare	 time	without	 date	 to	 tell	 if	 the	 time	 is	 in	 suspend	window	 or	 not.	 There	 are	 two	

algorithms	planned	to	solve	this	problem	by	detecting	date	and	blinding	date	and	time	while	comparing.	

One	is	adding	one	date	towards	suspend	window,	another	is	an	Intelligent	date	detection	algorithm	for	

both	start	time	and	end	time.	We	will	talk	about	them	in	more	detail	in	suspension	section.	

Table	2	The	list	of	functions	and	algorithms	planned	in	TigerAware	Android		

Functions	 Requirements	 algorithms	

Questions	 Dynamic	and	custom	questions	 No	algorithms	needed,	 framework	
change	only	

Notifications	 Schedule	 notifications	 with	 15	
minutes	break	

The	latest	start	time	algorithm	

The	 conditional	 random	 selection	
algorithm	

Suspension		 Schedule	one	time	suspension		 A	 Intelligent	 date	 detection	
algorithm	 for	 both	 start	 time	 and	
end	time	

Adding	 suspend	 window	 date	
based	on	the	end	date	

	 	

	

8	

2.	RELATED	WORKS	

TigeraAware	 Android	 is	 designed	 to	 work	 together	 with	 the	 TigerAware	 Dashboard	 and	

TigerAware	 IOS.	 TigerAware	 Dashboard	 is	 connected	 with	 Firebase	 and	 TigerAware	 IOS	 is	 using	

ResearchKit.	Moreover,	 for	TigerAware	 system,	all	 data	are	 saved	 in	 Firebase,	 Firebase	 is	 the	 center	

database	in	TigerAware.	

In	this	chapter,	we	are	going	to	introduce	these	three	main	frameworks	we	used	in	TigerAware	

Android:	Firebase,	ResearchStack	and	ResearchKit.		

	

Figure	1	Main	frameworks	about	TigerAware	Android	

2.1	Firebase	and	storage	structure	

Firebase	is	a	real	time	database	supported	by	google.	In	firebase,	data	are	stored	in	table,	or	in	

more	detail,	data	are	stored	in	JSON	file.	Just	like	a	socket,	user	can	input	a	key	and	get	the	associated	

value	with	that	key.	In	the	new	version	of	firebase,	there	is	a	database	called	Firestore,	in	Firestore,	data	

are	not	necessary	stored	 in	table	but	page	of	data.	There	are	two	reasons	we	choose	Firebase:	First,	

	

9	

Firebase	is	a	NoSQL	database	and	it	can	greatly	reduce	the	develop	time.	The	process	of	setting	up	a	new	

Firebase	database	may	even	take	only	 few	minutes.	Second,	Firebase	can	support	a	 large	number	of	

diverse	platforms,	including	mobile	and	the	web.	The	following	feature	will	tell	how	surveys	are	stored	

in	Firebase,	their	structure	and	the	naming	format.	

	

Figure	2	Progression	of	survey	steps	stored	in	database	

	

Each	survey	is	made	of	a	set	of	questions	or	steps	whose	grammar	are	defined	by	extending	the	

JSON	format	formally.	Each	step	could	be	a	point	of	input	like	multiple	choice	question,	or	a	text	slide,	

which	 describes	 a	 section	 of	 a	 survey.	 Each	 step	may	 include	 its	 own	 configuration	metadata,	 title,	

conditional	and	step	type,	but	all	steps	must	include	its	own	unique	id.	And	overall,	all	these	steps	are	

left	generic	to	enable	different	interpretations	of	questions.	For	example,	a	yes	or	no	may	be	combined	

with	an	image	type	question	and	if	user	choose	yes,	it	may	jump	to	a	multiple	choice	question	about	that	

	

10	

image.	In	other	word,	researchers	can	add	their	new	question	types	by	slightly	formatting	the	existing	

question	steps,	and	the	following	feature	shows	how	the	surveys	are	actually	stored	in	firebase.	

Figure	3	The	structure	of	surveys	in	Firebase	

The	second	main	component	of	the	database	is	the	answers	data	made	by	user.	All	user	response	

data	are	stored	in	a	place	called	data,	which	is	at	the	same	level	with	blueprints.	Under	each	survey,	

there	are	answers	made	by	each	user.	And	each	answer	contains	four	main	parts:	which	platform	the	

answers	 generated	 from,	 (particularly	 in	 TigerAware	 Android,	We	 will	 only	 upload	 android	 with	 its	

version	number),	the	actually	answers,	timestamp	and	user	ID.	

	

11	

Figure	4	The	structure	of	answers	in	Firebase	

	

The	third	part	is	the	user	information,	including	the	email,	the	user	name	and	the	surveys	they	

are	taking.	

	

12	

Figure	5	The	structure	of	users	in	Firebase	

	

In	a	word,	TigerAware	Android	will	use	Firebase,	pulling	surveys	 from	Firebase	and	uploading	

answers	into	Firebase,	and	all	operations	are	based	on	the	storage	structure	we	mentioned	above.	

2.2	ResearchStack	

ResearchStack	 is	an	SDK	(Software	Development	Kit)	and	UX	(User	Experience)	framework	for	

building	research	study	apps	on	Android	to	help	scientists	and	researchers	build	their	research	surveys	

and	collect	a	variety	of	data	they	need	in	order	to	meet	the	requirement	of	the	most	scientific	research.[4]	

Researchers	and	developers	can	use	ResearchStack	to	build	basic	Android	applications	without	

having	a	large	extension	of	Android	Programming	skills,	which	means	most	of	the	objects	are	pre-defined	

	

13	

with	their	own	fields	and	methods	in	ResearchStack.	So	researchers	and	developers	can	easily	build	a	

simple	application	by	doing	minor	extensions	or	changes	and	Using	JSON	and	HTML	files.	In	addition,	In	

TigerAware	 Android,	 we	 use	 Firebase	 to	 store	 the	 JSON	 files	 and	 import	 data	 from	 Firebase.	 This	

application	 can	 share	 information	 with	 users	 by	 showing	 the	 onboarding	 process	 (study	

overview/consent/registration)	and	collect	data	from	users	by	showing	a	main	activity	screen	with	pre-

scheduled	tasks	such	as	surveys	with	kinds	of	questions.		

There	are	two	main	modules	for	building	a	ResearchStack	application:	Backbone	and	Skin.	

Backbone:	The	core	ResearchStack	API.	This	includes	tasks,	steps,	results,	consent,	file/database	

storage	and	encryption.	

Skin:	Above	 the	structure	of	Backbone,	Skin	 is	built,	which	 is	based	on	Backbone	but	beyond	

Backbone.	Compared	to	Backbone,	Skin	require	less	android	knowledge	to	build	a	research	app.	Skin	pull	

every	component	of	backbone	together	and	build	the	app	 in	a	more	efficient	way.	Moreover,	Skin	 is	

more	compatible	with	ResearchKit's	AppCore	engine	and	skin	is	designed	to	work	with	minor	changes	to	

an	existing	ResearchKit™	iOS	app's	resources.	

2.2.1	ResearchStack	Backbone	

ResearchStack	 Backbone	 is	 a	 API	 (Application	 Programming	 Interface)	 supported	 by	

ResearchStack,	Backbone	is	the	core	building	blocks	of	Research	Stack	which	includes	the	survey	engine,	

visual	consent	flow	and	active	tasks	[5].	

	

14	

Figure	6	The	backbone	1.1.1	API	

	

(1)	Tasks:		

A	task	 in	ResearchStack	contains	a	set	of	steps	to	present	to	users.	Everything	we	mentioned	

above	is	in	ResearchStack	is	represented	as	a	tasks	such	as	surveys,	consent	flows	and	actives	tasks.	By	

using	ResearchStack	Backbone,	researchers	can	build	surveys	for	modal	presentation	on	android	device,	

build	consent	page	to	inform	users	the	detail	of	the	study	and	obtain	the	signature	from	the	participants	

and	build	 active	 tasks	 page	 to	 lead	 a	 activity	 under	 semi-controlled	 conditions,	 gathering	 data	 from	

Android	phone.	

ResearchStack	uses	the	class	OrderedTask	class	to	track	a	list	of	ordered	steps	for	displaying	the	

questions	or	contents	to	users.	In	ResearchKit,	it	has	a	according	class	called	ORKOrderedTask.	

	

15	

Figure	7	The	programming	structure	of	tasks	

	

Figure	8	Task,	steps,	results	structure	

	

(2)	Steps:	

A	step	is	a	single	component	of	task	to	complete	a	certain	function.	Different	types	of	steps	give	

different	kinds	of	functions.		

For	example,	an	instruction	step	can	inform	the	user	the	goal	of	this	study	or	this	page.	A	question	

step	can	ask	user	some	questions	and	gather	data	from	the	user.	Moreover,	if	we	want	to	show	user	an	

audio_instruction_page,	to	give	user	more	information	about	our	study,	here	is	how	it	works.	Similarly,	

if	we	want	to	add	a	question,	to	let	the	user	choose	a,b,c	and	d,we	could	Similarly	add	a	QuestionStep	

which	include	a	specific	question	and	add	that	step	to	the	list.	

	

16	

Figure	9	A	sample	instruction	step	

	

Figure	10	The	programming	structure	of	step	

	

(3)	Results	

In	ResearchStack,	there	is	no	database	associated	with	it.	Thus,	all	results	are	stored	in	a	class.	

called	TaskResult. 	

An	TaskResult	object	is	a	result	that	contains	all	the	step	results	generated	from	task.	After	one	

run	of	 a	 task	 or	 ordered	 task	 (that	 is,	 class	Task	 or	 class	OrderedTask),	 it	will	 generate	 its	 own	

TaskResult.	In	other	words,	a	task	result	is	typically	generated	by	the	framework	as	the	task	proceeds.	

When	the	task	completes,	it	may	be	appropriate	to	save	the	data	by	ourselves,	upload	them	to	server	or	

database,	or	to	immediately	perform	analysis	on	the	data.	

	

17	

Figure	11	The	structure	of	onActivityResult		

	

2.2.2	ResearchStack	Skin	

Skin:	Above	 the	structure	of	Backbone,	Skin	 is	built,	which	 is	based	on	Backbone	but	beyond	

Backbone.	Compared	to	Backbone,	Skin	require	less	android	knowledge	to	build	a	research	app.	Skin	pull	

every	component	of	backbone	together	and	build	the	app	 in	a	more	efficient	way.	Moreover,	Skin	 is	

more	compatible	with	ResearchKit's	AppCore	engine	and	skin	is	designed	to	work	with	minor	changes	to	

an	existing	ResearchKit™	iOS	app's	resources.	[6]	

	

18	

	

Figure	12	The	structure	of	ResearchStack	Skin	

	

As	we	can	see	in	this	structure	graph,	Skin	uses	SmartSurveyTask	while	Backbone	uses	Task,	and	

SmartSurveyTask	 is	 extended	 from	 Task.	 And	 Skin	 uses	 the	 same	 type	 StepModel	 with	 different	

constraints	 while	 Backbone	 uses	 different	 Step.	 Here	 is	 how	 it	 works.	 First,	 TaskModel	 get	 all	 the	

informations	from	local	database	or	server	and	generate	different	StepModel	based	on	what	kind	of	

questions	they	are.	In	other	words,	different	StepModels	are	generated	with	different	ConstrainModels.	

In	this	way,	survey	is	generated.	While	the	survey	is	in	processing,	different	views	are	switched	between	

each	other.	While	the	SmartSurveyTask	is	in	processing,	all	the	data	are	saved	in	TaskResults.	When	the	

task	completes,	it	may	be	appropriate	to	save	the	data	by	researchers	themselves,	upload	data	to	server	

or	database,	or	to	immediately	perform	analysis	on	the	data.	

	

	

	

19	

2.3	ResearchKit	

According	to	Apple	ResearchKit,	ResearchKit	is	an	open	source	framework	released	by	Apple.	It	

allows	researchers	and	developers	to	design	powerful	applications	in	medicine	area.	Using	ResearchKit,	

researchers	can	build	custom	blocks	to	create	the	visual	consent	flows,	surveys	and	real-time	dynamic	

active	tasks.	Moreover,	ResearchKit	can	work	perfectly	with	HealthKit,	which	they	can	share	data	with	

each	other	[7].	In	that	way,	researchers	can	visit	more	related	research	data,	such	as	daily	steps,	calorie	

use	and	heart	rate.	

Figure	13	The	structure	of	ResearchKit	(cited	from	http://researchkit.org)	

	

2.3.1	ResearchKit	Active	tasks	

ResearchKit	 also	 has	 some	 active	 tasks,	 guiding	 users	 to	 do	 some	performance	which	 are	

under	semi-controlled	conditions,	and	data	are	collected	by	the	iPhone.	Here	are	the	main	seven	

	

20	

categories	 of	 active	 tasks	 based	 on	what	 kind	 of	 sensor	 they	 use	 [8].	 The	 seven	 categories	 are:	

motor	activities,	fitness,	cognition,	speech,	hearing,	hand	dexterity,	and	vision. 	

	

Table	3	Active	tasks	in	ResearchKit	(cited	from	http://researchkit.org)	

CATEGORY	 TASK	 SENSOR	 DATA	COLLECTED	

Motor	

Activities	

Range	of	Motion	 Accelerometer	

Gyroscope	

Device	motion	

Gait	and	Balance	 Accelerometer	

Gyroscope	

Device	motion	

Pedometer	

Tapping	Speed	 Multi-Touch	

display		

Accelerometer	

(optional)	

Touch	activity	

Fitness	 Fitness	 GPS	

Gyroscope	

Device	motion	

Pedometer	

Location	

Heart	rate	

	

21	

Timed	Walk	 GPS	

Gyroscope	

Device	motion	

Pedometer	

Location	

Cognition	 Spatial	Memory	 Multi-Touch	

display		

Accelerometer	

(optional)	

Touch	activity	

Correct	answer	

Actual	sequences	

Stroop	Test	 Multi-Touch	

display	

Actual	color	

Actual	text	

User	selection	

Completion	time		

Trail	Making	Test	 Multi-Touch	

display	

Completion	time	

Touch	activity	

Paced	 Serial	

Addition	 Test	

(PSAT)	

Multi-Touch	

display	

Addition	results	from	user	

	

22	

Tower	of	Hanoi	 Multi-Touch	

display	

Every	move	taken	by	the	user	

Reaction	Time	 Accelerometer	

Gyroscope	

Device	motion		

Speech	 Sustained	

Phonation	

Microphone	 Uncompressed	audio	

Speech	

Recognition	

Microphone	 Raw	audio	recording	

Transcription	in	the	form	of	an	SFTranscription	

object.	

Edited	transcript	(if	any,	by	the	user)	

Speech-in-Noise	 Microphone	 Raw	audio	recording	

Transcription	in	the	form	of	an	SFTranscription	

object	

Edited	transcript	(if	any,	by	the	user).	This	can	

be	 used	 to	 calculate	 the	 Speech	 Reception	

Threshold	(SRT)	for	a	user.	

	

	

23	

Hearing	 Environment	SPL	 Microphone	 Environment	sound	pressure	level	in	dBA	

Tone	Audiometry	 AirPods	

Headphones	

Minimum	amplitude	 for	 the	user	 to	 recognize	

the	sound	

dBHL	 Tone	

Audiometry	

AirPods	

Headphones	

Hearing	threshold	in	dB	HL	scale	

User	response	timestamps	

Hand	

Dexterity	

9-Hole	Peg	 Multi-Touch	

display	

Completion	time	

Move	distance	

Vision	 Amsler	Grid	 Multi-Touch	

display	

Touch	activity	

Eye	side	

Areas	of	distortions	as	annotated	by	the	user	

For	 example,	 a	 gait	 and	 balance	 task,	 can	 ask	 user	 to	 perform	 a	walking	 task,	 user	 follow	 a	

movement	instruction	and	their	movement	data	is	collected	by	the	accelerometer	and	gyroscope	sensor	

from	their	device.	The	following	shows	how	gait	and	balance	task	is	performed	in	more	detail.	

	

	

	

24	

Figure	14	A	gait	and	balance	task	

	

And	Here	are	the	three	main	data	we	gathered	from	the	phone	sensor:	

(1)	Accelerometer	data:		

Most	 smartphone	 device	 has	 three	 accelerometers,	 one	 along	 each	 accelerometer	 axis.	 The	

direction	 of	 the	 first	 accelerometer	 is	 along	 the	 sort	 side	 of	 the	 phone,	 the	 direction	 of	 the	 second	

	

25	

accelerometer	is	along	the	long	side	of	the	phone,	while	the	third	accelerometer	is	vertical	to	the	plane	

formed	by	the	first	two	accelerometers’	axes.	

All	 these	data	 are	 represented	 in	 three	dimensions	 and	measured	 in	 the	unit	 of	 “g”,	while	 g	

represents	 the	 force	 of	 gravity.	 If	 a	 device	 is	 dropping	 vertically	without	 any	 force	 from	outside,	 its	

accelerometer	data	should	be	[0,0,0],	while	a	device	is	put	horizontally	on	a	flat	table,	its	accelerometer	

data	should	be	close	to	[0,0,-1].	Developers	can	define	the	speed	of	collecting	rate	and	the	number	of	

samples	to	collect	accelerometer	data	to	achieve	an	instruction	task.	

(2)	Gyroscope	data:	

Similarly	to	accelerometer,	a	device	has	Gyroscope	sensors	to	measure	the	rotation	of	the	device.	

The rotation vector represents the orientation of the device as a combination of an angle and an axis, in

other words, a device has rotated through an angle θ around an axis (x, y, or z).

(3)	Step	data:	

A	device	can	use	Step	detector	sensor	to	count	how	many	steps	user	walked	each	time	the	step	

sensor	is	triggered.	Particularly	in	android	device,	there	are	two	step	motion	sensors:	step	detector	and	

step	counter.	Both	can	count	steps	while	step	counter	has	more	latency	(up	to	10	seconds)	but	more	

accuracy.	

2.4	Relationships	between	ResearchStack	and	ResearchKit	

First	ResearchKit	is	built	by	apple,	an	open	source	framework	for	developers	to	make	research	

apps.	Accordingly,	ResearchStack	is	built,	the	overall	goal	of	researchStack	is	to	make	it	easier	to	adapt	

the	existing	apps	on	iOS	into	android	with	the	same	functionality.	Thus	ResearchStack	Backbone	is	built.	

However,	though	Backbone	share	almost	the	same	functionality	with	ResearchKit,	they	have	different	

	

26	

structures.	Then	Skin	is	built,	based	on	Backbone	but	above	Backbone,	wrapped	Backbone	into	some	

classes,	that	share	the	same	structure	with	ResearchKit.	

In	a	word,	though	the	correspondence	of	features	between	the	two	SDKs	isn’t	one-to-one,	they	

will	offer	enough	standard	functionality(Backbone)	and	common	frameworks(Skin).	In	TigerAware,	both	

backbone	and	skin	are	used	in	order	to	reach	the	same	functionality	with	IOS	ResearchKit.	

Figure	15	Relationships	between	ResearchStack	and	ResearchKit	

	

	 	

	

27	

3.	TIGERAWARE	ANDROID	DESIGN	

TigerAware	 Android	 is	 part	 of	 the	 whole	 TigerAware	 System,	 playing	 a	 significant	 role	 in	

TigerAware.	In	this	chapter,	we	are	going	to	introduce	how	the	whole	System	works,	what	is	the	data	

flow	inside	TigerAware	and	go	in	more	detail	about	TigerAware	Android	design.	

3.1	TigerAware	System	architecture	

TigerAware	consists	of	four	main	part:	TigerAware	DashBoard,	TigerAware	database(Firebase),	

TigerAware	IOS	and	TigerAware	Android.		

	

Figure	16	TigerAware	system	architecture	and	components	

	

First,	 researchers	 can	 create	 a	 survey	 on	 TigerAware	 DashBoard,	 schedule	 surveys	 for	

participants.	Then	the	surveys	will	be	sent	into	Firebase,	which	is	a	real	time	database,	as	well	as	the	

	

28	

notifications	and	reminders	about	that	survey.	Then	TigerAware	Android	will	pull	that	data	from	Firebase,	

whenever	 it	 changes,	 TigerAware	 Android	 will	 update	 its	 data	 accordingly.	 Moreover,	 TigerAware	

Android	will	save	that	information	and	schedule	surveys	and	notifications	on	its	device.	When	it	becomes	

the	right	time	for	participants	to	take	the	survey,	surveys	will	pop	up.	After	users	taking	that	survey,	

TigerAware	Android	will	send	the	results	back	into	Firebase	for	later	analysis	and	research	study.		

3.2	TigerAware	Android	architecture	

3.2.1	Flow	charts	

Figure	17	TigerAware	Android	architecture	flowcharts	

	

	

29	

The	first	page	the	user	will	encounter	will	be	a	login	page,	to	check	the	user	has	an	account	or	

not,	if	the	user	does	not	have	an	account,	TigerAware	will	ask	them	to	create	one.	If	the	user	has	one,	

TigerAware	will	use	Firebase	for	authentication.	After	authentication,	user	will	be	prompted	to	the	main	

survey	page.	In	this	page,	TigerAware	will	show	users	a	list	of	active	public	and	private	surveys.	Once	

user	 click	 one	 of	 the	 surveys,	 kinds	 of	 questions	will	 pop	 up.	 After	 user	 finishing	 taking	 the	 survey,	

TigerAware	Android	will	send	the	results	back	into	Firebase	for	later	analysis	and	research	study.		

3.2.2	Authentication	

So	the	first	step	comes	to	a	user	is	the	registration	and	the	authentication	step.	In	TigerAware,	

we	 use	 Firebase	 Authentication	 because	 Firebase	 supports	 an	 easy	 back	 end	 service	 for	 user	

authentication.	That	service	can	also	support	authentication	by	passcode,	phone	number,	and	Google,	

Facebook,	Twitter,	and	so	on.	Particularly	in	TigerAware	Android,	we	use	authentication	with	Firebase	

using	Password-Based	Accounts.	

Figure	18	Firebase		

	

30	

Work	theory:	

Firebase	API	provides	a	class	called	FirebaseAuth,	every	time	users	want	to	create	an	account	or	

sign	in,	TigerAware	Android	will	get	their	username	and	password	as	string,	and	by	using	authentication	

functions	from	that	API,	Firebase	will	check	or	create	a	account	for	users.		

Figure	19	Process	about	signInWithEmailAndPassword	

Figure	20	Process	about	signInWithEmailAndPassword	

	

In	the	figures	above,	mAuth	is	an	object	from	class	FirebaseAuth.	Once	users	successfully	create	

their	accounts,	their	user	information	will	be	stored	in	Firebase	under	authentication	section.	Research	

can	also	manually	add,	delete	and	search	users	by	their	email	address	or	user	UID.		

	

31	

Figure	21	Firebase	authentication	

3.2.3	Parse	Survey	

After	users	successfully	 login	 in,	the	second	page	comes	to	their	minds	 is	the	main	survey	 list	

page.	We	talked	about	the	flow	charts	above,	basically	TigerAware	will	send	surveys	to	users	and	users	

will	send	their	answers	back	to	TigerAware,	but	how	does	it	happen	in	more	detail?	As	we	mentioned	

before,	all	surveys	are	stored	in	Firebase	in	the	following	format.	

 	

Figure	22	Users	in	firebase																																																																																Figure	23	Blueprints	in	firebase	

Figure	22	Users	in	firebase																																																																																Figure	23	Blueprints	in	firebase	

	

	

32	

Developer	 can	 input	 a	 key	 and	 get	 the	 associated	 value	 with	 that	 key	 by	 some	 certain	

programming	language.	In	TigerAware,	we	use	JAVA	and	by	using	TigerAware	API,	we	can	simply	get	the	

associated	value	with	the	key	we	input,	the	following	is	the	programming	theory	in	more	detail.	

Figure	24	Programming	of	get	instance	of	FirebaseDatabase	

	

First,	by	using	Firebase	Database,	researchers	can	get	users,	UID,	as	well	as	the	surveys	they	are	

taking.	Every	user	is	supposed	to	have	its	own	unique	user	id	and	every	survey	is	also	designed	to	have	

its	own	unique	survey	id.		

Then	after	getting	the	unique	survey	ID,	which	users	are	currently	taking	in	user	section,	the	next	

step	is	to	go	blueprints	section	and	get	the	surveys	based	on	the	survey	id	we	got.	

Finally,	we	can	parse	that	survey	as	well	as	update	the	UI	or	the	survey	list.	Every	time	if	there	is	

a	new	survey	coming	to	the	user,	or	there	are	new	data	under	user-taking,	it	will	parse	that	survey	as	

well	as	update	the	UI	or	the	survey	list	again.	

Figure	25	Parse	survey	section	1	

	

	

33	

This	is	the	parse	survey	section,	in	this	section,	it	calls	a	function	called	parseQuestion	to	help	

divide	the	whole	parsing	process	in	more	detail.	TigerAware	Android	will	parse	all	the	information	for	

that	survey	and	store	the	information	in	String	or	List,	depending	on	what	kind	of	information	it	is.	Then	

use	another	function	to	parse	questions	to	suit	ResearchStack	Format.	

	

switch	(type)	

Figure	26	Parse	survey	section	2	

	

Within	parsing	survey	function,	TigerAware	Android	uses	parsing	question	function.	Above	is	the	

parsing	question	section.	For	each	question	in	that	list	or	in	that	survey,	we	get	their	question	id,	title,	

type	 and	 so	 on.	 Then	 based	 on	 what	 kind	 of	 information	 it	 contains,	 we	 encapsulate	 them	 into	

ResearchStack	question	format	to	generate	actual	questions.	For	example,	if	a	question	contains	its	type	

as	DATE_TIME_QUESTION,	TigerAware	Android	will	generate	a	data	and	time	question	accordingly.	

	

34	

After	we	adding	all	 questions	 into	 List<Question>,	 the	 last	 step	 is	 to	 launch	 surveys,	 and	 the	

following	are	the	ERD	and	the	work	flow	chart	for	the	storage	structure	we	mentioned	above.	

	

Figure	27	ERD	for	the	storage	structure	

	

Figure	28	Flowcharts	for	the	storage	structure	

	

35	

3.2.4	Launch	Survey	

As	we	mentioned	 in	3.2.3,	 after	parsing	 surveys,	 all	 question	are	 stored	 in	 surveys	 in	 certain	

format	and	waiting	for	launching,	and	the	following	is	the	flow	chart	we	mentioned	above.	

Figure	29	Flowcharts	for	launching	survey	

	

First,	after	parsing	process,	all	questions	are	stored	in	surveys	in	certain	format.	Then	as	soon	as	

we	launch	or	a	user	click	one	of	the	survey	in	the	survey	list,	the	launching	survey	function	will	start.	The	

first	step	of	the	function	is	to	judge	what	kind	of	question	it	is,	let	us	take	yes	or	no	question	as	example,	

if	 a	 question	 is	 regarded	 as	 a	 yes	 or	 no	 question,	 the	 launching	 survey	 function	 will	 set	 the	

constrainsModel.type	as	booleanConstraints,	which	is	only	a	custom	name	of	that	type,	in	other	words,	

we	can	just	take	it	as	a	name	tag.	The	last	step	of	launching	survey	function	is	to	use	ReserchStack	API	

and	the	SmartSurveyTask,	a	main	function	supported	by	one	of	its	main	core,	ResearchStack	Skin,	and	

the	booleanConstraints	we	set	will	be	used	in	this	SmartSurveyTask.	In	SmartSurveyTask,	similarly,	it	will	

first	 divide	 different	 questions	 into	 different	 types	 based	 on	 their	 constraints.	 Then	 for	 different	

questions,	SmartSurveyTask	will	define	different	answer	format	according	to	that	type	of	question.	The	

answer	 format	 and	 the	 question	 step	 are	 both	 defined	 and	 supported	 by	 the	 other	 core	 api	 of	

	

36	

ResearchStack,	which	 is	 not	 in	ResearchStack	 Skin	but	 in	ResearchStack	BackBone.	 In	 this	way,	both	

ResearchStack	BackBone	and	ResearchStack	Skin	are	fully	implemented	and	cooperated	with	each	other.	

3.2.5	Upload	results	

After	a	user	finish	one	question,	his	answer	will	be	uploaded	into	Firebase.	In	TigerAware	Android,	

it	uses	TaskResult,	which	is	supported	by	BackBone	in	ResearchStack,	to	collect	all	the	answers.	

Figure	30	On	Activity	Result	

As	we	mentioned	in	BackBone	introduction	section,	a	TaskResult	object	is	a	result	that	contains	

all	the	step	results	generated	from	task.	After	one	run	of	a	task	or	ordered	task	(that	is,	class	Task	or	

class	OrderedTask),	 it	 will	 generate	 its	 own	 TaskResult.	 In	 other	 words,	 a	 task	 result	 is	 typically	

generated	by	the	framework	as	the	task	proceeds.	When	the	task	completes,	the	answer	will	be	recorded	

in	taskresult,	which	has	a	function	called	getResults.	By	calling	that	function,	a	hashmap	will	be	generated.	

Hashmap	will	map	the	key	which	is	a	string,	to	an	object,	which	is	a	StepResult	class.	Then	we	can	parse	

the	StepResult	based	on	what	kind	of	question	it	is.	After	parsing		

	

37	

The	following	is	the	flow	charts	for	uploading	results.	

Figurer	31	Flow	charts	for	uploading	results	

3.3	Site	maps	

Figure	32	First	activity	

	

	

38	

This	is	the	first	activity	comes	into	user,	the	login	page.	In	this	page,	user	can	either	login	with	

existing	account	and	password	or	create	an	account.	

Figure	33	Registration	page	

	

Above	is	the	registration	page,	if	use	do	not	have	an	account,	TigerAware	will	lead	user	to	this	

page	to	help	them	create	an	account	with	email,	username,	and	according	password.	

	

39	

Figure	34	Main	activity	

This	is	the	main	activity,	when	people	successfully	login	in,	the	main	page	with	show	up	with	the	

survey	list,	and	two	other	buttons.	One	is	the	sign	out	button,	which	will	lead	user	back	to	the	first	page	

for	the	security	purpose.	Another	is	the	suspend	window,	in	suspend	window,	user	will	not	receive	any	

notification.		

	

40	

Figure	35	Survey	page	

This	 is	 the	 survey	 page,	 including	 different	 kinds	 of	 questions,	 which	 is	 the	 core	 function	 of	

TigerAware	Android.	In	the	next	chapter,	we	will	talk	about	the	exact	question	types,	the	answer	format	

and	how	it	implemented.	

	

41	

Figure	36	Suspend	window	page	

This	is	the	suspend	window	page,	user	can	choose	a	time	window	to	suspend	notifications.	In	this	

suspend	window,	user	will	not	receive	any	notification.		

Figure	37	Site	map	

	

42	

3.4	Functions	and	algorithms		

In	this	chapter,	we	are	going	to	introduce	three	main	functions	in	TigerAware	Android:	questions,	

suspension,	and	notifications.	Then,	we	will	discuss	how	suspension	and	notification	are	implemented	

and	the	algorithms	behind	them.	

3.4.1	Question	types		

In	TigerAware	Android,	most	question	types	are	supported	by	ResearchStack	in	order	to	have	the	

similar	functionality	with	TigerAware	IOS,	which	is	using	ResearchKit.	For	those	questions	that	are	not	

supported	 by	 ResearchStack	 but	 are	 implemented	 in	 ResearchKit,	 ResearchStack	 offers	 a	 custom	

interface	for	user	to	design	a	new	question	type	based	on	the	research	study	purpose.	

In	the	table	below,	we	can	see	there	are	seven	question	types	or	question	answers	supported	by	

ResearchStack,	and	the	UnknownAnswerFormat	is	the	custom	interface	for	developers	to	design	their	

own	questions.	

As	for	TigerAware,	in	total,	TigerAware	Android	suppports	twelve	question	types	so	far,	they	are:	

yes	 or	 no	 question,	multiple	 choice	 question,	 date	 and	 time	 question,	 text	 slide	 question,	 text	 field	

question,	 time	 of	 day	 question,	 time	 interval	 question,	 scale	 question,	 continuous	 scale	 question,	

BACTrack	Alcohol	Sensor	question,	number	type	question,	active	location	question,	active	gait	question	

and	active	PSAT	question.	

	

	

43	

Table	4	ResearchStack	Supported	Anwersformat	

	

(1)	Yes	or	no	question	

Definition:	A	yes	or	no	question	is	a	question	whose	expected	answer	is	“yes”	or	“no”.	Formally,	

they	present	an	exclusive	disjunction,	a	pair	of	alternatives	of	which	only	one	is	acceptable.	For	example,	

a	yes	or	no	question	could	be	like	that	“Did	you	drink	alcohol	today?”	

Implementation:	 Yes	 or	 no	 question	 is	 predefined	 in	 ResearchStack,	 as	 a	 basic	 question,	

TigerAware	Android	uses	it	directly	with	minor	changes.	

(2)	Multiple	choice	question	

Definition:	A	multiple	choice	question	is	a	question	whose	expected	answer	could	be	only	one	

choice,	or	one	or	more	choices,	defined	by	the	researcher	based	on	different	study.	

Implementation:	For	multiple	choice	question,	TigerAware	Android	makes	some	slight	changes.	

In	ResearchStack,	 it	has	 two	different	question	types	or	answer	 formats,	one	 is	single	choice	answer	

format,	which	can	only	allow	user	to	choose	one	and	only	one	choice.	Another	is	multiple	choice	answer	

format,	 which	 can	 allow	 user	 to	 choose	 one	 or	 more	 than	 one	 choices.	 However,	 for	 better	

	

44	

implementation,	or	a	more	convenient	way,	TigerAware	Android	combines	these	two	questions	into	one.	

This	is	how	it	works,	when	researchers	are	scheduling	surveys	on	the	TigerAware	dashboard	for	multiple	

choice	question,	they	can	also	choose	allow	multiple	choice	or	not,	if	they	click	yes,	a	boolean	variable	

called	allowMulti	will	be	passed	to	TigerAware	along	with	questions.	Thus	we	defined	a	new	constraint	

type	called	allowMulti,	if	allowMulti	equals	true,	it	will	select	multiple	choice	answer	format	otherwise	

it	will	select	single	choice	answer	format.	

(3)	Date	and	Time	question	

Definition:	A	date	and	time	question	is	a	question	whose	expected	answer	is	“yes”	or	“no”.	For	

example,	an	alcohol	based	on	study	could	ask	participants	what	was	the	last	time	they	drink	alcohol,	and	

they	need	to	specify	what	day	associated	with	the	time	as	well.	The	answer	should	be	a	calendar	in	which	

the	user	can	select	a	day,	then	TigerAware	will	display	a	clock	for	user	to	select	a	time	as	well	

Implementation:	Date	and	time	answer	format	is	predefined	in	ResearchStack,	which	means	the	

clock	and	the	calendar	are	supported.	However,	For	date	and	time	question,	TigerAware	Android	makes	

some	slight	changes.	First,	TigerAware	Android	changed	the	time	format	from	24	hours	into	12	hours	

with	AM/PM.	

Second,	TigerAware	Android	offers	three	more	options	for	this	question,	just	like	how	it	works	in	

multiple	choice	question	we	mentioned	above,	the	researcher	can	disable	or	enable	these	three	options	

in	the	dashboard,	then	three	parameters	will	be	passed	to	TigerAware	Android	with	the	question	itself.	

One	is	“select	both	date	and	time”,	if	researcher	enable	this	option,	the	answer	would	be	date	and	time,	

otherwise	the	answer	will	only	be	a	certain	day.	Another	is	“select	past	days”,	if	researcher	enable	this	

option,	the	participants	could	select	past	days	instead	of	select	the	future	days.	The	last	one	is	“select	

	

45	

multiple	days”,	if	researcher	enable	this	option,	when	participants	finish	one	date	and	time,	they	could	

choose	another	date	and	time	as	well.	

Future	work:	For	current	studies,	 in	order	to	not	confuse	users	and	researchers,	we	manually	

disabled	“select	multiple	days”,	and	enabled	“select	both	date	and	time”	and	“select	past	days”.	In	order	

to	fully	use	this	question	and	make	it	consistent	with	what	researchers	selected	and	scheduled	in	the	

dashboard,	we	should	not	fix	these	options	when	we	are	ready	to	use.	

(4)	Text	slide	question	

Definition:	A	text	slide	question	is	a	question	or	an	informative	page	to	give	user	information,	

there	is	no	answer	required	for	user	to	input	or	type	back	to	this	question.	Usually,	the	text	slide	question	

will	 only	 contain	 text	 content,	 but	 in	 TigerAware	 Android,	 we	 modified	 this	 question	 and	 made	 it	

compatible	with	image	content.	

Implementation:	 text	 slide	 question	 is	 predefined	 in	 ResearchStack,	 as	 a	 basic	 question,	

TigerAware	Android	uses	it	while	adding	image	type	content	with	text	slide	content	to	make	this	question	

more	flexible	and	contain	more	information.	For	current	study,	we	save	image	at	local	space	and	when	

there	is	a	text	slide	question	coming,	as	we	mentioned	above,	there	will	be	a	“enable	image”	option.	If	

user	enable	this	option	and	schedule	an	image	content	as	well	as	test	slide,	they	will	show	together	in	

the	text	slide	question.		

Future	work:	If	we	want	to	use	image	content	in	more	general	space,	not	like	using	few	certain	

images	for	certain	studies,	we	have	to	store	all	images	in	database	and	read	these	images	with	questions.	

A	good	way	is	to	store	images	in	Firebase	storage	and	store	the	associated	URL	in	the	Firebase	database.		

	

	

46	

(5)	Text	field	question	

Definition:	A	text	field	question	is	a	question	whose	expected	answer	is	a	text	field,	which	means	

users	need	to	type	their	answer	for	these	question.	Usually	the	answer	will	be	more	general	and	not	

easy	to	predefine,	or	it	is	hard	to	be	limited	into	A,B,C	and	D	four	options.	For	example,	a	question	can	

be	like	“What	did	you	have	this	morning?”	

Implementation:	 Text	 field	 question	 is	 predefined	 in	 ResearchStack,	 as	 a	 basic	 question,	

TigerAware	Android	uses	it	directly	with	minor	changes.	

(6)	Time	of	day	question	

Definition:	A	 time	of	 day	 question	 is	 a	 question	whose	 expected	 answer	 is	 a	 timestamp.	 For	

example,	a	time	of	day	question	could	be	like	“When	was	the	last	time	you	had	alcohol	today?”	Similarly,	

to	day	and	time	question,	one	is	asking	for	day	and	this	question	is	asking	for	time.	

Implementation:	 time	of	 day	 is	 predefined	 in	ResearchStack,	 as	 a	basic	 question,	 TigerAware	

Android	uses	it	directly	with	minor	changes.	

(7)	Time	interval	question	

Definition:	A	time	interval	question	is	a	question	whose	expected	answer	is	a	period	of	time.	The	

purpose	of	this	question	 is	ask	for	a	time	 interval	between	two	activity.	For	example,	a	time	 interval	

question	could	be	like	“How	long	do	you	relax	between	questions?”.	As	for	the	answer,	the	user	can	

select	hours	from	0-23	and	select	minutes	from	0-59,	and	the	answer	will	combine	them	together.	

Implementation:	time	interval	 is	predefined	in	ResearchStack,	as	a	basic	question,	TigerAware	

Android	uses	it	directly	with	minor	changes.	

	

47	

(8)	Scale	question	

Definition:	A	scale	question	 is	a	question	whose	expected	answer	 is	a	degree.	To	achieve	this	

question	type,	researcher	will	define	a	scale	bar	with	numbers,	for	example,	if	a	question	is	to	determine	

whether	users	are	happy	or	not,	a	scale	bar	can	be	defined	from	one	to	five,	and	one	stands	for	not	

happy,	five	stands	for	very	happy,	and	the	user	can	drag	the	scale	bar	to	the	degree	associated	with	their	

true	situations.	

Implementation:	scale	question	is	not	support	in	ResearchStack	Backbone,	but	it	is	supported	in	

ResearchStack	Skin.	Before	this	question	type,	TigerAware	Android	was	using	ResearchStack	Backbone,	

we	can	call	it	TigerAware	Android	1.0.	Then	in	order	to	add	this	question	type,	we	changed	TigerAware	

Android	 from	1.0	 to	 2.0	 by	 refining	 the	 system	 structure	 and	using	ResearchStack	 Skin	 instead,	 and	

ResearchStack	Backbone	 is	 still	 in	use	as	 the	major	component,	which	offering	 the	answer	 format	 in	

ResearchStack	Skin.	

(9)	Continuous	scale	question	

Definition:	A	 continuous	 scale	question	 is	 a	question	whose	expected	answer	 is	 a	degree.	 To	

achieve	 this	 question	 type,	 researcher	 will	 define	 a	 scale	 bar	 with	 numbers.	 Differently	 with	 scale	

question,	a	scale	question	can	only	start	from	one	to	up	to	eight	degrees,	and	display	all	names	with	that	

degree.	For	example,	if	a	question	is	to	determine	whether	users	are	happy	or	not,	a	scale	bar	can	be	

defined	from	one	to	three,	and	one	stands	for	not	happy,	two	means	not	sure	yet,	and	one	stands	for	

very	happy,	and	the	user	can	drag	the	scale	bar	to	the	degree	associated	with	their	true	situations.	While	

in	continuous	question,	the	researchers	can	only	define	the	minimum	string	and	the	maximum	string,	

which	 is	 “not	 happy”	 and	 “very	 happy”.	 In	 addition,	 the	 continuous	 scale	 questions	 can	 hold	more	

	

48	

degrees	starting	not	only	from	one.	For	example,	a	continuous	question	can	be	from	100	to	300	and	a	

minimum	string	with	a	maximum	string.	

Implementation:	A	continuous	scale	question	is	predefined	in	ResearchStack	which	sharing	the	

same	 framework	 with	 scale	 question.	We	 added	 the	maximum	 string	 and	minimum	 string	 and	 the	

maximum	value	and	minimum	value	by	reading	them	from	firebase.	We	also	changed	the	display	string	

by	adding	the	minimum	value	number	into	the	display	string	number	which	starts	from	zero.	For	example,	

if	we	use	scale	question,	and	the	question	is	from	11	to	15,	the	display	number	will	be	1-5,	but	if	we	use	

continuous	scale	question,	the	display	number	will	be	11-15	instead.	

(10)	Number	type	question	

Definition:	A	number	type	question	is	a	question	whose	expected	answer	is	a	number.	To	achieve	

this	question	type,	researcher	will	define	a	number	pad	with	numbers.	The	range	of	number	is	from	zero	

to	nine.	The	purpose	of	this	question	is	to	ask	users	their	information	which	has	a	large	range,	and	also,	

when	researchers	are	scheduling	this	question	type,	they	can	also	define	a	unit	type	associated	with	the	

number	answer.	For	example,	a	question	could	be	defined	like	this,	what	is	your	age,	and	the	unit	type	

could	be	years.	

Implementation:	a	number	 type	question	 is	predefined	 in	ResearchStack,	as	a	basic	question,	

TigerAware	Android	uses	it	directly	with	minor	changes.	

3.4.2	Notifications	

In	TigerAware	Android,	one	major	function	is	notification.	Research	studies	usually	want	to	make	

surveys	scheduled	at	random	time	in	order	to	get	a	general	understanding	of	participants	general	lives,	

and	 they	also	want	 to	 schedule	notifications	at	 certain	 time	 to	 remind	 the	participates	 to	 take	 their	

	

49	

survey	 in	 time.	When	 researchers	 are	 scheduling	 surveys,	 they	 can	 also	 schedule	 both	 notifications	

associated	 with	 that	 survey,	 so	 that	 it	 makes	 the	 survey	 taking	 process	 more	 efficient,	 or	 some	

participants	may	miss	some	surveys	without	notifications,	and	as	we	mentioned	above,	there	are	two	

kinds	 of	 notifications	 mechanisms	 in	 TigerAware	 Android,	 random	 notifications	 and	 scheduled	

notifications.	

(1)	Random	notifications	

Definition:	

Random	notification	plays	 a	 significant	 role	 in	 TigerAware	Android	 notification	 system,	when	

researchers	are	scheduling	surveys,	they	can	also	schedule	random	notification	with	random	notification	

start	time,	random	notification	end	time,	how	many	days	it	will	last	and	how	many	random	notification	

will	be	sent	out	during	that	time.	

Mechanism：

Random	notifications	are	also	treat	as	questions,	 to	see	how	 it	works,	please	refer	 to	section	

3.2.3	 Parse	 Survey	 and	 section	 3.2.4	 Launch	 Survey	 in	 questions.	 Then	 after	 the	 question	 data	 is	

processed,	 if	 the	 question	 type	 equals	 random	 notification,	 it	 will	 generate	 a	 random	 timestamp	

between	the	start	time	and	the	end	time.		

In	 addition,	 in	 order	 to	 save	 memory	 and	 improve	 the	 working	 efficiency,	 every	 time	 the	

application	is	opened,	it	will	only	schedule	notifications	in	the	next	two	days	in	advance.	To	achieve	this	

function,	a	few	comparison	is	added	into	the	make	notification	function.		

	

50	

Above	 all,	 in	 order	 to	 schedule	notification	 every	day	 till	 the	 last	 day,	 it	will	 start	 scheduling	

notifications	from	the	next	day	and	increase	the	date	by	one	till	the	last	day.	Then	after	the	date	data	is	

received	 in	 the	make	 notification	 function	 as	well	 as	 the	 start	 time,	 end	 time	 and	 the	 last	 day,	 the	

following	comparison	mechanism	will	happen	to	keep	every	aspects	in	notifications	working	as	expected.		

(1)	First,	it	will	judge	whether	right	now	is	before	notification	date,	to	ensure	the	notification	is	

scheduled	in	the	future.	

(2)	Second,	it	will	judge	whether	the	number	of	notification	scheduled	is	less	than	five	hundred,	

to	make	sure	the	notifications	are	not	overloaded	for	the	memory	storage.	

(3)	Then	it	will	make	sure	notification	date	is	before	two	days	after	today,	which	means	every	

time	a	participant	open	the	application,	TigerAware	Android	will	only	schedule	two	days	notification	in	

advance	instead	of	scheduling	all	the	notifications	till	the	last	day	at	one	time.	In	this	way,	it	will	save	

space	for	the	memory	storage	and	improve	the	working	efficiency	for	the	notification	system.	

(4)	Last	but	not	least,	 it	will	also	check	whether	the	notification	date	and	time	are	in	suspend	

window.	 Suspend	 window	 is	 a	 window	 during	 which	 the	 notifications	 cannot	 be	 received,	 we	 will	

introduce	suspend	window	in	more	detail	in	the	following	chapter.	

Algorithms:	

To	ensure	each	 random	notifications	are	 scheduled	at	 least	 fifteen	minutes	 from	each	other,	

there	are	two	algorithms	to	solve	this	problem:	

	

	

	

51	

(1)	The	latest	start	time	algorithm:	

This	the	algorithm	always	calculates	the	latest	start	time	for	the	first	following	notification.	For	

example,	if	researcher	want	to	schedule	5	random	notifications	from	8:15am	to	10:15am,	which	means	

there	 are	 4	 times	 breaks	 of	 15	mins.	 So	 the	 latest	 start	 time	 for	 the	 first	 notification	 is	 10:15am	 -	

4*15mins=9:15am,	otherwise	there	would	not	be	enough	time	for	the	 left	notifications.	now	we	just	

random	 choose	 a	 time	 between	 start	 time	 8:15am	 and	 the	 latest	 start	 time	 9:15am	 as	 the	 first	

notification	time.	For	example,	if	we	choose	8:35am	as	the	first	notification,	to	guarantee	15	mins	break,	

the	new	start	time	should	be	8:35am+15mins=8:50am.	Now	we	have	new	start	time	8:50am	,end	time	

10:15am	and	4	times	notifications	left.	Then	loop	till	all	notifications	are	scheduled.	

(2)	The	conditional	random	selection	algorithm:	

Similar	to	reservoir	sampling,	this	algorithm	lists	all	the	possible	timestamps	to	select	in	an	array,	

then	remove	a	15	minute	radius	from	that	array.	For	example,	there	are	120	minutes	from	8:15am	to	

10:15am,	then	it	creates	an	array	or	list	of	sorts	of	all	120	digits	and	randomly	select	an	index	in	that	

array.	After	that	 it	would	remove	a	15-minute	radius	from	that	array.	So	 if	 it	chose	97	then	 it	would	

remove	97	and	all	 the	numbers	from	82-112.	Then	select	another	random	index	 in	that	array,	which	

would	exclusively	be	full	of	valid	numbers.	To	transfer	it	back	to	timestamp,	it	would	then	add	that	value	

to	the	start	value	to	form	time	in	hours	and	minutes	format.	

To	ensure	the	15	minutes’	break,	random	notifications	should	be	scheduled	with	a	14-minute	

radius	(so	select	the	number,	then	remove	it	+	and	-	14	minutes).	The	14-minute	radius	is	so	selected	to	

enable	an	exclusive	radial	selection	of	15	minutes.		

	

52	

The	algorithm	will	also	check	to	see	if	the	amount	of	notifications	requested	can	be	schedule	(so	

2	notifications	for	a	30	mins	period,	4	notifications	for	a	60	minutes’	period…)	

Process	and	example:	

a) Create	 an	 array	 of	 numbers	 from	 the	 lowest	 specified	 bound	 of	 minute	 to	 the	 highest	

specified	bound	in	minutes

b) Select	a	random	index	in	that	array,	the	value	of	the	specified	number	which	the	index	points	

to	is	the	value	of	the	selected	number

c) remove	the	14-minute	radius	and	the	selected	value.	These	removals	must	be	made	by	value	

not	index

d) append	the	random	number	to	the	low	bound

Example:	

Random	Window:	12:00-12:45

1.	array	generated: 0,1,2,3….,45	

2.	select	random	index:	 	 i	=	31																(30	selected)	

 …28,29,30,31,32…												

3.remove	14	minute	radius:	 	 16-44	removed	from	array	

4.append	number	to	low	bound	 12:00	+	30	minutes	=	12:30	

5.repeat	until	all	numbers	selected	

	

	

	

53	

(2)	Scheduled	notifications	

Definition:	

Scheduled	notification	plays	a	significant	role	in	TigerAware	Android	notification	system,	when	

researchers	are	scheduling	surveys,	they	can	also	schedule	scheduled	notification	with	certain	time	and	

what	day	it	will	end.	

Mechanism：

Scheduled	notifications	are	the	simplified	version	of	random	notifications.	The	difference	is,	 it	

would	not	use	the	random	selection	algorithm	and	use	the	start	time	from	the	scheduled	notification	

itself	instead.	

3.4.3	Suspension	

Definition:	

Suspension	means,	during	suspend	window,	user	will	not	receive	any	notification	even	though	

there	is	a	notification	scheduled	at	that	time.	

Mechanism：

First,	users	need	to	set	up	their	own	suspend	window	in	TigerAware	Android,	which	contains	a	

start	 time	 and	 an	 end	 time,	 then	 when	 a	 new	 notification	 come	 in,	 it	 will	 compare	 weather	 the	

notification	date	is	 in	suspend	window	then	post	that	notification,	which	means	the	notification	time	

should	 be	 after	 suspend	 window	 start	 time	 and	 before	 suspend	 window	 end	 time.	 Users	 are	 not	

supported	 to	 get	 any	 notification	 during	 the	 suspend	 window	 even	 though	 there	 is	 a	 notification	

scheduled	at	that	time.	

	

54	

The	problem	 is,	 for	 the	situation	above,	 the	suspend	window	will	 repeat	over	and	over	again	

because	it	only	compares	the	time	but	ignore	the	date.	To	make	it	work	for	one	time,	date	need	to	be	

added	from	the	backend	and	bound	with	time,	which	is	the	user	input.		

So	 the	point	of	 the	new	suspend	 is	 to	only	 suspend	1	 time.	Currently	 suspend	suspends	at	a	

specific	time	every	day.	So	currently	you	would	say	I	do	not	want	to	get	a	notification	between	1PM	and	

3PM	and	you	would	then	never	receive	a	notification	then	forever.	We	want	to	have	it	so	you	do	not	

receive	the	notification	just	between	1PM-3PM	on	the	day	you	suspended	(1	time).	

The	following	is	how	the	improved	suspend	window	work	for	only	one	time	suspension.	

Algorithms:	

(1)	Adding	suspend	window	date	based	on	the	end	date	

The	main	point	of	the	changes	is	to	make	it	such	that	each	suspend	window	applies	only	one	time	

before	being	automatically	removed.	The	way	that	this	should	be	implemented	is	by	using	the	current	

date	when	the	user	sets	the	window	in	addition	to	the	time.	It	should	not	need	to	add	any	additional	

input	fields	for	the	user	to	fill	out;	simply	grab	the	date	on	the	backend.	Then,	use	that	in	combination	

with	the	user-input	times	to	apply	the	time	window	to	the	earliest	possible	opportunity.	There	should	

be	two	cases:	

a) The	times	entered	by	the	user	are	both	in	the	future.	For	example,	say	the	time	is	1pm	and	I	
set	the	suspend	window	start	at	3pm	and	end	at	5pm.	In	this	scenario,	It	is	supposed	to	do	
suspension	on	the	current	date	between	3pm	and	5pm.	However,	my	suspend	should	apply	
only	today	from	3pm	to	5pm,	and	not	tomorrow.

b) The	more	complex	case	is	if	the	user	provides	times	such	that	only	the	end	time	is	in	the	
future.	For	example,	consider	the	same	scenario	as	above	except	I	set	the	window	times	
from	10am	to	5pm.	Although	10am	has	already	passed,	since	5pm	is	in	the	future	we	can	
still	apply	the	window.	This	scenario	should	suspend	from	the	current	time	until	5pm.

	

55	

To achieve the scenarios	above,	the	main	point	is	to	compare	the	end	time	with	now,	if	end	time	

is	before	now,	suspend	date	 is	 tomorrow	otherwise	suspend	date	 is	 the	same	day	when	user	set	up	

suspend	window.

It	 would	 add	 the	 date	 when	 user	 finish	 the	 suspend	 survey	 from	 the	 backend	 and	 store	 it	

separately	like	"start	time",	"end	time".	And	when	it	is	generating	notification,	it	will	not	only	compare	

the	whether	the	notification	time	is	 in	suspend	window	(previous	version)	but	also	compare	the	suspend	

date.	

(2)	A	date	detection	algorithm	for	both	start	time	and	end	time	

To	make	 suspension	happen	only	one	 time,	date	need	 to	be	added.	The	difference	with	 first	

algorithm	is,	this	algorithm	added	two	dates	instead	of	one.	In	Firebase,	under	user/suspendWindow	

there	is	a	windowStart	and	windowEnd	that	both	store	times.	To	execute	suspend	once	and	only	once	

we	used	2	new	fields	windowEndDate	and	windowStartDate.	They	store	the	date	and	time	at	which	are	

supposed	to	suspend.	The	researchers	wanted	just	the	time	input,	so	it	still	have	to	get	only	the	time	

from	the	question	and	apply	the	dates	to	it.	The	applying	the	dates	is	the	only	tough	part	the	rest	is	just	

reading	and	writing	dates	from	the	firebase	and	putting	them	in	the	right	place.		

This	is	how	it	works:when	user	input	both	start	time	and	end	time,	grab	date	at	that	moment	and	

store	it	as	windowEndDate	and	windowStartDate.	Then	compare	the	start	time	and	end	time,	if	end	time	

is	before	start	time,	windowEndDate	equals	windowEndDate	plus	one.	Otherwise	they	are	both	today.	

And	it	should	still	suit	the	following	scenarios.	

(1)	The	times	entered	by	the	user	are	both	in	the	future.	For	example,	say	the	time	is	1pm	and	I	

set	the	suspend	window	start	at	3pm	and	end	at	5pm.	In	this	scenario,	It	is	supposed	to	do	suspension	

	

56	

on	the	current	date	between	3pm	and	5pm.	However,	my	suspend	should	apply	only	today	from	3pm	to	

5pm,	and	not	tomorrow.	

(2)	The	more	complex	case	is	if	the	user	provides	times	such	that	only	the	end	time	is	in	the	future.	

For	example,	consider	the	same	scenario	as	above	except	I	set	the	window	times	from	10am	to	5pm.	

Although	10am	has	already	passed,	since	5pm	is	in	the	future	we	can	still	apply	the	window.	This	scenario	

should	suspend	from	the	current	time	until	5pm.	

In	the	performance	chapter	we	will	compare	both	algorithms	in	more	detail	for	more	scenarios.	

	 	

	

57	

4.	SYSTEM	PERFORMANCE	EVALUATION		

System	performance	is	evaluated	in	the	following	three	aspects:	question	types,	notification	and	

suspension.	

Table	5	The	list	of	functions	and	algorithms	about	System	performance	

Functions	 Requirements	 methods	 results	

Questions	 Dynamic	and	

custom	questions	

Dynamic	and	custom	

questions	

Vs	original	

ReseachStack	

Dynamic	and	custom	questions	design	

is	better	than	just	using	ResearchStack	

and	its	fixed	question	types	because	it	

has	more	flexibility	

Notifications	 Schedule	

notifications	with	

15	minutes	break	

(1)	the	latest	start	

time	algorithm	

(2)	the	conditional	

random	selection	

algorithm	

We	selected	the	conditional	random	

selection	algorithm	which	is	more	

compatible	with	TigerAware	

dashboard	design(strictly	15	minutes	

break)	

Suspension		 Schedule	one	time	

suspension		

(1)	date	detection	

algorithm	for	both	

start	time	and	end	

time	

(2)Adding	suspend	

window	date	based	

on	the	end	date	

A	Intelligent	date	detection	algorithm	

for	both	start	time	and	end	time	is	

better	because	it	can	avoid	suspend	

over	midnight	problem	

	

58	

4.1	Different	framework	for	question	types		

For	question	types,	the	improved	tigeraware	Android	system	has	more	flexibility	than	original	

researchStack.	The	original	TigerAware	android	directly	ResearchStack	BackBone	and	its	question	types	

and	 countered	 a	 few	 problems.	 Such	 as	 slider	 bar	 question	 type	 is	 not	 supported	 in	 ResearchStack	

BackBone	and	we	cannot	modify	questions.	However,	 it	 is	supported	 in	ResearchStack	Skin,	 then	we	

download	both	ResearchStack	Backbone	and	ResearchStack	Skin	to	local	and	modify	them	to	have	more	

flexibility.	 In	 this	 way,	 the	 questions	 can	 dynamically	 change	 based	 on	 question	 design	 from	 the	

dashboard	side.	We	also	added	custom	questions	such	as	BacTrack	Alcohol	Sensor	question.	

Table	6	The	performance	comparison	along	the	framework	changes	of	TigerAware	

framework	 Dynamic	questions	 Custom	questions	 Slider	question	

import	Original	

ResearchStack	

Backbone	and		

no	 no	 no	

import	Original	

ResearchStack	both	

Skin	and	Backbone		

no	 no	 yes	

download	

ResearchStack	skin	

and	backbone	to	local	

import	and	modify	

both	

yes	 yes	 yes	

	

59	

4.2	Notifications	performance	evaluation	

For	notifications,	there	are	two	algorithms	for	Scheduling	notifications	with	15	minutes	break.	

The	following	is	the	table	about	the	performance	about	them.	

Table	7	The	performance	comparison	about	different	algorithms	for	notifications	

algorithms	 Advantages		 Disadvantages	

the	latest	start	

time	algorithm	

more	efficient	in	its	use	of	memory	 Less	random:	after	first	notification	is	

scheduled,	the	second	notification	

cannot	be	scheduled	before	first	

notification.	

the	conditional	

random	selection	

algorithm	

More	random:after	first	notification	is	

scheduled,	the	second	notification	

still	can	be	scheduled	before	first	

notification	

Use	more	memory	

	

4.3	Suspension	performance	evaluation	

For	suspension,	there	are	two	algorithms	to	design	a	suspend	window.	The	following	is	the	table	

about	the	performance	about	the	two	algorithms.	

	

	

	

60	

Table	8	The	performance	comparison	about	different	algorithms	for	suspension	

algorithms	 Advantages		 Disadvantages	

date	 detection	 algorithm	 for	

both	start	time	and	end	time	

Solve	any	suspend	problem	 Use	More	memory	

Adding	suspend	window	date	

based	on	the	end	date	

Less	memory	

Easy	to	achieve		

It	 cannot	 solve	 the	 suspend	

over	midnight	problem	

	

61	

5.	CONCLUSION	AND	FUTURE	WORK	

According	to	ResearchKit,	a	similar	SDK	called	ResearchStack	 is	used	to	develop	a	functionally	

equal	application	supported	by	Android,	including	kinds	of	questions,	active	tasks,	suspend	window	and	

notifications.		

For	kinds	of	questions,	TigerAware	has	experienced	three	stages:	directly	import	ResearchStack	

Backbone,	import	ResearchStack	Backbone	and	Skin,	and	download	ResearchStack	Backbone	and	skin	

then	modify.	The	first	stage	can	only	support	a	few	questions	while	the	second	can	support	more,	such	

as	slider	questions.	The	final	stage	works	the	best	because	both	ResearchStack	BackBone	and	Skin	are	

modified,	and	custom	question	type	is	created	to	support	a	variety	of	question	types	and	active	tasks	for	

study	use.	

For	random	notifications,	two	conditional	random	selection	algorithm	are	proposed	to	handle	

notifications	 with	 more	 flexibility,	 they	 are	 the	 latest	 start	 time	 algorithm,	 the	 conditional	 random	

selection	algorithm.	Eventually	we	chose	the	conditional	random	selection	algorithm	because	it	is	more	

random	based	on	the	time	sequence.	

For	suspend	window,	one	time	suspension	is	necessary	to	avoid	repeating	issue,	and	there	are	

two	algorithms	to	handle	suspend	window	in	different	situations,	such	as	suspend	over	midnight.	One	is	

based	on	end	time	and	adding	one	date,	another	is	to	detect	both	start	date	and	end	date	and	the	second	

algorithm	is	finally	implemented	because	it	has	more	compatibility.	

In	 conclusion,	 by	 modifying	 both	 ResearchStack	 BackBone	 and	 Skin	 and	 adding	 random	

notification	with	15	minutes	break	and	suspension,	the	improved	TigerAware	Android	System	has	the	

ability	to	adapt	the	existing	functions	on	iOS	into	android	with	the	same	functionality,	and	develop	the	

	

62	

new	features	together	with	TigerAware	System	to	help	some	research	study	specifics,	and	all	of	these	

features	 and	 functions	 developed	 are	marked	with	 the	mature	 development	 of	 TigerAware	Android	

version	2.0.	

In	the	future,	as	the	changing	of	the	database	structure,	the	way	to	read	the	surveys	from	the	

Firebase	need	to	be	changed	and	the	era	of	TigerAware	Android	version	3.0	is	coming!	

	

Table	9	The	list	of	my	contributions		

	 My	contributions	

Survey	

Questions	

Multiple	choice	question,	date	and	time	question,	picture	in	text	slide	question,	time	

of	day	question,	scale	question,	continuous	scale	question	and	so	on	

Notifications	 Random	notification	in	fifteen	minutes	break	

Suspension	 One	time	suspension	

Others	 UI	improvements:	text	color,	icon,	bar	color.		Testing:	debug	and	so	on	

	

	 	

	

63	

6.	REFERENCES	

[1]	Pew	Research	Center,	"Mobile	Fact	Sheet,"	Jan	2018.	[Online].	Available:	
http://www.pewinternet.org/fact-sheet/mobile/.	[Accessed	2018	February	2018].	

[2]	Jayanth	Kanugo,	“TigerAware	Dashboard:	An	Improved	Survey	Generation	and	Response	
Visualization	Dashboard,”	May	2018.	[Online].	Avaliable:	http://dslsrv1.rnet.missouri.edu/~shangy/	
[accessed	2019	april	2019]	

[3]	William	Morrison;	Luke	Guerdan;	Jayanth	Kanugo;	Timothy	Trull;	Yi	Shang,	“TigerAware:	An	
Innovative	Mobile	Survey	and	Sensor	Data	Collection	and	Analytics	System,”	June	2018	[Online].	in	
2018	IEEE	Third	International	Conference	on	Data	Science	in	Cyberspace	(DSC),	2018	

[4]	Jason	Long.	“ResearchStack,”	[Online].	available:	http://researchstack.org	[accessed	2019	april	
2019]	

[5]	ResearchStack	“backbone	documentation,”	[online].	Avaliable:	
“http://researchstack.org/documentation/backbone/	[accessed	2019	april	2019]	

[6]	ResearchStack	“backbone	documentation	[online].	Avaliable:	
“http://researchstack.org/documentation/skin/”	[accessed	2019	april	2019]		

[7]	ResearchKit	“ResearchKit”	[online].	Avaliable:	“http://researchkit.org/”	[accessed	2019	april	2019]		
[8]	ResearchKit	“Active	Tasks”	[online].	Avaliable:	

“http://researchkit.org/docs/docs/ActiveTasks/ActiveTasks.html”	[accessed	2019	april	2019]		

