Development of Survey Visualization and Advanced Integrated Data Analysis in TigerAware

By: Rui Huang

Advisor: Dr. Yi Shang

Committee: Dr. Yunxin Zhao, Dr. Tim Trull
Outline

• Introduction
• Related Work
• Design & Implementation
• Demos
• Contribution & Future Work
Outline

- Introduction
 - Existing TigerAware Platform
 - Two Improvements
- Related Work
- Design & Implementation
- Results
- Conclusion & Future Work
Introduction

• Researchers across any discipline can follow these six steps to conduct effective survey
 – Define the problem
 – Design the research
 – Design survey questions
 – Deploy Survey
 – Analyze User Responses
 – Write the research report and present its findings

TigerAware Platform
TigerAware Platform

data collection & analysis system

• survey data
 – question responses

• device sensor data
 – GPS

• external sensor data
 – bluetooth breathalyzer
Researchers’ point of view

[Image of a web-based survey analysis system]

Survey Analysis
A University of Missouri Campus Survey System

[Table with survey items]

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
<th>Type</th>
<th>Delete</th>
<th>Edit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pregnancies</td>
<td>How many times have you been pregnant?</td>
<td>MultipleChoice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>Please fill in your plasma glucose concentration in an 2 hour oral glucose tolerance test.</td>
<td>textField</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BloodPressure</td>
<td>What is your blood pressure(mm Hg)?</td>
<td>textField</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Survey interface]

Diabetes

- Participants: 1
- Days complete: 0
- Surveys complete: 29

Compliance
- Missed surveys: 0
- Avg compliance:

[Graph of survey progress]

How many times have you been pregnant?

- 0
- 1-3
- 4-6
- Over 7
Two Improvements in This Project

• Survey Visualization Component
 – interactive
 – exportable
 – intuitive

• Data Analysis Component
 – integrated
 – basic statistics
 – advanced analysis, e.g. Computer Vision & NLP
Outline

- Introduction
- Related Work
- Design & Implementation
- Results
- Conclusion & Future Work
Related Work

- Rogers et al, “Deep Learning at Your Fingertips”, CCNC, 2019
 - all-in-one survey creation, data collection, and data analysis system
 - support both typical statistics (e.g. mean, mode) and advanced deep-learning based analysis (e.g. emotion recognition)
Related Work

• Morrison et al, “An Innovative Mobile Survey and Sensor Data Collection and Analytics System”, IEEE, 2018
 – Design architecture and implement TigerAware system
 – Demonstrate usability of TigerAware system by a number of real world study (e.g. google Assistant Based Diabetes Self Management Study, Driving After Drinking Alcohol Study)
Related Work

• Tutte, “How to Draw a Graph”, *Proceedings of the London Mathematical Society*, 1962
 - propose an algorithm to find planar embedding for planar graph
 - nodes’ position can be determined uniquely as the solution to a system of linear equations
OUTLINE

• Introduction
• Related Work
• Design & Implementation
 – Survey Visualization
 – Data Analysis
• Results
• Conclusion
Survey Visualization Motivation

- issues of creating survey
 - error-prone
 - hard to locate error
 - nonintuitive

survey without visualization
survey with visualization
Visualization Design

Single web page in the TigerAware Dashboard

- survey structure represented as directed graph
- question represented as node
- branches represented as directed edge
Visualization Design

- Visualize
 - D3 visualization framework

- Format Converter
 - data format is non-compatible

- Planar Algorithm
 - D3 don’t provide planar embedding, need to be implemented in this project

- Export Survey
 - export graphs as PDF files
Visualization Framework (D3)

D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG, and CSS.

D3 supports force-directed layout, which highly meets the requirements of displaying surveys as directed graphs.
Format Converter

Data Formats not compatible

- TigerAware Data Format
 - questions are stored as JSON object
 - questions connected to each other through pointer

- D3 Data Format
 - questions set
 - edge set

- Adaptor is implemented to convert format
Planar Graph & Embedding

Planar Graph: graph theory, a planar graph is a graph that can be drawn on the plane in such a way that its edges intersect only at their endpoints.

Planar Embedding: such a drawing that no edges cross each other.
A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph K_5 or the complete bipartite graph $K_{3,3}$ (utility graph).

A subdivision of a graph results from inserting vertices into edges (for example, changing an edge $\bullet—\bullet$ to $\bullet—\bullet—\bullet$) zero or more times.

An example of a graph with no K_5 or $K_{3,3}$ subgraph. However, it contains a subdivision of $K_{3,3}$ and is therefore non-planar.
Tutte’s Planar Algorithm

Step 1: fix at least three nodes randomly

Step 2: create an adjacency matrix L with element $L_{ij} = 1/\deg(i)$ for an edge between node i and j

Step 3: generate matrix L' by zero out the rows that already positioned, then create matrix A by subtracting L' from Identity matrix

Step 4: solve the linear system $Ax = bx$ for x coordinates, where bx is a column vector containing x coordinates for fixed nodes, and 0 for non-fixed nodes.

Step 5: solve the linear system $Ay = by$ for y coordinates, where by is a column vector containing y coordinates for fixed nodes, and 0 for non-fixed nodes
Tutte’s Planar Algorithm Example

step 1: fix four nodes

step 2: create L matrix

step 3: calculate A matrix

step 4: solution for X

step 5: solution for Y
Tutte’s Planar Algorithm Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
\end{bmatrix}
\]

\[
x_1, y_1 = (0,0), \quad x_2, y_2 = (1,0) \\
x_3, y_3 = (0,1), \quad x_4, y_4 = (1,1) \\
x_5, y_5 = ((x_1, y_1) + (x_6, y_6) + (x_7, y_7))/3 \\
x_6, y_6 = ((x_2, y_2) + (x_5, y_5) + (x_8, y_8))/3 \\
x_7, y_7 = ((x_3, y_3) + (x_5, y_5) + (x_8, y_8))/3 \\
x_8, y_8 = ((x_4, y_4) + (x_6, y_6) + (x_7, y_7))/3
\]
Tutte’s Planar Algorithm Complexity

• Time Complexity
 – $O(V^3)$ solving linear system using LU Decomposition

• space complexity
 – $O(V^2)$ saving matrix
Visualization Result

Non-Planar Embedding by D3

Tutte’s Planar Embedding
Export Graph as PDF

- Front End
 - user interface
 - send request
 - prompt download notification

- Back End
 - Node.js(Express) server
 - Librsvg convert graph to PDF
 - Return PDF to front end
OUTLINE

• Introduction
• Related Work
• Design & Implementation
 – Survey Visualization
 – Data Analysis
• Results
• Conclusion
Data Analysis Motivation

• TigerAware lacks ability to provide analysis
 – statistics function not supported (e.g. distribution)
 – advanced analysis function not supported (e.g. NLP)
 – difficult for researcher to draw conclusion

• third-party analytics software is expensive
 – Tableau, Zoho Analytics
Data Analysis System

● Presentation Component
 ○ analysis page in TigerAware

● Analysis Engine
 ○ typical statistics
 ○ natural language process
 ○ computer vision

● Data Storage
 ○ hold survey data
Presentation Component Design

- A single web page in TigerAware Dashboard
- Designed to configure analysis parameters
 - platform, participant, and method.
- Communicate with business layer through HTTP

<table>
<thead>
<tr>
<th>TigerAware</th>
<th>Surveys</th>
<th>Create</th>
<th>Logout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Analysis</td>
<td>Question 1</td>
<td>Question 2</td>
<td>Method</td>
</tr>
<tr>
<td>Global Choice</td>
<td>Platform</td>
<td>Participant</td>
<td>Method</td>
</tr>
</tbody>
</table>

- class: Which class are you participating in this study through? TigerAware

- 2

- 0
Presentation Component Implementation

- Data Access function
 - fetch survey data
 - interact with firebase through AngularFireDataBase

- Visualization
 - display questions, results
 - support pie chart, clock, word cloud, image, text

- Parameters Setting Module
 - initialize analysis parameters
Analysis Engine

- Provide analysis services
 - TigerAware service
 - Microsoft Azure Cognitive service
 - Google Cloud AI service

- Expose service through API
 - individual analysis API
 - group analysis API
 - export survey & response API
Analysis Engine - (1) TigerAware Service

Provide in-house analysis service

- word cloud
 - generate word cloud for free-text response
 - filter stop words, stemming

- response distribution
 - distribution for multiple choice question

- export survey & response
 - export survey and response as CSV file
Analysis Engine - (2) Microsoft Service

functions supported by Microsoft

- computer vision
 - emotion detection, image classification, landmark & celebrity detection, etc.
- natural language process
 - sentiment analysis, key phrase extraction, etc.

functions implemented in this project

- computer vision
 - emotion detection
- natural language process
 - sentiment analysis
Analysis Engine - (3) Google Service

functions supported by Google

- computer vision
 - emotion detection, label detection, landmark detection, text extraction, logo detection, etc.
- natural language process
 - sentiment analysis, content classification, entity analysis, syntax analysis, etc.

functions implemented in this project

- computer vision
 - emotion detection, label detection, landmark detection, text extraction, logo detection, etc.
- natural language process
 - sentiment analysis
Data Storage

- Firebase realtime database is used in this project
 - Data is synchronized in realtime to every connected client
- Survey is organized as a Json object
 - blueprints
 - data
 - users
 - etc
Demos

Survey Visualization Demo

TigerAware Service Demo
Demos

Google Cloud AI Service Demo

Microsoft Azure Cognitive Service Demo
Outline

• Introduction
• Related Work
• Data Overview
• Design & Implementation
• Demos
• Contribution & Future Work
Contribution

- Visualization component implemented in this project has better performance than state-of-the-art library D3

- Data analysis component provides both typical statistics function (e.g. distribution) and advanced analysis (e.g. sentiment analysis, emotion detection) for TigerAware System
Future Work

• For data analysis component, currently only pie chart is supported, more charts can be supported in future

• For in-house tigeraware service, more functions(e.g. sentiment analysis, emotion detection) need be implemented
Thank You!
Questions?