

Development of Survey Visualization and Advanced Integrated Data Analysis in TigerAware

By: Rui Huang

Advisor: Dr. Yi Shang

Committee: Dr. Yunxin Zhao, Dr. Tim Trull

Outline

- Introduction
- Related Work
- Design & Implementation
- Demos
- Contribution & Future Work

Outline

- Introduction
 - Existing TigerAware Platform
 - Two Improvements
- Related Work
- Design & Implementation
- Results
- Conclusion & Future Work

Introduction

- Researchers across any discipline can follow these six steps to conduct effective survey
 - Define the problem
 - Design the research
 - Design survey questions
 - Deploy Survey
 - Analyze User Responses
 - Write the research report and present its findings

TigerAware Platform

data collection & analysis system

- survey data
 - question responses
- device sensor data
 - GPS
- external sensor data
 - bluetooth breathalyzer

TigerAware System Architecture

Researchers' point of view

Two Improvements in This Project

- Survey Visualization Component
 - interactive
 - exportable
 - intuitive
- Data Analysis Component
 - integrated
 - basic statistics
 - advanced analysis, e.g. Computer Vision & NLP

Outline

- Introduction
- Related Work
- Design & Implementation
- Results
- Conclusion & Future Work

Related Work

- Rogers et al, "Deep Learning at Your Fingertips", CCNC, 2019
 - all-in-one survey creation, data collection, and data analysis system
 - support both typical statistics(e.g. mean, mode) and advanced deep-learning based analysis(e.g. emotion recognition)

Related Work

• Morrison et al, "An Innovative Mobile Survey and

Sensor Data Collection and Analytics System", IEEE, 2018

- Design architecture and implement TigerAware system
- Demonstrate usability of TigerAware system by a number of real world study(e.g. google Assistant Based Diabetes Self Management Study, Driving After Drinking Alcohol Study)

Related Work

- Tutte, "How to Draw a Graph", *Proceedings* of the London Mathematical Society, 1962
 - propose an algorithm to find planar embedding for planar graph
 - nodes' position can be determined uniquely as the solution to a system of linear equations

OUTLINE

- Introduction
- Related Work
- Design & Implementation
 - Survey Visualization
 - Data Analysis
- Results
- Conclusion

Survey Example

Question Label Question 2								
Question								
Which do you prefer?								
Subtitle								
Question Type								
Multiple Choice		۲						
SELECT OPTIONS								
Check all that apply:	No Yes							
Meat	Select a quesiton							
	Main Survey	-						
Veggies	Which do you prefer?							

question detail

survey overview

Survey Visualization Motivation

- issues of creating survey
 - error-prone
 - hard to locate error
 - nonintuitive

survey without visualization

¥

Visualization Design

Single web page in the TigerAware Dashboard

- survey structure represented as directed graph
- question represented as node
- branches represented as directed edge

Visualization Design

- Visualize
 - D3 visualization framework
- Format Converter
 - data format is non-compatible
- Planar Algorithm
 - D3 don't provide planar embedding, need to be implemented in this project
- Export Survey
 - export graphs as PDF files

Visualization Framework(D3)

D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG, and CSS.

D3 supports force-directed layout, which highly meets the requirements of displaying surveys as directed graphs

Format Converter

Data Formats not compatible

- TigerAware Data Format
 - questions are stored as JSON object
 - questions connected to each other through pointer
- D3 Data Format
 - questions set
 - edge set
- Adaptor is implemented to convert format

Planar Graph & Embedding

Planar Graph: graph theory, a planar graph is a graph that can be drawn on the plane in such a way that its edges intersect only at their endpoints.

Planar Embedding: such a drawing that no edges cross each other

Kuratowski's and Wagner's theorems

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph K_5 or the complete bipartite graph K_{33} (utility graph) A subdivision of a graph results from inserting vertices into edges (for example, changing an edge •——• to •—•—•) zero or more times

An example of a graph with no K_5 or $K_{3,3}$ subgraph. However, it contains a subdivision of $K_{3,3}$ and is therefore non-planar.

Tutte's Planar Algorithm

Step 1: fix at least three nodes randomly

Step 2: create an adjacency matrix L with element Lij = 1/deg(i) for an edge between node i and j

Step 3: generate matrix L' by zero out the rows that already positioned, then create matrix A by subtracting L' from Identity matrix

Step 4: solve the linear system Ax = bx for x coordinates, where bx is a column vector containing x coordinates for fixed nodes, and 0 for non-fixed nodes.

Step 5 : solve the linear system Ay = by for y coordinates, where by is a column vector containing y coordinates for fixed nodes, and 0 for non-fixed nodes

Tutte's Planar Algorithm Example

step 5: solution for Y

step 4: solution for X

step 3: calculate A matrix

Tutte's Planar Algorithm Example

7	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	(_{7,} y ₇))/3
~	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$	$(_{8}, y_{8}))/3$

Tutte's Planar Algorithm Complexity

- Time Complexity
 - O(V³) solving linear system using LU Decomposion
- space complexity
 - O(V²) saving matrix

Visualization Result

Non-Planar Embedding by D3

Tutte's Planar Embedding

Export Graph as PDF

• Front End

- user interface
- send request
- prompt download notification
- Back End
 - Node.js(Express) server
 - Librsvg convert graph to PDF
 - Return PDF to front end

OUTLINE

- Introduction
- Related Work
- Design & Implementation
 - Survey Visualization
 - Data Analysis
- Results
- Conclusion

Data Analysis Motivation

- TigerAware lacks ability to provide analysis
 - statistics function not supported(e.g. distribution)
 - advanced analysis function not supported(e.g. NLP)
 - difficult for researcher to draw conclusion
- third-party analytics software is expensive
 - Tableau, Zoho Analytics

Data Analysis System

- Presentation Component
 - analysis page in TigerAware
- Analysis Engine
 - typical statistics
 - natural language process
 - computer vision
- Data Storage
 - hold survey data

Presentation Component Design

- A single web page in TigerAware Dashboard
- Designed to configure analysis parameters
 - platform, participant, and method.
- Communicate with business layer through HTTP

TigerAware					Surveys	Create	Logout
	A	nalysis \	liew			T.	Export Survey
Global Analysis	Question 1	•	Question 2		Method	•	Show Result
Global Choice	Platform	-	Participant	•	Method	<u>.</u>	Show Result
class: Which class are you participating in this study through?	Platform TigerAware	-	Participant All Participant	*	Method Get Distribution	*	Hide Result
	1	2	D				
		¥					

Presentation Component Implementation

- Data Access function
 - o fetch survey data
 - interact with firebase through AngularFireDataBase
- Visualization
 - display questions, results
 - support pie chart, clock, word cloud, image,text
- Parameters Setting Module
 - initialize analysis parameters

Analysis Engine

- Provide analysis services
 - TigerAware service
 - Microsoft Azure Cognitive service
 - Google Cloud AI service
- Expose service through API
 - o individual analysis API
 - group analysis API
 - export survey & response API

Business Layer Architecture

Analysis Engine - (1) TigerAware Service

Provide in-house analysis service

- word cloud
 - generate word cloud for free-text response
 - filter stop words, stemming
- response distribution
 - distribution for multiple choice question
- export survey & response
 - \circ $\,$ export survey and response as CSV file

Analysis Engine - (2) Microsoft Service

- functions supported by Microsoft
- computer vision
 - emotion detection, image classification, landmark & celebrity detection, etc.
- natural language process
 - sentiment analysis, key phrase extraction, etc.

functions implemented in this project

- computer vision
 - \circ emotion detection

- natural language process
 - sentiment analysis

Analysis Engine - (3) Google Service

functions supported by Google

- computer vision
 - emotion detection, label detection, landmark detection, text extraction, logo detection, etc.

• natural language process

 sentiment analysis, content classification, entity analysis, syntax analysis, etc.

functions implemented in this project

- computer vision
 - emotion detection, label detection, landmark detection, text extraction, logo detection, etc.
- natural language process
 - sentiment analysis

Data Storage

- Firebase realtime database is used in this project
 - Data is synchronized in realtime to every connected client
- survey is organized as a Json object
 - blueprints
 - o data
 - users
 - etc

Demos

Survey Visualization Demo

TigerAware Service Demo

Demos

Google Cloud Al Service Demo

Microsoft Azure Cognitive Service Demo

Outline

- Introduction
- Related Work
- Data Overview
- Design & Implementation
- Demos
- Contribution & Future Work

Contribution

• Visualization component implemented in this project has better performance than state-of-the-art library D3

 Data analysis component provides both typical statistics function(e.g. distribution) and advanced analysis(e.g. sentiment analysis, emotion detection) for TigerAware System

Future Work

• For data analysis component, currently only pie chart is supported, more charts can be supported in future

For in-house tigeraware service, more functions(e.g. sentiment analysis, emotion detection) need be implemented

Thank You!

Questions?

