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ABSTRACT

With various GPS devices or services growing rapidly, large amount of GPS track-

ing data has been collected, both for human beings and wild animals. However, the

raw GPS data cannot directly provide us with any valuable information because of

the semantic gap between it and the raw GPS trajectory data. As a result, algorithms

are needed to extract the semantic information from raw GPS data. To solve this

problem, this project implements two software tools and a web application.

• Semantic Analysis Software provides semantic analysis based on stops in the

trajectory detected by DDB-SMoT (Direction and Distance Based - Stop and

Move of Trajectory) and POI (Point of Interest) list to output a list of activities

in order to explain the meaning of the given trajectory.

• Trajectory Generator Software generates labeled trajectory based on the stop

and move model to evaluate the performance of stops detection algorithms.

• Semantic Analysis Web Application displays the semantic enrichment process

step by step on Google Map use bear and deer GPS trajectories provided by

MDC (Missouri Department of Conservation).

Through experiments, the DDB-SMoT algorithm has an overall accuracy of 91.18%

when detecting stops and movement points in animal trajectory generated by the

trajectory generator. Because lack of a rich animal POI dataset and activity ground

truth, the verification of the semantic analysis process will leave as future work for

the project.
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Chapter 1: Introduction

In the last few years, numerous wearable tracking devices to sense the movement

of people, vehicles and even wild animals have generated large volumes of mobility

data, representing the traces of people’s and animal’s activity. This project will

mainly focus on analyzing animal activity with mobility data. Nowadays, lots of

application areas could benefit from study of animal activity analysis such as wildlife

population management, wildlife animal protection and even some scientific related

researches. Although there are lots of data about animal movement and the accuracy

of those devices are increasing, it still does not directly improve our understanding

of meaning of animal GPS data. We currently do not have much information on

how to fill up the semantic gap between the animal GPS trajectory data and the

real semantic data. As a result of that, approaches are needed to automatically infer

animals’ activity given its location tracking. The method presented in this paper is

to enrich animals movements, represented as GPS data, with semantic information

about the activities performed during the time the GPS data provided. The main

idea is to split the whole trajectory into moves and stops, assume that the purpose

of the move for an animal is to move towards a place where it can perform some

activity and the purpose of stop for an animal is to stay around a place to perform

the activity. Under this assumption, there are two possible conditions for each GPS

point in the trajectory, either it is moving towards the next interesting place to do

something, or it stays around current place to perform an activity. Further, we want

to predict, with a degree of approximation, what is the activity the animal is moving

to. For example, a bear stopping around a river is fishing in the river, while when
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staying around its own den is performing a resting or hibernating activity. In order

to make a good prediction, the first and most crucial thing is to identify the places

where animals have stopped as accurate as possible; secondly, we will try to associate

each stop position with a most possible POI(Point of Interest); finally, with the most

possible POI, we can use a mapping table to find the category that the POI belongs

to and then map it to the proper activity performed around the place. This project

implements this semantic enrichment procedure as software to take in GPS trajectory

and POI dataset to identify the activities performed in the trajectory.

In current situation, to save the battery life, it gives out the signal around once

an hour. Compared with human GPS trajectories, the black bear trajectory is really

sparse. Therefore, it is necessary to find a proper way to find out accurate stops in

the trajectory. Also, the accuracy of this approach in this paper depends largely on

the richness of the POI data. However, Unlike the POI lists and categories for human

semantic analysis are very easy to obtain, it is really hard to get the POI positions

and categories for animals. So, the association between the stop and the POI should

be defined properly in order to have a better result. Hence, there are mainly two

core parts to improve the accuracy of the semantic enrichment algorithm. One way

is to develop a high accuracy stop detection algorithm. Another way is to search

for a rich POI list for the area of semantic enrichment process. Clearly, due to lack

of animal POI data, there are not much we could do about it. Therefore, the stops

detection algorithm can be modified to obtain a more accurate stops result. In this

paper, we have developed the algorithm DDB-SMoT (Direction and Distance Based -

Stop and Move of Trajectory) based on DB-SMoT (Direction Based - Stop and Move

of Trajectory) presented in [6]. DB-SMoT algorithm only considers the direction
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change threshold when filtering out movement points in a trajectory, which requires

the trajectory to be very dense. However, with sparse trajectories like the bear

data or deer data, distance change between consecutive points should also take into

consideration. So, based on the model from DB-SMoT algorithm, more constraints

are added in order to filter out movement points from stop clusters. With experiments

produced by a wildlife trajectory generator presented in this paper, the DDB-SMoT

shows better accuracy of finding stop and move points in the trajectory than the

DB-SMoT algorithm.

In order to test the DDB-SMoT algorithm and find the proper parameters to

run the algorithm, this project developed a wildlife trajectory generator to generate

labeled trajectory that is similar to the real animal trajectory. The trajectory gener-

ator uses the stop and move model to generate stop or movement points and transits

between those two model with a Markov probability model. It generates the next

point in the trajectory based on a direction change and a distance change, which are

generated with Gaussian random function with parameters learned from real animal

trajectory. With features extracted from the different animal GPS tracks, it is able

to monitor different kinds of animal trajectories. Also, the software provides with in-

terfaces for a different stops detection algorithm to verify their accuracy on simulated

animal trajectories.

This project also built a web application to visualize the results provided by the

semantic analysis software. The semantic analysis software generates intermediate

results like stop labels and position of stop centers for the website to display. The

web application can provide users a platform to understand the semantic enrichment

process. It displays all the intermediate result on the Google Map after each step in
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the process to illustrate how the semantic analysis works. All the experiment data

are from real black bear and deer GPS data provided by the Missouri Department of

Conservation (MDC).

There are two phases of experiments in this project. First, the project tests

the accuracy of DDB-SMoT algorithm and compares the results with DB-SMoT.

With labeled animal trajectories generated from the trajectory generator, this new

spatial temporal clustering method DDB-SMoT turned out to have 91.18% of overall

accuracy for detecting stop points and move points in trajectory. It largely improved

the accuracy of detecting move points in trajectory when compared with DB-SMoT

algorithm. Second, the project tries to test the accuracy of the semantic enrichment

process. However, without a rich POI dataset to produce the actual prediction of

activity identification and ground truth that records the activity the bear or deer

performed in the trajectory, there are no way to come up with an accuracy for the

semantic analysis. So, in the future, the project will try to build up POI dataset

according to locations provided by the stop detection result and observe activity

performed by animals in order to verify the semantic enrichment process.

The paper introduces related works for both semantic analysis algorithms and

spatial temporal clustering methods in Chapter 2. From Chapter 3 to Chapter 5,

there are detailed explanation about the DDB-SMoT algorithm, semantic enrichment

process and the trajectory generator. Experimented results and analysis are displayed

in Chapter 6.
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Chapter 2: Related Works

2.1 Related Works of Trajectory Semantic Analy-

sis

There are very few studies on animal semantic analysis, however, there are actually

a lot of works on human semantic modeling. The work in this paper is based on the

approach introduced in work [1]. The author defines a semantic enrichment model for

analyzing human GPS trajectories. The GPS tracks is defined as a spatial temporal

function keeping record of the object moving in space during a given time interval,

while the semantic information is defined as a set of stops and moves. Stops are the

points that the object stays still at some place and performs an activity, while the

moves are the points that the positions of the object changes. The basic assumption

behind the concept of stop is that the place where a person or animal stops is of some

interest for her/him. As a result of that, each stop could be related or associated to a

POI(Point of Interest). With the POI information and probability model, an activity

could be inferred from each stop.

The identification of mobile activity from GPS data of people is not a new field in

data science. There are basically two types of research that are related. The first one is

to identify the transportation means [15]. Using speed, acceleration and speed change

rate, the authors first split the situation into two different condition: walk, non-walk.

In the second step, they analyzed the non-walk segments into segments with trans-

portation models: bicycle, bus, and driving. They used a combination of techniques,
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from supervised learning to decision tree inference, and add a post-processing step to

improve the accuracy of the segmentation. Another trend of research is to identify the

human activity based on the trajectories. A similar approach to ours has been pro-

posed in [12], here the authors present a method to automatically extract sequences

of activities from a large set of trajectory data. The assumption is that activities may

be carried out at a POI during a stop in the user trajectory. The function to map a

stop representative to a valid POI is crucial and may depend on many factors. The

first parameter that should be taken into consideration is the distance. The POIs that

are far away from the stop should not be mapped to. Also, the duration of the stop,

the time of the day and the date when the stop happened, they all are factors that

may affect the meaning of the stop. They tested their algorithm using synthetically

generated trajectories dataset with the POIs collected in a specific area in California.

The drawback of this type testing is that there is no real validation of the method

since there is no proof of the correctness of the inferred POIs.

The work of [4] is again in the direction of inferring activities from users trajecto-

ries. This paper presents an approach using spatial temporal attractiveness of POIs

to identify activity-locations and durations from raw GPS trajectory. The algorithm

they proposed finds the intersections of trajectories and spatial-temporal attractive-

ness prisms to indicate the potential possibilities for activities. The experiments use

one month GPS trajectories from 10 volunteers where they show an high accuracy

of the method. Though the approach using the Spatial Temporal POI Attractive-

ness(STPA) is a good way to start the semantic enrichment analysis, it is very hard

to find a POI dataset that fits the STPA’s need for human beings, not to mention,

we need to do it for animals.
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Our work is an implementation of the work [16]. In the work [16], the author

purposed a gravity model to associate stops with POIs, and hence infer the activity

during the stop. It does need a rich POI dataset to obtain a high accuracy of semantic

enrichment prediction, therefore, we are still able to get a reasonable result with POIs

that are easy to acquire.

Most of works are done for human activity inference, while there are very few works

about wildlife behavior inference. This is probably because it is really difficult to get

the ground truth and analyze the results of the present method. It is also difficult

to continuously observe them, and it is even harder to understand the activity when

we are trying to observe them and label the data. In our work, we focused on the

implementation of the previous work, once we are able to obtain more accurate POI

dataset, we get use them as an input to predict the wildlife animal activity through

their trajectory.

2.2 Related Works of Spatial Temporal Clustering

The core part for every semantic analysis algorithm is to find the valuable points in

the raw GPS trajectory to start the analysis. Since Spaccapietra [17] introduced a

new model to reason about trajectories, which is called stops and moves. This model

is especially interesting to add semantic information to raw trajectories. Generally

speaking, stops are the key part of a trajectory from a semantic analysis point of view,

while the moves are the travel the user or animals made in order to arrive at the stop

place. This stop and move model can be used with a large number of applications,

such as semantic analysis, traffic control, etc.
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So far, there are three different methods that have been designed to detect stops

in a trajectory: IB-SMoT(Interaction-Based Stop and Move of Trajectory) [18], CB-

SMoT(Clustering-Based Stop and Move of Trajectory)[19] and DB-SMoT(Direction

Based-Stop and Move of Trajectory)[6]. IB-SMoT generates stops and moves based

on the intersections between GPS points in the sample trajectory and the list of given

geographic object types that are specially interesting to the specific application. This

intersection requires a minimum time threshold for the sub-trajectory be considered

as a stop. This algorithm is used by the application to detect for short amount of

time duration for interesting places, such as tourism.

CB-SMoT(Clustering-Based Stop and Move of Trajectory) is a clustering method

based on the speed variation of the trajectory. It directly measures the trajectory of

the GPS points and generates clusters in places where the speed of the sub-trajectory

is lower than a given limit of the speed threshold for a minimal amount of time. As

a step to revise the result in the first step, the method matches the stop clusters

with a set of predefined relevant geographic places that are interesting to the appli-

cation. This method is particularly useful for applications in which the speed plays

an significant role, such as traffic management system.

DB-SMoT(Direction-Based Stop and Move of Trajectory) is a spatial temporal

clustering method based on the direction change between each of two consecutive

points of the trajectory. It measures the direction change respect to a minimum

direction change with threshold and cluster stop points in places where the direction

change is larger than the threshold. The assumption for this is that when the user is

moving towards somewhere, the direction change is much lower, on the other hand,

when the user stops at some places, it moves around the place which makes the
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direction change between points become much larger. This algorithm is very useful

for applications that need to find the stops with long time duration.

In our case, we use GPS trajectory collected from the wildlife animal. In order

to battery, the GPS device cannot send out frequent signal, instead it sends out the

GPS position once an hour. Therefore, we do not get a continuous trajectory. Unlike

human beings, wild animal always moves in different areas, there are no relatively

fixed areas they would live in. As a result of that, it is almost impossible for us to

obtain detailed geographic object types or information for such a wide area. In this

case, the two spatial temporal clustering method explained above are not a good fit

to our project. Both IB-SMoT and CB-SMoT method require too much geographic

information and only used for stops around known places. In our case, it is really

hard to human beings to obtain the geographic information that is not inside a city,

and we don’t have existing dataset about where the wildlife animals should stop. On

the contrary, those information that are needed for implementing IB-SMoT is exactly

what we should analyze from the raw trajectory. As a result of that, IB-SMoT is not

a good fit to our project.

For this paper, we found the DB-SMoT algorithm is a better fit. It does not

require any geographic information for a fixed area, and it can be used to detect

long time duration stops. So, we revised the algorithm based on the existing work of

DB-SMoT(Direction Based - Stop and Move of Trajectory) to form the DDB-SMoT

algorithm in order to better detect stop clusters in our black bear raw trajectory.
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Chapter 3: DDB-SMoT, A New Spatial

Temporal Clustering Algorithm

The semantic enrichment algorithm aims at annotating each stop detected in the raw

trajectory with an activity to form the list of activities as the semantic trajectory.

It is done by gathering the environmental information around the stop place mainly

about the POIs in the region, and through the POI information we make predictions

about activity performed in this area. Before we go into details about our semantic

enrichment, we first need to solve the problem: how could we come up with stops

with a raw trajectory. This would be the key part that will have significant impact

on our accuracy of the semantic enrichment process.

The following sections will introduce a stops detection algorithm DDB-SMoT(Direction

and Distance Based-Stop and Move of Trajectory) based on DB-SMoT(Direction

Based-Stop and Move of Trajectory).

3.1 Basic Definition of DDB-SMoT

To better illustrate the DDB-SMoT algorithm, we should illustrate the original DB-

SMoT algorithm first to see its advantages and disadvantages. The core idea for

the DB-SMoT is that those consecutive stop points in the GPS trajectory always

try to move around at a place which makes the direction change between direction

Pi−1Pi and direction PiPi+1 tend to be larger, while the direction change among those

movement points are almost small values. Base on this idea, we can select a threshold
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on the direction change to identify whether the point is a stop point or a move point

in the trajectory. Compared with other stops detection algorithms, DB-SMoT needs

less geographic information to process and it does not require the trajectory to be

inside a fixed region which makes it a very good model to develop with. One thing

that DB-SMoT algorithm does require is that the trajectory must be dense enough

in order to use the direction change threshold for stop clustering. If the time interval

of trajectory given is relatively long, the direction change for a movement point could

also be very large. As a result of that, using direction change threshold alone cannot

provide us with good result of stop clustering when using the sparse trajectory as

an input. In our case, to increase battery life for our GPS devices on wild animals,

we can only send out signals at the average of once an hour, which makes our wild

animal trajectory sparse. To improve the result, we choose to revise the DB-SMoT

algorithm to let it fit to our project. In DDB-SMoT algorithm, distance change will

also be considered as a threshold when filtering out move points in the trajectory

which makes the algorithm gain a higher accuracy.

We will first introduce the definitions and concepts in the DDB-SMoT algorithm,

and then explain the DDB-SMoT in detail.

• Definition 1 Trajectory

A set of GPS trajectories with their location information and timestamps: T =

{position:(Lon,Lat); Timestamps:(Ts);}

• Definition 2 Direction Change

For three consecutive points Pi−1, Pi and Pi+1 in the trajectory, the direction

change at Pi is the angle between the two directions Pi−1Pi and PiPi+1, denoted
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by DC(Pi).

Minimum Direction Change, denoted as MinDirChange, is the threshold of

direction change used in the algorithm to detect Candidate Cluster Point, which

will be illustrated in Definition 5.

• Definition 3 Distance Change

For each two consecutive points Pi−1, P in the trajectory, the distance change

at Pi is the distance on earth between the two GPS points Pi−1 and Pi, denoted

by DisC(Pi).

Maximum Distance Change, denoted as MaxDisChange, is the threshold of

distance change used in the algorithm to detect Candidate Cluster Point, which

will be illustrated in Definition 5.

• Definition 3 Time Change

For each two consecutive points Pi−1, P in the trajectory, the time change at Pi

is the timestamps difference between the two GPS points Pi−1 and Pi, denoted

by TimeC(Pi).

Maximum Time Change, denoted as MaxTimeChange, is the threshold of time

change used in the algorithm to filter out those conditions that two consecutive

GPS points have very large time gap when detecting Candidate Cluster Point.

• Definition 4 Candidate Cluster Point

In a sub-trajectory Pi−1, P and Pi+1, GPS point Pi is a Candidate Cluster Point

if DC(Pi) > MinDirChange and DisC(Pi) < MaxDisChange, otherwise, Pi

should be considered as a move point in the move clusters.
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• Definition 5 Connected Candidate Point

Let < Pi, Pi+1, Pi+2, ..., Pi+n+1 > be a subtrajectory. Then, the point Pi is a

connected-candidate-point to Pi+n+1 with respect toMinDirChange,MaxDisChange

and MaxTol if Pi and Pi+n+1 are candidate-cluster-points and n ⩽ MaxTol.

The maximal tolerance threshold MaxTol specifies the maximum number of

trajectory points with direction change less than the MinDirChange threshold

that can be found consecutively in a cluster.

• Definition 6 Trajectory Cluster

A cluster C =< Pi, Pi+1, Pi+2, ..., Pi+n > of a trajectory T with respect to

MinDirChange, MaxDisChange, MaxTol andMinTime is a non-empty sub-

trajectory of T formed by a set of contiguous time-space points such that:

1) ∀p, q ∈ T : if p ∈ C and p is a connected-candidatepoint to q with respect

to MinDirChange and MaxTol, then q ∈ C.

2) ∀p, q ∈ C : p is connected-candidate-point to q with respect toMinDirChange,

MaxDisChange and MaxTol. 3) tnt1 ⩾ MinTime, where Pi = (xi, yi, ti) in a

cluster.

3.2 DDB-SMoT Algorithm Description

Stops Detection Algorithm takes in the raw GPS trajectory with timestamps, along

with the a list of pre-compiled parameters, to compute a set of stops and moves.

There are two parts in the algorithm output. The first part describes the stops,

which contains a list of stop clusters and each of the stop clusters contains a set of
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consecutive GPS points. The second part shows the moves. It contains a list of move

path and each of the movement path is consist of multiple consecutive GPS points.

The stops detection process can be divided into three steps:

1) Preprocess step: Compute the list of distance change, time change and direction

change for each GPS point in the trajectory T , denoted as variations, timeChanges

and distances in the below pseudo-code.

2) Clustering step: Find all the stop clusters in the trajectory T to set up the

stops for output.

3) Postprocess step: Find all the points in the trajectory T that are not in the

stop cluster to form the movement paths.

All of these steps are shown clearly in the Stop Detection Algorithm pseudo-code

in Algorithm 1.

From the above explanation, the core function of the stops detection is the Find-

Clusters method in the pseudo-code. Algorithm 2 is the pseudo-code and explanation

for this method.

The FindCluster method starts with checking the distance change and direction

change between each two points of the trajectory T . While at the point i, when the

variation is larger than the direction threshold MinDirChange and the distance is

less than the distance threshold MaxDisChange, the point Pi can be added into the

current stop cluster. When a point Pi in the trajectory does not variate the these two

conditions, we will try to find the next point Pj with DC(Pj) > MinDirChange to

check whether j−i < MaxTol or not. Meanwhile, we should also make sureDisC(Pj)

⩽ MaxDisChange and TimeC(Pj) ⩽ MaxTimeChange when we look ahead to try

to find the next valid candidate point. Because once a point breaks any of these two
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Algorithm 1 Stop Detection Algorithm

INPUT:
T{P1, P2...Pn} //Trajectory T
MinTime //Minimum Time Duration for the stop cluster
MinDirChange //Minimum Direction Change
MaxTimeChange //Maximum Time Change
MaxDisChange //Maximum Distance Change
MaxTol //Maximum Tolerance
OUTPUT:
S //Set of Stops
M //Set of Moves
METHOD:
n=sizePoint(T );
//Calculate all the Direction Change, Time Change and Distance Change
for i from 2 to n do
variations[i− 1]=DC(i)
distances[i− 1]=dis(i-1,i)
timeChanges[i− 1]=TimeC(i-1,i)

end for
//Clustering
Clusters = findClusters(T ,MinTime,MinDirChange,MaxTimeChange,
MaxDisChange,MaxTol)
//Find Moves
for i from 1 to n do
if Pi is not a Stop then
Move = Move + Pi

else
M = M + {Move}
Move = {}

end if
end for
ENDMETHOD
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Algorithm 2 FindClusters

METHOD:
i=1;n=sizePoint(T );clusterOpened=false;
AllClusters = {}; Cluster = {}
while i <= n do
if (variations[i] > MinDirChange AND distances[i] < MaxDisChange AND
timeChanges[i] < MaxTimeChange) then
clusterOpened=true
Cluster = Cluster + Pi

else
if (clusterOpened) then
// If there is a cluster
//check direction of the next point
nextIndex=lookAhead(MaxTol,MinDirChange,MaxTimeChange,MaxDisChange)
if (nextIndex < MaxTol + i) then
// add the points to the cluster
for j from lastIndex to i do
Cluster = Cluster +Pj

end for
i = nextIndex

else
//Close the cluster
if (time(Cluster)> MinTime) then
//Record the cluster only when the time is longer than MinTime
AllClusters = AllClusters+ {Cluster}

end if
Cluster = {}
clusterOpened = false

end if
end if

end if
i++

end while
return AllClusters
ENDMETHOD
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conditions while we look ahead, we should close the current stop cluster at the original

point before we look ahead. If we have a point which TimeC(Pj) > MaxTimeChange

when we look ahead, the two consecutive GPS points lost their inner connection

because we do not have any information about where the animal goes during the

time from Pj−1 to Pj. If we have a point on which DisC(Pj) > MaxDisChange

when look ahead, the two consecutive GPS points apart from each other too far to

be into the same stop cluster. After the look ahead process, if we are able to get a

point and it is within the MaxTol, which means the points between between Pi, Pj

can be tolerated, we can then add all them to the current stop cluster. Otherwise,

the current point Pi will be considered as a move point and thus close the current

stop cluster. When closing the current stop cluster, the algorithm will check whether

this stop cluster can be considered as a valid one by checking the time duration for

the current stop with the time threshold MinTime.

The time complexity of the algorithm is O(P), where P the number of trajectory

points, since each point of trajectory is analyzed only once.

Example: Below is the example to describe how this algorithm works. Suppose we

have a GPS trajectory < P1, P2, ..., P9 > with all the parameters listed in the figure

and time interval between each two points are 1 hour, we will use it to calculate the

stops in the trajectory. To simplify the situation, We assume the time change between

points are all valid. To start with, the algorithm calculate all the direction changes

and distance changes, which has already been annotated on the path. Then, through

looping from P1 to P9, we can find out that:

P1 → P2 → P3 → P4: DirChange > MinDirChange and DisChange <

MaxDisChange, P1, P2, P3 are Candidate Cluster Points
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P4 → P5: DirChange < MinDirChange and DisChange < MaxDisChange,

P4 is not a Candidate Cluster Point, so look ahead to find the next valid Candidate

Cluster Point

P5 → P6: DirChange > MinDirChange and DisChange < MaxDisChange,

P5 is a Candidate Cluster Point, since the MaxTol is 1, we add the P4, P5 into the

current stop cluster

P6 → P7: DirChange > MinDirChange and DisChange > MaxDisChange,

P6 is a not Candidate Cluster Point

P7 → P8: DirChange < MinDirChange and DisChange < MaxDisChange,

P7 is a not Candidate Cluster Point, we need to discard P6, P7 and close current stop

cluster with respect to the MaxTol

P8 → P9: DirChange < MinDirChange and DisChange < MaxDisChange,

P8 is a not Candidate Cluster Point

After looping through all the points in the trajectory, we detect one stop cluster

< P1, P2, ..., P5 > from the trajectory < P1, P2, ..., P9 >.

Figure 3.1: DDB-SMoT Algorithm Example
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Chapter 4: Semantic Enrichment Algorithm,

an Activity Identification Al-

gorithm for Animal Trajectory

To infer the activities of wild animals, the main resource we use is the raw trajectory,

which is a sequence of spatio-temporal points. The basic assumption of our approach

is that the animal moves in order to get closer to the place that is interesting to it,

and after it arrives the place, it will stay around to perform some activity and then

move towards the next interesting place. Under this assumption, we split the raw

trajectory into two parts, one part would be the movements in the trajectory, the

other would be the stops.

A stop in a trajectory is identified by the absence of move and this can be de-

tected in several ways. The segment of a trajectory between stops is called move

and indicates the actual movement. A trip represents the move between two con-

secutive stops. With stops and moves in the raw trajectory, we can now generate a

more information for each discrete points in raw trajectory. With stops and moves

information, our goal is to annotate each stop with an activity. After annotating a

stop with an activity, we will then gain a semantic trajectory, which consists of a list

of activities performed by the wildlife on its trajectory. The process of annotating

a raw trajectory with semantic information creating a semantic trajectory is called

Semantic Enrichment. Our contribution is focused on the inference of the activity

performed during the stops, which is the goal of its movements. In another words,

we are trying to explain the reason why the animal goes and stays there.
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A stop in an animal trajectory is usually associated with a place where it goes

to perform some activity. In our paper, we describe such place as Point Of Interest

or POI. Each POI has a name to describe it, a geographical position, including its

longitude and latitude, with one or more categories to classify it and some constraints

to specify its properties. An example of POI is the black bear den: the center of the

den is the representative of this POI, the category can be ”resting place”, and the

name is ”black bear den”.Special case of POIs are the places that are only attractive

to some bears, but not to all the bears. We ignore this case and only take into account

the places of interest to an all the bears or all the animals within the same species.

We assume that during the stop at a POI an animal may perform an activity such

as eating, drinking, resting, etc. However, at a POI an animal actually have the

chance to perform different kind of activities, for example, a bear stops at a river

can be considered as a ”drinking” activity or as ”fishing”. To make this association

clear, we defined a list of activities A interesting for a given species of animal, a list

of POI categories C extracted from the POIs present in the tracking area, and then

we mapped each POI category to an activity, thus defining a POI-Activity mapping

µ. For example, consider the xxRiver(assume it is a river in MO) POI belongs to

a category River. If the list of activities contains drinking we can define a mapping

µ(River) = Drinking, and then associating each river to a drinking activity.
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4.1 Basic Definition of Semantic Enrichment Al-

gorithm

The semantic enrichment algorithm aims at annotating each stop detected in the raw

trajectory with an activity to form a list of activities as the semantic trajectory. It is

done by gathering the environmental information around the stop place mainly about

the POIs in the region, and through the POI information we make predictions about

activity performed in this area.

The whole semantic enrichment process has two phases, the first phase is a pre-

processed phase to find out the stop clusters inside the raw trajectory and gather

POIs around each stop, the second phase is the process phase to come up with the

most probable POI around each stop and then predict the semantic information for

it.

The inputs for the semantic enrichment algorithm are:

• A POI list with their categories and other information: POI = {position:(Lon,Lat);

category:(C);other information}

• A set of GPS trajectory with their location information and timestamps: T =

{position:(Lon,Lat); Timestamps:(Ts);}

• A set of characteristics of the animal: Maximum Reachable Distance:(Mrd)

• A set of Activities A

• The mapping of the POI categories C to Activities A. The type and number of

the activities is strongly dependent on the domain and the type of enrichment

we are interested in.
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• A set of spatio-temporal Domain Rules:

Spatial Rule - Filter out all the POIs outside the range outlined by the Maxi-

mum Reachable Distance.

Temporal Rule - Check the temporal compatibility of the arrival and departure

to the stop with the valid of the POIs.

• A probability model that associates to each POI, a probability of being visited:

P(POIi, stopj ) = f(dis(POIi, stopj ))

For each stop detected from the raw trajectory, we will use the spatio-temporal

domain rules to filter out invalid POIs. With the spatial rules, we filter out POIs that

have distances to the stop representative longer than the Mrd(Maximum Reachable

Distance). Meanwhile, with the temporal rule, we filter out POIs that are not valid

during the time the animal stays around the stop center. That is when the animal

stays around at this stop, it is not the right time for it to be at this POI. After

filtering out those invalid POIs for each stop, we use the probability model to come

out with the most probable POI to link with the stop. Then, with the category to

activity mapping, we can return the most probable activity for the stop.

As showed in the Figure 4.1, the procedure of the semantic enrichment process

after we get raw GPS trajectories would be in three steps:

Step1: Use stop detection algorithms to identify stops in the spatial-temporal points

Step2: With the output from Step 1 and set of POIs, extract the set of POIs that

are probable for bears to stay
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Figure 4.1: Semantic Enrichment Process

Step3: Use the set of POIs and Category with a probability model to select the most

probable activity

The semantic enrichment process has been implemented into the SemanticEnrich-

ment algorithm, described with pseudocode in the next section.

4.2 Semantic Enrichment Algorithm Description

The semantic enrichment process can be divided into steps as shown in Figure 4.1.

The main procedure of the semantic enrichment algorithm is presented by the pseu-

docode below. The algorithm takes in the GPS trajectory to output the semantic

trajectory as a list of activities performed in each step of the raw trajectory.

The first step of the algorithm is to detect the stops in the raw trajectory. With

the DDB-SMoT algorithm we explained in the chapter 3, we can get a list of stops

from the raw trajectory. Secondly, we use the stops to link with POIs and then predict

the activity. For each stop, with the spatio-temporal rules, we can filter out invalid
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POIs from the POI list. Finally, with the remaining POIs for each stop, we use the

probability model to compute the most probable POI and map it to the corresponding

activity.

Algorithm 3 Semantic Enrichment

INPUT:
T{P1, P2...Pn} //Trajectory T
OUTPUT:
ActivityList //Set of Activities
METHOD:
//Detect Stops from the raw trajectory
Stops = StopDetection(T );
for all (s in Stops) do
//Select POIs for the stop s
possiblePOIs = selectPOIs(s,MaxDistance);
//Select the most probable activity and add it to list
Activity = probability(possiblePOIs);
ActivityList = ActivityList + {Activity};

end for
return ActivityList
ENDMETHOD

Once all the stops can be detected in the trajectory, the enrichment process will

then link each stop with a set of potential POIs, and choose the most probable POI

from the set to infer the activity performed during this stop.

The pseudo-code in Algorithm 3 shows how to select the POIs from the POI list

for each stop. It takes in the stop information and output a set of POIs associate

with the stop. With more information about the POIs, we definitely can filter out

more POIs to get a more appropriate list of POIs, unfortunately, we are not able

to get information for wildlife animal POIs that is suitable for filtering. As a result

of that, we will simply use the distance as a threshold to filter out some POIs. We

defined the MaxDistance to filter out those POIs that has the distance to the stop
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representative further than the MaxDistance threshold. The MaxDistance should

be computed with respect to the speed when the animal is in a stop and the average

time interval between each two consecutive GPS points in the trajectory.

Formally, A POI p for a stop s is selected if d(p, s) < MaxDistance, where

d is a function that returns the walking distance between two locations on earth,

MaxDistance is a parameter that depends on the speed in a stop and time interval

between points.

Algorithm 4 SelectPOIs

INPUT:
S //Stop S
OUTPUT:
selectPOIs //Set of POIs
METHOD:
selectPOIs = {};
for all (poi in POIList) do
//Select POIs for the stop s
if (distance(S,poi) < MaxDistance) then
selectPOIs.append(poi);

end if
end for
return selectPOIs
ENDMETHOD

SelectPOIs algorithm above shows the detailed procedure of retrieving all the

selected POIs for a given stop.

The probability computation step measures for each selected POI, the correspond-

ing probability of being visited starting from the stop. We consider a method based

on the Gravity model below.

The probability model to infer the most probable category is based on the New-

ton’s Law of Gravitation and used to predict the degree of interaction between two
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places. This degree is proportional to the masses and inversely proportional to the

square distance between them, the well known formula for the Law of Gravitation is

represented by :

GravLaw =
mass1 ∗mass2

distance2
(4.1)

This is exactly what we need to evaluate the attractiveness of a POI to a stop. In

another word, the probability model should emphasizes both the distance from the

POI to the stop and also the masses of the POI to the stop.

Since the goal for our semantic enrichment process is to annotate an activity with

each stop, we do not need to find out which exact POI the wild animal is at when

it stops. For the list of the potential POIs that linked to a stop, the process will

group them by POI category and evaluate the probability for each POI category. In

this case, instead of giving each POI a probability, the process will assign each POI

category with a probability, so that within a POI category, each potential POI will

share the same probability. And thus, with the help of the category activity mapping,

we can produce the most probable POI category to map to the activity.

We instantiate the original definition of the Gravity model using the principle of

bodies attraction where mass1 represents the point of stop - to which we give value 1

by definition, and mass2 represents the mass of the POI categories. In another word,

mass2 represents the number of POIs in the reachable POIs that can be mapped to

the given POI category. Here is the revised formula for the probability model:

P (s, act) =
|p ∈ SelectedPOIs(s)|(p.category) = act|

min(d(s, p))2
(4.2)
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Where the function SelectedPOIs returns the POIs selected using the Selected-

POIs algorithm given the stop s, p.category indicates the category of POI p and d(s,p)

is a function returning the distance between the stop and the set of POIs p associated

to the same activity. This equation uses the minimum distance of all the distances

calculated from the stop to each POI position in the selected POIs as the representa-

tive distance. The selected POIs are the input for the Probability algorithm. Thus,

with this model we associate a probability to each possible activity relative to the

stops. With this probability model, we take into account not only the distance of

the POIs from the stops, but also the characteristics of the location where the user

stopped.

Algorithm 5 Probability

INPUT:
S //Stop S
POIs //Set of selected POIs
OUTPUT:
Activity //The predicted Activity
METHOD:
probability = {};
for all (act in ActivityList) do
//For each group of POIs mapped to the same activity
POIsact = {p ∈ POIs : (p) = act};
//Takes as distance the minimum among the stop and
//all the POIs mapped to the same activity
dist = min(distance(S,p) for p ∈POIsact);
//Compute the mass of these POIs as the number
//of POIs of the same category
mass = length(POIsact);
//Compute the gravity value for this category
//activity and add to the probability list
probability.append(act, mass/dist2);

end for
return Activity = max(probability.act);
ENDMETHOD
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Example: The example in Figure 4.2 below shows us the process about how

to choose the most probable category to infer the activity performed at the stop.

Let us suppose to have the stop and the selected POIs shown in the figure. The

POIs, located at different distances from the stop, belong to categories Category1,

Category2 and Category3. These categories are mapped to activities Act1, Act2 and

Act3 respectively. According to the Gravity Model defined above, the probabilities

for the three activities are the following:

Figure 4.2: Semantic Enrichment Activity Inference Example

P (S,Act1) =
1
ϕ
× 1

602
= 0.36

P (S,Act2) =
1
ϕ
× 1

752
= 0.52

P (S,Act3) =
1
ϕ
× 1

502
= 0.12

where the 1
ϕ
acts as the normalizer factor. From the probability results above, we

can see the Act2 has the highest probability, which means the wildlife has the highest

probability to performs Act2 at this stop.
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Chapter 5: Animal Trajectory Generator

Based on Stop andMove Model

In order to test the stops detection algorithm DDB-SMoT, we need a trajectory

dataset with ground truth labeled at each point of trajectory to verify prediction

produced by DDB-SMoT. However, such trajectory dataset does not exist for wild

animals. As a result, we built a wild animal trajectory generator based on the pa-

rameter from the real wildlife GPS trajectories. The generator outputs wild animal

trajectories based on the parameters it is fed and each point in the track can obtain

a stop or move label according to the way it was generated. With the help of this

generator software, we are able to obtain the accuracy of stop detection algorithms

and evaluate their performance with different bench marks.

In the following sections, we will provide detailed explanation of how we imple-

mented the wildlife trajectory generator, and how we use it to evaluate the perfor-

mance of algorithms.

5.1 Basic Definition of Animal Trajectory Gener-

ator

To test the stops detection algorithm, we made up a wildlife trajectory generator

based on the features extracted from the real black bear GPS trajectory. The gen-

erator outputs trajectory point with a stop or move label as a ground truth for the

experiment. Then, we use our stops detection algorithm to run on the same trajectory
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to label each point again. Finally, we compare the result from our algorithm with the

ground truth that we generated with the accuracy to evaluate the whole process.

The idea of implementing the trajectory generator is based on our assumption

about how an animal moves and stops. In detail, we assume that there are several

POIs that the animal wants to travel to a trajectory, one by one until all the predefined

POIs have been traveled. Then, in this case, the whole trajectory will be simulated

by two parts:

1) Move towards next POI

2) Stop at POI to perform activity

From the idea above, when simulating a wildlife trajectory, there are three prob-

lems for us to solve: first, how to come up with the transition model to let the

trajectory be able to transit from movement points to stop point and vise versa; sec-

ond, how to simulate stop points to let it move around a POI center; finally, how to

simulate movement points to let it move toward a POI center. Next, we will illustrate

in details about some features and definitions we will use and how we solve all these

problems.

• POI: A location of the POI along with the radius to specify the range of the POI

that the wildlife is available to perform activity POI = {position:(Lon,Lat);

radius:(r);}

• Plane: A 2D space that will be used for simulating the GPS trajectory Plane =

{width:(wid); length:(len);}

• Time Interval: A fixed time interval between two consecutive timestamps in the

GPS trajectory. Since the time interval between each two GPS points from a
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typical GPS device on the black bear is around a half hour, we will use half

hour as the time interval when simulating trajectory.

• Average Direction Change: The Average Direction Change(ADC) calculated

from the real black bear GPS data.

• Direction Change Standard Deviation: The Direction Change Standard De-

viation(DCSD) calculated from the real black bear GPS data.

• Average Speed: The Average Speed(V) calculated from the real black bear GPS

data.

• Speed Standard Deviation: The Speed Standard Deviation(SSD) calculated from

the real black bear GPS data.

• Stop to Stop Probability: the probability of the next point is a stop point if the

current point is a stop point. (This probability helps the generator to jump out

of the stop cluster)

The average speed, average direction change, speed standard deviation and direc-

tion change standard deviation should be different for the stops model and movement

model to generate different kind of tracks.

To better simulate the trajectory, we extract some features from the real black

bear GPS dataset(2011-2015). First, we extract the Stop to Stop Probability from

the black bear trajectory:

P (p.next = s|p = s) =
|{p ∈ T |p.next = s, p = s}|

|{p ∈ T |p.next = s, p = s|}|+ |{p ∈ T |p.next = m, p = s}|
(5.1)
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Also, with the raw trajectory, since there is no actual ground truth provided for

the GPS trajectory to label a point is a stop or move, we will use our stop detection

algorithm to get the stops and moves to set up a estimated ground truth. Then, we

calculate the mean speed, mean direction change, direction change standard deviation

and speed standard deviation for stops and moves separately. In this way, we have

two sets of four parameter. Specifically,

Parameters for Movement Model are: Vmove, σVmove , DirChangemove, σDirChangemove ,

Parameters for Stops Model are: Vstop, σVstop , DirChangestop, σDirChangestop ,

5.2 Trajectory Generator Model

5.2.1 State Transit Model

Like we explained above, there are two states in the trajectory: stop, move. In this

section we will define how the generator transit from stop to move or the other way

around. After we set up the amount of POIs that the animal intends to visit, we will

start to simulate move points and stop points with fixed time interval.

First of all, the generator will start to use the movement model to generate points

to approach the first POI. The generator continuously check the distance between

the current point and the POI center position. If dis(p, POI) > POI.radius, the

generator will try to keep move closer to the target POI center. On the other hand,

when the distance between current point and the POI center is less than the POI

radius(dis(p, POI) < POI.radius), it will automatically transit into stops model to

stay around and inside the POI range.
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The base idea for the stops transit model is based on the Markov probability

model. Each time the generator tries to simulate the next point in the stop, we

first check whether the next point should be a stop. If RandomZeroToOne() <

StopToStopProbability, we will start generate the next point as a stop with stop

model. Otherwise, the generator will jump out the current stop and start to use

movement model to move towards the next POI. To ensure the generator can actually

simulate some points at around each POI, we first generate 5 stop points around this

POI with stop model, and start to use Markov probability model to decide whether to

jump to movement model from then on. With this addition condition, the generator

can simulate at least 5 points in each POI for the worst case.

Figure 5.1: Trajectory Simulator Transition Model

The generator keeps generating points until all the POIs in the list have been

visited once, or it reaches the maximum number of points threshold, whichever comes

first.
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The Figure 5.1 shows the state transit model for the wildlife trajectory generator.

It specifies how the stop model jumps to the movement model and how movement

model transits back to the stop model:

5.2.2 Movement Model

The movement model aims at keeping moving closer to the POI center until dis(p, POI) <

POI.radius. To generate the next point in a movement model, we first set up the

distance from current point to the next point, and then come up with the direction

change to calculate the position of the next point.

The distance can be computed by the formula:

dis = N(Vmove, σVmove) ∗ t (5.2)

where t is the Time Interval of an hour(to better fit our real situation), and the speed

of the wildlife from the current point to the next point will be calculated by using

the Gaussian Random with the average speed and standard deviation learned from

the real black bear dataset.

The direction change can be generated by the Gaussian Random function:

dirchange = N(DirChangemove, σDirChangemove) (5.3)

The figure 5.2 below shows an example of generating the next movement point in

the trajectory(we can randomly choose from Pnext and P
′
next):

With the dis and dirchange, using equation 5.4 and 5.5 to find the next point in

the movement model (Ppre = (xp, yp);Pcur = (xc, yc);Pnext = (xn, yn); d2 = dis(Ppre, Pcur); d1 =
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Figure 5.2: Trajectory Simulator Movement Model

dis(Pcur, Pnext);):

d2 ∗ d1 ∗ cos θ = (xn − xc) ∗ (xc − xp) + (yn − yc) ∗ (yc − yp) (5.4)

This is derived from the equation to calculate the angle between two directions in a

2D space.

(xn − xc)
2 + (yn − yc)

2 = d21 (5.5)

Eq (5.4) is derived from the distance equation from the current point to the next

point in a 2D space.

With Eq (5.4) and Eq (5.5), we can get two pairs of (xn, yn) as the result. Then,

we also need to compute the distance from the next point to the POI center to make

sure the next point is closer to the POI than the current point. If one of these
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candidate next points moves closer to the POI, we can select the one as the next. If

all of the two candidate points are valid, we will randomly select one. Otherwise, we

will regenerate a dirchange and dis to compute the next point again.

When the current point is very close to the POI range, it will has very low prob-

ability to get closer. So, when this condition happens, we will randomly choose a

point within the POI range to work as the next point.(This only happens when the

generator has tried 20 times to generate the next point but no one is a closer point

to the POI than current point)

Once the distance from the current point to the center of the POI is less than the

radius of the POI, the generator will jump to the stop model and start to simulate

points around the POI.

5.2.3 Stops Model

The stops model aims at keeping moving around the POI center position, and main-

tain dis(p, POI) < POI.radius until it is ready to jump out to movement model. To

generate the next point in a stop model, we need to make sure that the next point is

still within the range of the POI. We follow the same procedure as generating the next

point in the movement model, however, we will need to add additional conditions to

ensure it stays at the correct region.

To generate the next point with stop model, we still use Gaussian Distribution to

generate dis and dirchange, and follow the same process in the movement model to

generate the next stop point. Figure 5.3 shows how we generate it the next stop:

With Eq (5.4) and Eq (5.5), we can get two points as candidate stop points. Since

the stop points need to stay within the POI range, we will check the distance from

36



Figure 5.3: Trajectory Simulator Stop Model

the point to the POI center. If one of these candidate next points stays in the POI

range, we can select the one as the next. If all of the two candidate points are valid,

we will randomly select one. Otherwise, we will regenerate a dirchange and dis to

compute the next point again.

The generator keeps generating stop points with our stop model until the state

transition model allows it to jump out of the region and start to move towards the

next POI center.
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5.3 Trajectory Generator Example

The generator software is built as a Java desktop application, and currently used for

generating trajectories that are similar to the black bears in Missouri.

Figure 5.4: Trajectory Simulator Main Page

From the main page showed in Figure 5.4, we can start to simulate trajectory

directly or set up the settings accordingly.

If it is possible to obtain parameters from other wildlife animals GPS trajectory,

we are also able to simulate other animals trajectory. Figure 5.5 displays the settings

table that is possible to change to generate trajectory for different purpose.

We created a software to model the trajectory, the figure shows the result of

simulating trajectory. There are five POI places in the plane, and each point (red or
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Figure 5.5: Trajectory Simulator Settings Page

green) can be treated as a GPS point with time interval of half an hour. The red

points are generated by the stop model and labeled as stop point, the green points are

generated by the movement model and labeled as move point. The generator provides

an animation of the movement for generating the whole path. You can start, pause,

stop or reset the board when simulating trajectories. The figure 5.6 below is one of

the sample trajectory simulated by the software.

With the simulated trajectory, we can run our stops detection algorithm it to

39



Figure 5.6: Trajectory Sample Generated by Simulator

test the accuracy of the algorithm. The figure below shows how our stops detection

recognize each point in the trajectory.

The software runs the DDB-SMoT algorithm to mark each point with a ”M” to

present it is recognized as movement or a ”S” with an index to show that it is in a stop

cluster. With these labels showed on the generator board, it is clear to see whether

the point is recognized correctly or not by comparing the label with the color of the

point. Also, these labels for the trajectory points will be used to compare with the

ground truth generated by our generator. The ground truth for each point generated
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Figure 5.7: Experiment Sample Generated by Trajectory Simulator

by stop model is stop, and for the point generated with movement model is move.

After having applied the algorithm, users are welcome to click result button to

show the result of this experiment. Figure 5.8 is one of the sample result extracted

from our experiment:

Based on the real black bear GPS trajectory, we set up the parameters: MinDirChange =

100,MaxDisChange = 500m,MinT ime = 2hours,MaxTol = 4

Each time the software will compare each point’s predicted label with its ground

truth label to check whether it is labeled correctly by our revised DB-SMoT algorithm.
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Figure 5.8: Result Generated by Trajectory Simulator

The generator can calculate:

• Overall Accuracy the percentage of the points that DDB-SMoT algorithm pre-

dicts correctly no matter it is a stop or move point

• Stop Accuracy the percentage of all the stop points generated by generator that

is correctly predicted by the DDB-SMoT algorithm.

• Move Accuracy the percentage of all the move points generated by generator

that is correctly predicted by the DDB-SMoT algorithm.

These three parameters will be used as the main bench marks when evaluating

the performance of the algorithm or computing best fits for parameters in DDB-

SMoT algorithm. These results will be used in our experiment in the next chapter to

compare with other algorithms or evaluate the parameters that best fit our project.
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Chapter 6: Experiment

There are mainly two phases in the semantic enrichment process, so we test these two

phases one by one. For the stops detection phase, we built a wild animal trajectory

generator based on the parameter from the real wildlife GPS trajectory. Also, we

have planned to test the semantic enrichment phase on the real bear data collected

from Missouri Department of Conservation, however, there are no database existed

to get the POI information for wildlife. Meanwhile, it is really difficult to get the

ground truth of the activity the wild animal performed. That verification of semantic

enrichment will leave as future work.

In the next two sections, we will provide the experiment made for stop detection

algorithm and semantic enrichment process.

6.1 DDB-SMoT Performance Evaluation

The animal trajectory generator is the main tool we used to test our revised stop

detection algorithm DDB-SMoT. The features we used to form the model is extracted

from the Missouri black bear GPS data provided by the MDC (Missouri Department

of Conservation). the data records the GPS location of 80 bears mainly from 2011 to

2015 with more than 100000 points. With parameters learned from this real dataset

applied on the trajectory generator which has been illustrated in the last chapter,

we generated GPS trajectories that are similar to the real Black Bear trajectory. To

evaluate the performance of DDB-SMoT, we will compare the accuracy of the result

from DDB-SMoT with the result from the original DB-SMoT algorithm. In addition,
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we will explain the impact for each parameter in DDB-SMoT algorithm to find the

parameters that best fits our dataset.

Different wild animal trajectories has different features, we cannot use the same

parameters to monitor the trajectory, nor can we use the same parameters in the

stops detection algorithm to predict the stops and moves in it. With the black bear

trajectory generator, we try with a different set of parameters to understand how

parameter affects our prediction result and to come up with a valid set of parameters

that fits with these kind of animal trajectory to come up with the accuracy of DDB-

SMoT algorithm. There are three main parameters that affects the outcome of DDB-

SMoT: MaxTol, MinDirChange, MaxDisChange

First, we analyze the MaxTol parameter in our algorithm:

We tested different MaxTol values while the other parameters remain the same.

Typically, the MaxTol should be an integer between 0 and 10. When the MaxTol

is too low, we have a very low level of acceptance on the points that are not a cluster

candidate point, and this makes total accuracy and the stop point accuracy very

low. Because even inside a stop cluster, we cannot guarantee that every point is a

valid cluster candidate point. On the other hand, when the MaxTol is too high, our

movement point accuracy starts to drop. Since we accept too many invalid cluster

candidate point, lots of movement point will be included into the stop cluster, which

is probably even worse than setting the MaxTol to a very low value. Because if

we use this set of parameters in the real application, it will give us stops that may

contain multiple stops inside a single stop cluster.

Through experiments with MinDirChange = 100 and MaxDisChange = 100,

the result in Figure 6.1 suggests that we should choose a MaxTol valuethat is larger
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Figure 6.1: MaxTol Experiment of DDB-SMoT

than 3. The result will not vary much if we choose a MaxTol that is larger than 3.

Second, we try to get a suitable MinDirChange for our project. To test a

proper MinDirChange for the stops detection algorithm, we also try with differ-

ent ranges of MinDirChange threshold. The figure 6.2 shows the result of using

different MinDirChange threshold with MaxTol = 4 and MaxDisChange = 100.

Clearly, when the direction change threshold is set too low, we will not have a high

accuracy of stop cluster prediction because stop points inter mingle with movement

points. Once the threshold is set too low, movement points may also become valid

cluster candidate points to be added into a stop cluster which largely affects the
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Figure 6.2: MinDirChange Experiment of DDB-SMoT

accuracy of the algorithm. Also, when the MinDirChange threshold is set too high,

there is no difference between the stop points and the movement points, the algorithm

will treat almost each point as a movement point. So, the movement points correct

percentage is almost 100%, while the correctness of stop points is very low. From

the above figure, it suggests us to choose a proper value between 80 to 120 for the

correctness of stop points, move points and all the points are in a relatively high

range.

Third, since the threshold for the distance is also a key factor affecting the accuracy

of the algorithm, we also need to check its validity and how it affects the accuracy.
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The extreme case is that we set this MaxDisChange as high as possible, and our

algorithm becomes the DB-SMoT algorithm since it will not filter out any points

based on the distance threshold. In the real world applications, we will need to try

to learn this parameter from the GPS sample data through the speed of stop clusters

and speed of movement. Figure 6.3 is the result of this experiment.

Figure 6.3: MaxDisChange Experiment of DDB-SMoT

In the trajectory generator, we output a plaint that each unit corresponds to 5

meters in the real world. and we test the different MaxDisChange value based on

the unit with MaxTol = 4 and MinDirChange = 100. The small MaxDis will
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filter out too much stop points, while the large MaxDisChange will lose its ability

of filtering. Through continuous experimenting, we find out that 100 should be a

relatively good fit for our algorithm on the black bear GPS data.

Finally, to compare the DB-SMoT algorithm with the revised algorithm, We apply

the DB-SMoT algorithm on the trajectories generated by our trajectory generator,

and then apply our revised DB-SMoT algorithm to compare their accuracy. Table

6.1 is the result produced by these two algorithms:

Algorithm Name Overall Accuracy Stop Accuracy Move Accuracy
DB-SMoT 88.73% 91.44% 78.14%

DDB-SMoT 91.18% 90.09% 93.40%

Table 6.1: DDB-SMoT vs. DB-SMoT (MaxTol = 4;MinDirChange =
100;MaxDisChange = 100)

We use the same value forMaxTol,MinDC in both algorithms that we have found

to be a suitable value for black bear trajectory. From the table 6.1, with DB-SMoT

algorithm, we can obtain much higher stop accuracy if we sacrifice the movement

points’ accuracy. In the real world, we actually do not want the movement points to

be that low, because once a movement point is labeled as a stop, it will largely affect

the stop position (the center of the stop). However, if a stop point is recognized as a

movement point, it will not have much of the effects on the stop center position. Since

the semantic enrichment algorithm is based on stop representative position, we do

want both the move points and stop points to be detected properly in order to come

out with a more accurate stop representative point. From the above explanation,

we can understand that the revised DB-SMoT algorithm is more suitable to our

trajectory situation.
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6.2 Semantic Enrichment Experiment

We have also created a web application to show the result we got from the semantic

enrichment desktop application. Though we don’t have any accuracy data right now

to prove the correctness of our algorithm on wild animals, it can be used as a reference

to give future suggestions about where the interesting places are. Once we are able

to get the geographical data with related activity, we can then provide accuracy and

real predictions for black bears.

Figure 6.4: Sample Black Bear Raw Trajectory

Although we cannot directly come up with the accuracy of black bear activity

performed on the trajectory, we do provide a way to understand the process of our

algorithm. The web application provides a platform for users to at least visualize the

process we are doing for the semantic analysis.

Figure 6.4 is the Google Map on web page showing the sample raw GPS trajectory
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from real black bear GPS data. It is a single bear trajectory collected with time

interval around an hour.

After the stop detection, we only keep the stop points. Compared with the raw

trajectory, we get fewer GPS points there from the figure 6.5. And those points

represents the key area that the bear stays, and will be used for activity identification:

Figure 6.5: Sample Black Bear Raw Trajectory Stop Detection Result

Also, we mark each stop point with the stop cluster index just like the example

in Figure 6.6(b). From the explanation about the semantic enrichment algorithm in

Chapter 4, we are using a stop representative to match up with a set of potential

POIs. At this point, we use the center position of all stop points that has the same

stop index to represent the stop.

Since we are not able to obtain the rich POI dataset currently, we use some

fabricate data with position and category information to associate each stop center

with a most probable POI to infer the activity. The activity list contains Drinking,
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(a) Part of sample raw GPS trajectory (b) Stop detection result with stop index

Figure 6.6: DDB-SMoT(MaxTol : 4;MinDC : 100;MaxDS : 100)

Eating, Fishing, Mating, Resting, Breeding, Hibernating, Visiting(Family). Figure

6.7 is the final result of our semantic enrichment process:

(a) Semantic Enrichment Result (b) Meanings for Semantic Enrichment Result

Figure 6.7: Revised DB-SMoT(MaxTol : 4;MinDC : 100;MaxDS : 100)

From the result, we are able to get the information of the probability of performing

activity and the POI places that are possible. The website also provides the semantic

enrichment process for deer in Missouri. The deer GPS data is also provided by

the MDC (Missouri Department of Conservation). Although we do not have a rich

POI dataset to predict the activity performed at each stop, we can provide position

information that may related to some POI places for future researchers to form the

POIs for specific animals. The stop representative positions calculated for bears or

deer can be treated as a reference for people to find POIs. Once the POI dataset is

accessible to us, we can use it as input to perform activity inference with our software.
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Chapter 7: Summary

In this project, we implemented a software tool to automatically infer the activities

of wild animals during their movement when tracked by GPS devices. This problem

is particularly important since we aim at semantically enriching raw GPS trajectories

with more meaningful information that can be useful in various fields such as wild

animal protection and wild animal population control. The approach we take is to

first detect the stop points in the raw trajectory where animals stopped to perform

activities and match the stops to the possible POIs they visited. With the POI

category and activity mapping, we can then find the most probable POI category

to infer the corresponding activity. We have also created a web application using

intermediate results to visualize the outcome of each step in the semantic enrichment

process. Due to the lack of actual POI data and real labeled data with ground truth,

we are not able to come up with the real prediction for the wildlife animal trajectory.

However, if we have access to this data in the future, we will be able to directly give

predictions for animal activity performed in the trajectory using our software tool

and visualize it on the website.

Also, to provide higher accuracy of stops detection results for semantic analysis,

we developed DDB-SMoT algorithm based on DB-SMoT that is used in the semantic

enrichment algorithm. It uses the direction change and distance change as the main

threshold when selecting candidate clustering points, with the time duration threshold

to filter out stops that stays too short. The algorithm is still an O(n) time complexity

algorithm, and is more accurate than DB-SMoT algorithm when dealing with our wild

animal dataset. DDB-SMoT algorithm shows over 90% accuracy on labeling all the
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stop points and movement points when test with our wildlife trajectory generator,

while DB-SMoT algorithm only has less than 80% accuracy for movement points and

around 90% accuracy for stop points.

To verify DDB-SMoT algorithm, it is necessary to find the wild animal trajec-

tory dataset with each point labeled as stop or movement to gain the ground truth.

However, we do not have access to this kind of dataset. Instead, we build software to

generate trajectories similar to real black bear real trajectories with stop and move

models to verify our algorithm. The software can be widely used for other animals

trajectories given a different set of parameters extracted from other animals GPS

tracks.

Currently, with DDB-SMoT algorithm and semantic enrichment software, we are

ready to make real predictions once we can get a rich POI dataset for wild animals.

Several remaining issues are the objectives of current and future works. First, as we

already discussed, the lack of rich POI datasets is a major problem. Therefore, we

are investigating the possibility of integrating more detailed POIs datasets for wildlife

animals. We may also need to build this kind of dataset on our own. Secondly, we

want to better define the mapping between POI categories and activities. For wild

animals, there may be another kind of attractiveness except the POIs, for example,

female animal may be attractive to the male animals. As a result, the social network

of animals could be another aspect that we need to take into consideration. We will

refine the algorithm and model to produce better result in the future.
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