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ABSTRACT 

 

With the widespread usage of many different types of sensors in recent years, large 

amounts of diverse and complex sensor data have been generated and analyzed to extract 

useful information. This dissertation focuses on two types of data: aerial images and 

physiological sensor data. Several new methods have been proposed based on deep 

learning techniques to advance the state-of-the-art in analyzing these data. For aerial 

images, a new method for designing effective loss functions for training deep neural 

networks for object detection, called adaptive salience biased loss (ASBL), has been 

proposed. In addition, several state-of-the-art deep neural network models for object 

detection, including RetinaNet, UNet, Yolo, etc., have been adapted and modified to 

achieve improved performance on a new set of real-world aerial images for bird detection. 

For physiological sensor data, a deep learning method for alcohol usage detection, called 

Deep ADA,  has been proposed to improve the automatic detection of alcohol usage (ADA) 

system, which is statistical data analysis pipeline to detect drinking episodes based on 

wearable physiological sensor data collected from real subjects. 

Object detection in aerial images remains a challenging problem due to low image 

resolutions, complex backgrounds, and variations of sizes and orientations of objects in 

images. The new ASBL method has been designed for training deep neural network object 

detectors to achieve improved performance. ASBL can be implemented at the image level, 

which is called image-based ASBL, or at the anchor level, which is called anchor-based 

ASBL. The method computes saliency information of input images and anchors generated 
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by deep neural network object detectors, and weights different training examples and 

anchors differently based on their corresponding saliency measurements. It gives complex 

images and difficult targets more weights during training. In our experiments using two of 

the largest public benchmark data sets of aerial images, DOTA and NWPU VHR-10, the 

existing RetinaNet was trained using ASBL to generate an one-stage detector, ASBL-

RetinaNet. ASBL-RetinaNet significantly outperformed the original RetinaNet by 3.61 

mAP and 12.5 mAP on the two data sets, respectively. In addition, ASBL-RetinaNet 

outperformed 10 other state-of-art object detection methods.  

To improve bird detection in aerial images, the Little Birds in Aerial Imagery 

(LBAI) dataset has been created from real-life aerial imagery data. LBAI contains various 

flocks and species of birds that are small in size, ranging from 10 by 10 pixel to 40 by 40 

pixel. The dataset was labeled and further divided into two subsets, Easy and Hard, based 

on the complex of background. We have applied and improved some of the best deep 

learning models to LBAI images, including object detection techniques, such as YOLOv3, 

SSD, and RetinaNet, and semantic segmentation techniques, such as U-Net and Mask R-

CNN. Experimental results show that RetinaNet performed the best overall, outperforming 

other models by 1.4 and 4.9 F1 scores on the Easy and Hard LBAI dataset, respectively.  

For physiological sensor data analysis,  Deep ADA has been developed to extract 

features from physiological signals and predict alcohol usage of real subjects in their daily 

lives. The features extracted are using Convolutional Neural Networks without any human 

intervention. A large amount of unlabeled data has been used in an unsupervised learning 

matter to improve the quality of learned features. The method outperformed traditional 

feature extraction methods by up to 19% higher accuracy.
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1. INTRODUCTION 

 Nowadays, sensor data analysis has been researched by computer scientists for 

many years. Based on different types of sensor data, variety of data mining and pattern 

recognition algorithm are developed in computer science domain. However, due to the 

specific character of physiological data and remote sensor data, both domains are still 

challenging. For instance, the noisy information and low sample rate are included in the 

physiological data and make analyze much harder using traditional method. In addition, in 

terms of remote sensor data, the scale and angle of object varies much more than the 

conventional objects in natural images. With the power of machine learning and deep 

learning in recent year, analyze for physiological data and remote sensor data with good 

performance are much more promising. In this dissertation, based on the problem of 

physiological data and remote sensor data, different types of data mining techniques, like 

ADA, are proposed to explore the world of sensor data, and novel machine learning 

algorithm, like Deep ADA, and Adaptive Saliency Biased Loss (ASBL) has been proposed 

for each domain.  

1.1  Object detection using deep learning in aerial images 

In recent years, deep neural networks have achieved huge success in many areas of 

computer vision, such as image classification, object detection, and remote sensing. With 

the development and success of DNNs, deep learning has been applied to various sensor 

data domains in the past several years, such as bio-sensors and remote sensing. Although 

the past decade has brought many advances in object detection, it remains a challenging 
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problem in aerial images. Sensor data have some unique features, different from 

conventional object detection datasets. For example, aerial images are different from 

conventional image in the following ways: (1) Objects in aerial images often appear with 

arbitrary orientations. (2) The scale variations of objects in aerial images are much larger 

than those in conventional images, and many small objects are crowed together in aerial 

images. (3) The backgrounds of some aerial images are uniform and simple, while others 

have complex backgrounds. These characteristics make object detection in aerial images a 

challenging problem. To improve recognition accuracy, in recent years, rotated box-based 

and multi-scale-based DNNs [22] have been proposed to address the first two issues. 

However, these networks are mostly complicated with many parameters, which leads to 

slow inference speed. Existing deep neural networks for object detection in computer 

vision can be classified as one-stage or two stage detectors. Two-stage detectors consist of 

a detection network to generate region proposals, followed by a classification network to 

recognize the object in each proposed region. In the first stage, a neural network, such as 

RCNN, is used to generate the potential location of each target object; In the second stage, 

another neural network determines whether each candidate location contains a target object 

or not. In comparison, one-stage localization and recognition in one shot. Examples include 

YOLO, SSD, and RetinaNet. One-stage detectors are usually simpler and faster than two-

stage detectors, while achieving similar accuracy. For example, one-stage detector 

RetinaNet outperformed one of the best two-stage detectors, Faster RCNN, with a 4.0 mAP 

improvement on the COCO dataset [17]. In terms of object detection on aerial images, 

inference speed is a critical evaluation metric so that our work focus on developing 
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algorithm on one-stage detector. For object detection in aerial images in real time, one-

stage detectors, such as YOLO, SSD and RetinaNet, have the speed advantage. 

1.2  Ambulatory assessment analysis 

Currently, most methods in clinical psychology research primarily rely on 

questionnaires and interviews with examiners in the lab setting. With the rapid 

development of mobile technologies, a new promising solution is a mobile ambulatory 

assessment system with real-time data monitoring and collection of real-life subject 

behavioral and psychology data, as well as physiological data. Ambulatory assessment is 

the use of field methods to evaluate subjects in natural or unconstrained environments. 

By combining information about the external environment, and participants’ 

physiological and mental states, collected through system-generated and self-report 

surveys, machine learning models can be developed to identify changes in mood, alcohol 

use and/or craving, as well as other psychological problems. This same information can 

also be applied to context aware applications. In context aware computing, context is 

information that can be used to describe the state of something that is relevant to a user’s 

interaction with an application. Combining methodology from psychophysiological field 

research with body area wireless sensor networks and mobile devices can improve context 

aware computing.  

1.3  Contributions 

This dissertation makes the following contributions: 

1. A new Adaptive saliency Biased Loss (ASBL) method has been proposed for 

training deep neural networks, which is defined based on adaptive saliency 
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information of the input image. ASBL can be implemented at the image level, 

which is called image-based ASBL, and at the anchor level, which is called 

anchor-based ASBL. They use complexity information of input images to 

weigh the inputs differently in training. Without loss of generality, the ASBL 

approach was applied to RetinaNet to show its effectiveness. Using two large 

benchmark datasets, DOTA and NWPU VHR-10, experimental results show 

that ASBL-RetinaNet outperformed existing state-of-the-art deep learning 

methods, with at least 6.4 mAP improvement on DOTA, and 2.19 mAP on 

NWPU VHR-10. Furthermore, ASBL-RetinaNet improved over the original 

RetinaNet by 3.61 mAP on DOTA and 12.5 mAP on NWPU VHR-10.  

2. Improved deep learning models have been developed for a new bird detection 

dataset of aerial images, Little Birds in Aerial Imagery (LBAI). The dataset was 

created from real-life aerial imagery. Some of the best deep learning 

architectures have been applied and improved on LBAI, which include object 

detection techniques such as YOLOv3, SSD, and RetinaNet, and small instance 

segmentation techniques such as U-Net and Mask R-CNN. Experimental results 

show that RetinaNet performed the best, outperforming other models by 1.4 and 

4.9 F1 scores on the Easy and Hard subsets of LBAI, respectively.  

3. A new data analysis pipeline for detecting alcohol usage based on wearable 

psychological sensor data, called ADA (Automatic Detection of Alcohol), has 

been developed.  A new deep learning method, called Deep ADA, has been 

developed for extracting features from psychological signals to predict alcohol 

usage of real subjects in their daily lives. Deep ADA uses a large amount of 
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unlabeled data in unsupervised learning to enhance the learned features. It 

outperformed traditional feature extraction methods by improving detection 

accuracy by up to 19%. 

1.4  Dissertation Organization 

The rest of the thesis is organized as follows: 

1. Chapter 2 presents the new adaptive salience biased loss for object detection in 

aerial images. 

2. Chapter 3 presents deep learning object detectors for aerial images and 

experiments on the new bird detection dataset. 

3. Chapter 4 presents the new CNN based feature extraction method, Deep ADA, 

for analyzing physiological sensor and survey data and detecting alcohol usage 

from physiological data. 

4. Chapter 5 summarizes the dissertation. 
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2.  NEW LOSS FUCNTIONS FOR IMPROVING OBJECT 

DETECTION IN AERIAL IMAGES  

2.1  Abstract 

Object detection in aerial images remains a challenging problem due to low image 

resolution, complex backgrounds, and variations of scale and orientation of objects in 

images. In recent years, several multi-scale and rotated box-based deep neural networks 

have been proposed and achieved promising results. In this chapter, a new loss function, 

called Adaptive saliency Biased Loss (ASBL), is proposed for training deep neural 

networks, which is defined based on adaptive saliency information of the input image. The 

proposed loss functions weights training examples and anchors differently based on input 

and saliency map complexity measurement in order to avoid over-contribution of easy 

cases in the training stage. In our experiments using two large public benchmark data sets 

of aerial images, DOTA, and NWPU VHR-10, RetinaNet was trained with ASBL to 

generate a one-stage detector, ASBL-RetinaNet. ASBL-RetinaNet outperformed the 

original RetinaNet by 3.61 mAP and 12.5 mAP, respectively, on the two data sets. In 

addition, ASBL-RetinaNet outperformed 10 other state-of-art object detection deep neural 

networks. 

2.2  Introduction 

In recent years, deep neural networks have achieved huge success in many areas of 

computer vision, such as image classification [1]–[3], object detection [4]–[11], and remote 

sensing [12]–[15]. Although the past decade has brought many advances in object 
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detection, it remains a challenging problem. For instance, CNNs have been applied to 

image classification problems in ImageNet [16] and surpassed the error rate of human 

vision ability; however, the best-performing object detection model on the COCO dataset 

[17] only achieved around 40 mAP (mean Average Precision) when the IoU (Intersection 

over Union) of the ground truth box and predicted box is 0.5. In addition to prediction 

accuracy, the inference time of a neural network model is another important performance 

metric. 

Existing deep neural networks for object detection in computer vision can be 

classified as one-stage or two stage detectors. Two-stage detectors consist of a detection 

network to generate region proposals, followed by a classification network to recognize the 

object in each proposed region. In the first stage, a neural network, such as RCNN [4], is 

used to generate the potential location of each target object; In the second stage, another 

neural network determines whether each candidate location contains a target object or not. 

In comparison, one-stage localization and recognition in one shot. Examples include 

YOLO [8], SSD [11], and RetinaNet [18]. One-stage detectors are usually simpler and 

faster than two-stage detectors, while achieving similar accuracy. For example, one-stage 

detector RetinaNet [18] outperformed one of the best two-stage detectors, Faster RCNN 

[5], with a 4.0 mAP improvement on the COCO dataset [17]. In terms of object detection 

on aerial images, inference speed is an critical evaluation metric so that our work focus on 

developing algorithm on one-stage detector. 

With the development and success of DNNs, deep learning has been applied to 

various sensor data domains in the past several years, such as bio-sensors [19], [20] and 

remote sensing [12]–[15], [21]. Sensor data have some unique features, different from 
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conventional object detection datasets. For example, aerial images, as shown in Fig. 1, are 

different from conventional image in the following ways: (1) Objects in aerial images often 

appear with arbitrary orientations. (2) The scale variations of objects in aerial images are 

much larger than those in conventional images, and many small objects are crowed together 

in aerial images. (3) The backgrounds of some aerial images are uniform and simple, while 

others have complex backgrounds. These characteristics make object detection in aerial 

images a challenging problem. To improve recognition accuracy, in recent years, rotated 

box-based [22], [23] and multi-scale-based DNNs [22] have been proposed to address the 

first two issues. However, these networks are mostly complicated with many parameters, 

which leads to slow inference speed. For object detection in aerial images in real time, one-

stage detectors, such as YOLO, SSD and RetinaNet, have the speed advantage. 
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Figure 1. Sample Images of DOTA, showing the variation of scale and orientation of target 

objects (boat, truck, car, airplane) in aerial images. Harbor, Plane, Small Vehicle, Large 

Vehicle are the target objects. 

In this chapter, we propose a new loss objective function, Adaptive saliency Biased 

Loss (ASBL), that can be used to train one-stage detectors to achieve better recognition 

accuracy, while keeping the one-stage detectors’ speed advantage. We used the idea of 

saliency-based detection [24]–[26] in deep learning neural networks to map different level 

of features in aerial imagery in order to extract object information. The new loss function 

has two terms, image-based and anchor-based loss term. In the image-based term, input 
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images are weighted differently based on their saliency complexity. If the input images are 

with higher saliency information, it will be given with more weight on its classification 

loss function. In the anchor-based term, all anchors are given adaptive weights trained by 

neural network based on saliency complexity of interested objects during training phase. 

When loss converged during the training phase, with the same scale of training loss 

decrease, the images and anchors with high saliency information will contribute more. The 

goal of this loss function is to focus training on complicated images and saliency areas, 

which prevents the vast number of easy images and negative anchors from overwhelming 

the cross-entropy loss of the model. The loss function can be applied to any one-stage 

mutli-scale feature extraction detector network. In our experiment, the loss function was 

applied to train RetinaNet [18] and the trained network is called ASBL-RetinaNet. Two 

widely used public benchmark datasets were used for performance evaluation: DOTA [21] 

(one of the largest object detection dataset of aerial images) and NWPH VHR-10 [27]. 

Experimental results show that ASBL-RetinaNet outperformed other state-of-the-art object 

detectors. It outperformed RetinaNet with post-tuning [18] by 4.35 mAP (mean Average 

Precision) on DOTA and yields a 12.5 mAP improvement over a set of existing methods 

on NWPU VHR-10 data. 

2.3  Related Work 

Deep learning methods have been applied to object recognition in images, including 

aerial images, and achieved state-of-the-art results. For detecting objects in aerial images, 

there are major 4 kinds of methods have been used in research, template matching-based, 

knowledge-based, OBIA-based, and machine learning-based, as discussed in [28]. In terms 
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of machine learning based methods, HOG, Haar-like and SR-based information are 

extracted, then features fusion and dimension reduction are used to filter necessary 

information. Based on useful information, the feature extracted are fed into classifiers, like 

SVM, Adaboost. In recent year, most existing works use object detectors using deep 

learning that have achieved good performance on natural images. However, due to the 

unique properties of aerial images, these object detectors did not perform well compared 

with natural images detection. Basically, researchers [13]–[15] have proposed various 

methods based on fine-tuning pretrained networks, such as pretraining on ImageNet [16] 

and COCO data [17]. Since most objects in aerial images are quite small, the fine-tuning 

using aerial images helped improving accuracy. In addition, computer vision scientist also 

design and propose unified deep learning network for characters of aerial images, like 

multi-scale and multi-angle, to achieve better performance on aerial image detection. For 

example, existing work [29], [30] propose rotation-invariant deep learning models with 

variant of regularization to achieve the SOTA performance on remote sensing images. 

Moreover, instead of all supervised learning, weakly supervised learning methods [31] in 

deep learning has been proposed to learn high-level features in unsupervised manner to 

capture the structural information of object in remote sensor images. These methods reduce 

the human labeling work of training data. 

In terms of deep learning network detectors, models like SSD [11], YOLO [8] and 

RetinaNet [18] have been proposed and achieved good performance in object detection in 

images. Previously, one-stage detectors have faster inference speed than two-stage 

detectors, but their accuracy is not as good. However, one-stage detector RetinaNet [18] 

was able to outperform state-of-the-art two-stage models on both speed and accuracy: 4.0 
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mAP higher than Faster RCNN [5], on the COCO data [17]. RetinaNet [18] combines the 

advantages of the SSD [11] and YOLO [8] networks by performing a multilayer feature 

extraction and then feeding them into a subnetwork to generate final outputs. RetinaNet 

[18] uses Focal Loss to address the one-stage detector problem in which there is an extreme 

imbalance between foreground and background classes during training. 

In training object detectors, imbalances of easy and hard cases and positive and 

negative examples will lead to poor performance. In general, more hard positive examples 

enable the model to discover and expand sparsely sampled minority class boundaries, while 

more hard negative examples improve the margins of minority class boundaries corrupted 

by visually similar classes. Random sampling techniques have been used to address the 

class imbalance problem [32]. Mining hard examples has been shown to be effective [33]. 

Recently, Online Hard Example Mining (OHEM) [10] has been proposed, which is an 

online bootstrapping algorithm for training region-based ConvNet object detectors like 

Fast RCNN [34]. For one-stage detector, specifically SSD [11], the ratio of positive and 

negative examples with random sampling is more balanced, which led to faster 

convergence and more stable training. However, most one-stage detectors still have the 

problem of unbalanced positive and negative anchors. For example, DSSD [35] and 

RetinaNet, could have up to 40k and 100k anchors, on benchmark images, with a very 

small fraction of positives. The proposed new loss function aims to address both the 

training example imbalance and anchor imbalance problem. 

The Focal Loss function [18] was designed to improve the cross entropy loss 

function on class-imbalance and easy/hard example imbalance problem in neural network 
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training. The cross entropy between a predication by a network model and the target label 

is defined as follows. 

(1) 

where p is the class probability by the model, and y is ground-truth class label. y=1 

and y=0 means positive and negative samples, respectively. For convenience, let CE(p, y) 

=-log(pt). 

(2) 

In practice, after an object detector DNN is trained based on cross-entropy, easy 

examples still incur a small amount of positive loss. When the number of easy samples is 

very large compared to hard training examples, the sum of the small losses of the easy 

examples dominates the loss of hard examples. Focal Loss function was proposed to 

address the class-imbalance and easy/hard example problem in one-stage detectors. It 

prevents the easily classified negatives from overwhelming the loss function and 

dominating the gradient. The idea is to introduce a weight factor α for foreground and 1- α 

for background and add a new factor (1 - pt) to cross-entropy loss with tuning parameter. 

Now, if an example is mis-classified, the new factor will be near 1 and the loss function 

will be about the same; however, if an example is predicted correctly, the factor will scale 

the loss near to 0 so that the importance of the easy class in the loss function will be very 

small. With the tuning parameter, the scale of importance of the factor can be tuned 

empirically. The focal loss function is: 

(3) 

where α and γ are constants. We used α= 2 and γ = 0.25 in our experiments, as suggested 

in previous work for natural image object detection. 
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2.4  Adaptive Saliency Biased Loss 

When a detector network is trained using a set of training examples, the training 

images are commonly treated equally. If the majority are easy cases, the trained model may 

focus on the easy cases and the hard cases do not exert sufficient influence to make the 

model more generalize. In addition, because the prediction of most of one-stage detectors 

are based on anchors of reception fields, class imbalance and improper hyper-parameter 

selection could lead to poor performance. To address these issues, we propose a novel loss 

function, called Adaptive Saliency Biased Loss, to train and improve object detectors. The 

loss function has two terms, one giving complicated images more weights during training 

and the other dealing with the anchor problem in one-stage detector. Our idea is to use the 

saliency map of images to represent the complexity and important areas of input and 

dynamically weight each input sample and anchors in feature map during training. 

2.4.1 Image-Based Adaptive Saliency Biased Loss Function 

We propose an image-based adaptive saliency biased loss function to direct training 

more toward difficult cases, i.e., images containing objects that are hard to detect and 

recognize. Some existing methods use Edgebox [36] to determine the complexity of 

training images, like WiderFace [37] and other self-design and labeled images [38], [39]. 

However, all these approaches are complicated and time consuming and the proper 

parameter values in Edgebox are hard to decide. 

In our method, a pretrained deep neural network is used to determine the 

complexity of input images based on the assumption that an input image is more complex 

if there are more activated neurons in a hidden level. Many state-of-the-art DNNs have 
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been trained on large-scale image datasets, such as ImageNet [16], and have the ability to 

detect features and shapes of general objects at different levels. In computer vision, a 

saliency map is an image that shows each pixel’s unique quality. Based on all these 

insights, pretrained DNNs by ImageNet can be used as saliency estimators to estimate the 

complexity of an input image. 

Specifically, we use a CNN (convolutional neural network) pretrained on ImageNet 

as a saliency estimator and extract features from different convolutional layers to represent 

the complexity of an input image, SI, as defined in the following formula: 

(4) 

where SI is the saliency of an image defined as the average activation of an convolution 

layer; x is the input image; fc,w,h is the output of a convolutional layer in a pretrained CNN 

with output dimension C*W*H. According to this formula, easy input images would have 

fewer activated neurons in a convolutional level and will result in smaller values of SI than 

complicated input images. SI values computed based on different convolutional layers in a 

DNN represent complexity at different feature levels. In the experiments, we investigated 

SI from different individual convolutional layers, as well as composite SI from multiple 

layers, which captures a multi-scale view for each input image. 

In order to fix range of weighting factor, we propose a normalization formula as 

follows: 

(5) 

where SI is the original saliency value; Smin and Smax are the overall minimum and 

maximum SI value of the training set, calculated once before the training phase; Snew_max, 
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Snew_min are constants. Snew_max is set as 1, and Snew_min is set based on empirical results. In 

our implementation, we tried different values of Snew_min, such as 0.3, 0.5, 0.7, etc. 

The new Image-Based Adaptive saliency Biased Loss function, ASBLI, 

incorporates the saliency information as follows: 

(6) 

where p is the class probability generated by the model, y the ground-truth class label, and 

FL (p, y) the Focal Loss. The saliency value of each image becomes the weight on the focal 

loss of the image. Therefore, the loss values from easy cases will be smaller due to smaller 

SI’ values. Fig. 2 shows an example of ASBLI based on RetinaNet and ResNet50. 

The Image-based Adaptive saliency Biased Loss has two major properties: (1) As 

the loss converges, the hard cases will contribute more and the easy cases will contribute 

less, because the easy cases will have small loss values. (2) When SI’ are computed based 

on different convolution layers, multi-scale features are incorporated in the loss function. 

For instance, the lower level features have larger feature map, and each point in its feature 

map represents a small object in the original images. 

2.4.2 Anchor-Based Adaptive Saliency Biased Loss Function 

Redundant anchors cause unbalanced classification problems in single-shot object 

detectors, such as RetinaNet and DSSD. Each anchor in multi-scale feature map will  make 

prediction for category and localization of objects in object detectors. To fully cover an 

input image, single-shot detectors usually generate many anchors of difference sizes. 

However, in aerial images, most objects of interests are small and some of the images are 

with clear background, which leads to more redundant anchors than those for larger objects. 
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To address this issue, we propose anchor-based adaptive saliency biased loss, ASBLA. We 

assume there are two classes for each point in activated feature map, saliency and non-

saliency. If the point in feature map with high probability of saliency information of 

objects, it will be given higher weight. In general, each point in feature map has a set of 

anchors with different aspect ratios and scales in single-stage object detectors. In our 

theory, we applied Bayesian theory to each point in activated feature map to calculate the 

probability of saliency information on the point and then the saliency information will be 

fed into the series of anchors of the point. The idea is to use attention mechanism of saliency 

map to present the saliency complexity of each anchor and then weight the predicted 

anchors accordingly as follows: 

 (7) 

where Pr (S|I) is the prior probability of saliency information for each point in feature map 

given an input image I and Pr (A|S, I) is the likelihood probability of positive anchors of 

each point on feature map given image saliency information S and input image I. Based on 

Bayesian theory, Pr (S|A, I) is the posterior probability of saliency information of anchors 

on each point on feature map given input images I and anchors A. In addition, S, A and I 

are independent events so that there is no correlation between all these events. In our 

implementation, feature maps trained by the same single-shot object detector with ASBLI 

will be used to represent Pr (A|S, I) and Pr (S|I) is derived from ResNet50. The 

representation of saliency map for a set of anchors is as follows: 

(8) 
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where u, v is coordinate and c is channel of feature map; Rc,u,v is the feature map of a single-

shot object detector; fc,u,v is a pretrained convolution layer by ImageNet with dimension C 

* W * H, the same as Rc,u,v is the input image; and SAu,v is the saliency level for each set 

of anchors. For Rc,u,v and fc,u,v, we average all the channels for each one to get likelihood 

probability of positive anchors of each point on feature map and prior probability of 

saliency information for same point on feature map which is Pr (A|S, I) and Pr (S|I) in (7), 

respectively. In this formula, fc,u,v  is used to estimate prior knowledge of the complexity 

of an image and Rc,u,v is the likelihood of positive anchors of object in an image. During 

training phase, Rc,u,v is dynamically updated and learned so that SAu,v, saliency 

information, is also dynamical adaptive in each training based on input images. Thus, the 

final anchor-based ASBL is as follows: 

(9) 

where FLu,v,a (p, y) is the loss objective function for each anchor; As is the number of 

anchors for a feature map; W and H is the dimension of each feature map. ASBLA can be 

learned and adapted in the training because of dynamic of SAu, v. Fig 3 shows an illustration 

of training process of ASBLA. The top branch shows the inference process of a single shot 

detector, which is RetinaNet, the middle branch shows the generation of the likelihood of 

positive anchors of object in an image, Rc,u,v, and the bottom branch shows the process of 

prior knowledge of the complexity of an image, fc,u,v. According to formula (8) and (9), 

ASBLA has these properties: (1) Rc,u,v  will be dynamically updated during the training 

process so that SAu,v  will be learned. (2) Each set of anchors of each point on feature map 

have the same weighting value. Anchors predicted wrong will carry more weights. (3) If 

SAu,v  is small, it means the content in the anchors is simple, which leads to small  



20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 3
: 

A
n
 i

ll
u
st

ra
ti

o
n
 o

f 
th

e 
A

n
ch

o
r 

B
as

ed
 A

d
ap

ti
v
e 

S
al

ie
n
cy

 B
ia

se
d
 L

o
ss

 F
u
n
ct

io
n
, 

A
S

B
L

A
. 

T
h
e 

to
p
 b

ra
n

ch
 i

s 

to
 g

en
er

at
e 

in
fe

re
n
ce

 r
es

u
lt

 o
f 

R
et

in
aN

et
. 

T
h
e 

m
id

d
le

 b
ra

n
ch

 s
h
o
w

s 
th

e 
p
ro

ce
ss

 o
f 

sa
li

en
cy

 m
ap

 R
c,

u
,v

. 
T

h
e 

b
o
tt

o
m

 

o
n
e 

d
em

o
n
st

ra
te

s 
h
o
w

 t
o
 g

en
er

at
e 

sa
li

en
cy

 m
ap

 f
c,

u
,v

. 
A

ft
er

 g
en

er
at

in
g
 s

al
ie

n
cy

 m
ap

 S
A

u
, 

v
, 

ea
ch

 v
al

u
e 

in
 S

A
u
, 

v
 w

il
l 

b
e 

u
se

d
 t

o
 w

ei
g
h
t 

cl
as

si
fi

ca
ti

o
n
 l

o
ss

 o
f 

an
ch

o
rs

. 
A

S
B

L
A

 u
se

s 
th

e 
fo

ca
l 

lo
ss

 o
f 

ea
ch

 a
n
ch

o
r 

to
 w

ei
g
h
t 

th
e 

fi
n
al

 l
o
ss

 

b
as

ed
 o

n
 i

ts
 s

al
ie

n
cy

 i
n
fo

rm
at

io
n
. 

 



21 
 

contribution in the loss function. In addition, during training ASBLA, SAu,v  will be 

adaptively learned so that more redundant anchors without useful information will be 

ignored. Thus, training phase are more straight-forward and work more on the anchors with 

higher saliency information. 

2.4.3 ASBL-RetinaNet 

Our final loss function, ASBL, combines the two loss functions, ASBLI and 

ASBLA, in the training process. Specifically, ASBLI is used in the first half of the training 

process and ASBLA is used in the second half, as shown in the following formula: 

(10) 

where e is the epoch index and ep are the total number of epochs for training. 

ASBL can be instantiated based on any one-stage deep neural network detector. For 

example, if ASBL is computed based on RetinaNet [18], which is one of the best one-stage 

detectors, as shown in Fig. 2 and Fig. 3, we call the instantiation ASBL-Retina. In this case, 

the detector is RetinaNet, while the training is based on the ASBL loss function. The 

performance of the trained network can be compared directly with that of the network 

trained in the original way. The inference times of the networks trained in the two different 

ways will be similar. 

In our experiment, ResNet50 [3] is used to extract prior saliency information of 

input. In order to extract the same level of features as RetinaNet, we pretrained ResNet50 

using ImageNet with two more convolution blocks to get intermediate results in the same 

dimension and shape as the encoder part of RetinaNet. The features extracted from the 

revised ResNet50 are denoted as {C2-C7}. The corresponding feature maps in the encoder 
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part of RetinaNet are denoted as {P2-P7}. These features are used to generate saliency 

information of input images. Each extracted feature will be used as a weight factor of 

training images in the loss function. 

Algorithm 1 shows the method to train RetinaNet using ASBL. The inputs are the 

original RetinaNet and ResNet50. ResNet50 provides stationary image level saliency 

information. The updated parameters, W, in RetinaNet is the output. First, we pretrain 

ResNet50 with two more convolution block with same architecture of encoder of RetinaNet 

using ImageNet in order to generate image level saliency information. Then, in our 

implementation, we use 50 epochs in training. The first 25 epochs are used to train 

RetinaNet based on ASBLI, and the remaining ones are to train the network based on 

ASBLA. In the first 25 epochs, ASBLI is calculated by retrained ResNet50 using formula 

(4) and (6). In terms of the remaining ones, ASBLA is generated by the features map of 

retrained ResNet50 and RetinaNet in the first half of epochs according to formula (8) and 

(9). The feature map of RetinaNet in the second half of epochs are updated during the 

training process so that the weighting factors are dynamically adjusted. 
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2.5  Experimental Results 

In this section, experimental results on two benchmark datasets of aerial images, 

DOTA and NWPU VHR-10, are presented. 

2.5.1 Dataset 

DOTA is the largest and most diverse public dataset for multi-class object detection 

in aerial images. It consists of 2806 images collected from various camera sensors. The 

images are acquired from Google Earth and China Center for Resources Satellite Data and 

Application. The 15 object categories are: plane, baseball diamond (BD), bridge, ground 

field track (GTF), small vehicle (SV), large vehicle (LV), tennis court (TC), basketball 

court (BC), storage tank (SC), soccer ball field (SBF), roundabout (RA), swimming pool 
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(SP), helicopter (HC), and harbor. Across these categories, 57% are small objects that are 

within 50 *50 pixels. The DOTA dataset is split into training (1/2), validation (1/6), and 

test (1/3) sets. 

NWPU VHR-10 is another widely used public dataset that consists of a positive 

image set including 650 images and a negative image set including 150 images over ten 

object categories. In our experiments, we used the official 1172 images (400 * 400 pixels) 

cropped from the positive image set of NWPU VHR-10 [27]. The data set contains ten 

classes of geo-spatial objects: airplane, ship, storage tank, baseball diamond, tennis court, 

basketball court, ground track field, harbor, bridge, and vehicle. To have a fair comparison 

with previous results, we used the existing train, validation and test dataset that contains 

679 images for training, 200 images for validation and the rest 293 images for test. For 

performance evaluation, we followed the official way [27] to evaluate the performance of 

our methods. 

2.5.2 Evaluation Metric 

The performance metric used in our experiments is mean Average Precision (mAP), 

as for PASCAL VOC [30]. In our experiments, we focused on the HBB task in DOTA and 

set non-maximum suppression (NMS) to 0.3 for all categories. The IoU ratio of predicted 

and ground truth boxes is 0.5, as commonly used in the object detection domain. 

For NWPU VHR-10 data, the parameter setting of performance evaluation is the 

same as the original paper [27]. We used public tools (https://github.com/Cartucho/mAP) 

to calculate mAP score. In order to show the robustness of the proposed ASBL-RetinaNet 
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method, ablation study is only done on the DOTA dataset. All hyper-parameters are fixed 

for experiments on the NWPU VHR-10 dataset. 

2.5.3 RetinaNet modification 

In addition to reporting the performance of the original RetinaNet, we also made 

some minor changes to RetinaNet and achieved improved performance. Specifically, we 

changed aspect ratios to {1:3, 1:1, 3:1}, and anchor sizes to {2, 20.5, 0.3}. The reason for 

these changes is that there are some object categories, such as bridge or harbor, that have 

long rectangle shapes. Anchor size 0.3 was used because some objects in aerial images are 

very small. In terms of data augmentation, instead of random flip used by original 

RetinaNet, random flip and flop were used. 

2.5.4 Ablation study 

2.5.4.1 Image based ASBL analysis 

a) Image Complexity Analysis: In our method, we use the amount of activation in 

certain layers of a deep neural network to represent the complexity of an input image in 

ASBLI. When the background of an image causes more neurons to be activated, the image 

is more complex. Fig. 6 shows examples of DOTA images selected based on their SI values. 

The images in each group are selected based on their SI values from C2 to C5 layers of 

ResNet50, respectively. The first 5 images in each group have the smallest SI values and 

are visually simple, whereas the last 5 images have the largest SI values and are visually 

complicated. Images with large SI values obtained from earlier layers of ResNet50 (C2 and 

C3) have dense low-level image features (small objects), whereas those from latter layers 

of ResNet50 (C4 and C5) have more higher-level image features (large objects). The reason 
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is because the receptive field of C2 and C3 is smaller than the one in C4 and C5. The feature 

map generated from C2 and C3 contains more small objects’ information, but C4 and C5 

focus on larger objects’ information. The examples show that SI could capture the 

complexity of an input image quite well. 

b) Saliency Normalization: Fig. 4 shows the distribution of saliency values SI of 

DOTA training images obtained from residual block C2 and C5 of ResNet50, as an 

example. The SI values from some layers, such as C5, have small ranges, which does not 

separate easy and hard cases sufficiently. Saliency normalization would be good solution 

in our implementation to solve out this problem and also fix the range of weighting factor 

of loss function. 

 

Figure 4. Distribution of saliency values of DOTA training images obtained from residual 

block C2 and C5, respectively, of ResNet50. 



27 
 

To show the effectiveness of the new loss function with new complexity 

information SI, we compared the performances of the modified RetinaNet trained using the 

new loss function with those trained using the original loss function. Table. 1 shows some 

experimental mAP results using the new loss function with or without saliency 

normalization. The saliency values were calculated from the C5 layer of ResNet50. Among 

these results, the best performance was achieved when saliency normalization was used 

with Snew_min 0.5, which is 0.62 mAP higher (63.48 vs. 62.86) than the result without 

normalization. In comparison, the mAP of the modified RetinaNet trained using the 

original loss function is 62.51, which is almost 1 mAP lower than the result using the new 

loss function (63.48). We ran these experiments multiple times and the mAP standard 

deviations for these two methods are 0.017 and 0.022, respectively, which means their 

performance improvement is significant. Based on the ablation study of saliency 

normalization, we notice that if weighting factor of easy cases are too small, it will make 

underfitting for those easy cases to lower the performance, however, if it would be larger 

on easy cases, it would have similar results compared with no weighting factors on loss 

function. 

c) Comparison of Saliency at Different Feature Levels: Saliency values calculated 

based on features at different levels could lead to different model performances. In these 

experiments, we calculated saliency values using C2 to C5 layers from ResNet50 with 

normalization. Using each layer’s output, ASBLI is calculated and fed to the new loss 

function to train RetinaNet. Table. 2 shows that the best performance (64.77 mAP) was 

achieved when using saliency values calculated from C2 layer, which is 2.26 mAP higher 

than the original RetinaNet (62.51 mAP). 
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Table 1.Performances of the modified RetinaNet on the DOTA dataset trained using the 

new loss function with or without saliency normalization. 

 

Table 2. Performance Comparison of RetinaNet trained using the new loss function with 

saliency values calculated at differ layers (C2 to C5) of ResNet50. 

 

2.5.4.2 Anchor based ASBL analysis 

Similar to image-based ASBL, saliency values computed to represent the 

complexity of anchors can also be normalized. For anchor saliency, we use the same 

normalization formula as for image-based saliency. For each anchor, we use the maximum 

and minimum value of each feature map as max and min in the formula. 

Table 3 shows experimental results using saliency normalization with different 

Snew_min (0.3, 0.5, and 0.7), or without normalization. The best result was achieved with 

Snew_min = 0.5. 

For anchor based ASBL, saliency values could be calculated during the training 

phase. In our experiments, comparison with fixed and dynamic anchor based ASBL is 

provided to show the efficiency of dynamic anchor based ASBL. The fixed loss used initial 

feature map generated by RetinaNet with ASBLI as Rc,u,v to calculate ASBLA. Table 3 

shows that using dynamically updated saliency values can improve the performance from 

64.82 to 66.12, with the normalization of anchor saliency values. Table 3 also compares 
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the performance difference between using image-based and anchor-based ASBL. The best 

performance using anchor-based ASBL is 66.12, which is higher than using image-based 

ASBL (64.77), on DOTA test dataset. 

Table 3. Performance comparison of anchor-based and image-based ASBL methods. 

 

2.5.5 Experiment setup 

In our models, we used ResNet50 [28] as a backbone of RetinaNet [43]. The input 

image size was 1024*1024 for DOTA images and 400 * 400 for NWPU VHR-10 images. 

For NWPU VHR-10, we resized the images to 600*600, the same as the original paper of 

RetinaNet. We used Adam as the solver in training. One Titan X GPU desktop was used 

in the experiments with training batch size 2. Pretrained ResNet50 weight by ImageNet are 

applied as initial parameters of backbone model. Random flip and flop are used as data 

augmentation. Unless otherwise specified, all models were trained for 50 epochs with 

initial learning rate 0.0001, which was then divided by 10 after every 20 epochs. During 

training, for the ASBL method, we first used the image-based ASBL loss function to train 

the network for 25 epochs, and then used the anchor-based loss function to train the 

network for 25 more epochs. The training dataset of DOTA and NWPU VHR-10, the same 

as previous published work, were used in training. 
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2.5.6 Experimental results on DOTA 

On the largest aerial image dataset, DOTA, we compare the performance of 

RetinaNet trained using the new ASBL loss function with some recent state-of-art deep 

learning methods, including both one-stage and two-stage detectors. Table 5 shows the 

performances of various existing deep learning methods, including YOLO, SSD, RFCN, 

Faster RCNN, RetinaNet, as well as ASBL-RetinaNet, on the test dataset. In the “Data” 

column, “T” means that a model was trained using the training dataset of DOTA, whereas 

“T+V” means that a model was trained using the combined training and validation dataset. 

Their performances on each target categories, as well as the overall average in mAP (the 

last column) are shown. 

The results show that the new method ASBL-RetinaNet trained using T+V 

achieved the highest average precision, 66.86, which was 6.4 mAP higher than the closest 

competitor, Faster RCNN [5] (60.46). Across all 15 target categories, our ASBL-RetinaNet 

outperformed Faster RCNN in 10 categories and modified RetinaNet in all 15 categories 

using DOTA train data only. Note that the modified RetinaNet is much better than the 

original RetinaNet. ASBL-RetinaNet outperformed the modified RetinaNet by 3.61 mAP 

(66.12 vs. 62.51) when trained using DOTA training dataset only. The inference speeds of 

the various RetinaNet models are the same, since their architectures in inference are the 

same. Compared to all other models, ASBL-RetinaNet is the best for 8 out of 15 target 

categories. 

Fig. 7 shows the detection results of modified RetinaNet (top) and our proposed 

ASBL-RetinaNet (bottom) on four examples of DOTA test images. Comparing the two 

results in the first column, RetinaNet misclassify harbor object as background due to the 
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crowded of boat but ASBL-RetinaNet detect it and keep other detected objects. Comparing 

2nd and 3rd columns in Fig. 7, RetinaNet miss different scales of objects, like swim pools 

crossed the river and airplane in the top left corner, however, ASBL-RetinaNet improve 

the accuracy for object in different scales, even though there is nothing special design to 

solve out multi-scale problem. Consider the high complexity of 2nd column images, the 

weighting will be given higher in the training phase. Moreover, due to the high complexity 

of anchors in the top-left corner, the more training weight also given in the training phase. 

That is the reason why ASBL-RetinaNet can improve accuracy in different scales of object. 

In addition, the 4th columns in Fig. 7 shows that ASBL-RetinaNet also can improve the 

performance of sample with easy background, even if it focus more on training ones with 

complex background. 

2.5.7 Performance on NWPU-VHR 10 

Table 6 shows the performances of various existing deep learning methods, 

including COPD [41], Transferred CNN [1], RICNN [29], Faster RCNN [5], Li’s method 

[27], modified RetinaNet, as well as ASBL-RetinaNet, on the test dataset of NWPU VHR-

10. The proposed method is the best, achieving 89.31 mAP, which is 2.19 mAP higher than 

the best previous result (87.12) and 12.5 mAP higher than the modified RetinaNet. In order 

to provide fairly comparison, ASBL-RetinaNet with VGG 16 backbone has been 

implemented and the performance is better than Li’s method and Faster RCNN with the 

same backbone by 1.42 mAP. Compared to RetinaNet trained using original loss function, 

RetinaNet trained using the new ASBL loss function is better for all target categories 

significantly. To analysis the variance of performance improvement with DOTA and 
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NWPU VHR-10 datasets, there are mainly two reasons. 1) Average of image complexity 

of test data in NWPU VHR-10 is higher than the one in DOTA, which is with 0.88 and 

0.84 on C2 saliency information, respectively. Thus, ASBL works better on NWPU VHR-

10 datasets. 2) NWPU VHR-10 only has 293 test dataset and DOTA has more than 1000 

test images so that the variation of model performance will be larger in NWPU VHR-10. 

Table 4 shows the inference speed comparison of various methods. The inference speed of 

ASBL-RetinaNet is 2 times faster than Faster RCNN, which is the fastest previous model 

and took 45ms for each image using an NVIDIA Titan X GPU and 16 GB of memory as 

reported in their paper [27]. In our work, we use the similar devices which is NVIDIA 

Titan X GPU and 12 GB of memory. Fig. 5 shows the results of ASBL-RetinaNet on 6 

examples from NWPU VHR-10 test dataset. The method detected objects of various sizes 

and shapes in these images successfully. 

Table 4. Inference time comparison of various detection models on NWPU VHR-10 

images. 
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Figure 5. Detection results of ASBL-RetinaNet on 6 examples from NWPU VHR-10 test 

dataset. 

2.6  Conclusion 

In this work, we proposed a new loss function, Adaptive Saliency Biased Loss 

(ASBL). ASBL can be implemented at the image level, which is called image-based ASBL, 

and at the anchor level, which is called anchor-based ASBL. They use complexity 

information of input images to weigh the inputs differently in training. Without loss of 

generality, the ASBL approach was applied to RetinaNet to show its effectiveness. Using 

two large benchmark datasets, DOTA and NWPU VHR-10, experimental results show that 

ASBL-RetinaNet outperformed existing state-of-the-art deep learning methods, with at 

least 6.4 mAP improvement on DOTA, and 2.19 mAP on NWPU VHR-10. Furthermore, 

ASBL-RetinaNet improved over the original RetinaNet by 3.61 mAP on DOTA and 12.5 
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mAP on NWPU VHR-10. However, this work only considers saliency information of input 

images which may not be enough to represent the complexity of aerial imagery. To improve 

current work, rotation and scale information of objects could be also included into objective 

loss function. Github link: https://github.com/ps793/ASBL-RetinaNet 
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3  IMPROVING BIRD RECOGNTION IN AERIAL IMAGES 

USING DEEP LEARNING 

3.1 Abstract 

In computer vision, significant advances have been made in recent years on object 

recognition and detection with the rapid development of deep learning, especially deep 

convolutional neural networks (CNN). The majority of deep learning methods for object 

detection have been developed for large objects and their performances on small-object 

detection are not very good. This chapter contributes to research in low-resolution small-

object detection by evaluating the performances of leading deep learning methods for 

object detection using a common dataset, which is a new dataset for bird detection, called 

Little Birds in Aerial Imagery (LBAI), created from real-life aerial imagery data. LBAI 

contains birds with sizes ranging from 10px to 40px. In our experiments, some of the best 

deep learning architectures were implemented and applied to LBAI, which include object 

detection techniques such as YOLOv3, SSD, and RetinaNet, in addition to small instance 

segmentation techniques including U-Net and Mask R-CNN. Model analysis based on bird 

detection problem are discussed in this chapter. Among the object detection methods, 

experimental results demonstrated that RetinaNet performed the best across all the models. 

Among small instance segmentation methods, experimental results revealed U-Net 

achieved slightly better performance than Mask R-CNN.  
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3.2  Introduction 

Object detection is one of the crucial tasks in computer vision. In the past few years, 

the performance of object detection [26-39] has dramatically improved due to the success 

of deep convolutional neural networks (CNN). Typically, object detection and recognition 

involve two steps: first, deep neural networks are used to localize the potential location of 

each target object; then, objects are classified into appropriate classes.  If the first step can 

effectively localize the potential object, the second step will be easier. Even though the 

two-step approach achieved state-of-the-art performance, the running times are usually 

slow [36]. Therefore, one-stage detectors have been developed to improve the speed.  

Small-object detection remains challenging because small objects usually have 

lower resolution and less context information. Finding a 20 × 20 size object located in a 

5000 × 5000 image is a difficult task, even for humans. As described in the literature, state-

of-the-art methods for object detection usually performed poorly on small objects [36]. 

Recent research has shown the importance of context information and scale for small-

object recognition [33][34]. In addition, it has been reported that lower-layer features 

extracted from CNNs are very useful for small-object detection and segmentation [33-46].  

The work presented in this chapter focuses on low-resolution small-object detection 

by evaluating the performances of leading deep learning methods using a common dataset, 

which is a new dataset for bird detection, called Little Birds in Aerial Imagery (LBAI). 

This dataset was created from real-life aerial imagery data, provided by the Illinois Natural 

History Survey at the University of Illinois at Urbana-Champaign. LBAI contains images 

of waterfowl and other water birds in shallow lakes within the Illinois River Valley. LBAI 
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includes different colors, shapes, poses, resolutions, and bird sizes range from 10px to 

40px. The dataset contains different backgrounds of rivers, vegetation, land, and mixtures 

between each type of background. Overall, LBAI captures the diversity of real-life 

situations for bird detection in shallow lake and wet lands across the Midwest. Some of the 

birds have larger sizes, in higher resolutions and homogenous backgrounds, which make 

them easier to be identified. While others have smaller sizes, in lower resolutions with 

blurry contours, making them hard to be detected. LBAI is designed to identify the 

difficulties and improve existing methods on small object detection.  

Using the LBAI dataset, we compared a wide-range of representative state-of-the-

art deep learning methods. The results shed a light on the strengths and weaknesses of 

different deep neural network architectures for small object detection. The contributions of 

this research include applying and adapting leading deep-learning methods to the LBAI 

dataset, evaluating performances of these methods on a common benchmark dataset for 

small-object detection and segmentation, and automating the time-consuming process of 

manual image processing from waterfowl surveys. 

3.3  Related Work 

Two major approaches are popular in the detection domain. The dominant approach 

in modern object detection is based on a two-stage approach which generates a set of 

proposed targets and detects the bounding box and label for each proposed region. The 

second approach is using one-stage model applied over regular and dense sampling of 

object scales, locations, and aspect ratios to generate the location and label for each target 
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object. Both approaches can be used in aerial image object detection; however, due to the 

special character of aerial images, a more suitable design of the experiment is necessary. 

There are two major approaches for object detection and recognition. The first 

detection-based approach is the traditional one that generates a bounding box of the 

detected objects and then identifies the type of objects. The second approach, which is a 

segmentation-based approach, can also be used for object detection. This approach first 

generates labelling at the pixel level and then tries to identify the class of the objects to 

which each pixel belongs.  

3.3.1 Object detection methods 

Existing deep learning algorithms for object detection falls into two categories: one-

stage detectors and two-stage detectors [26-34]. At first, two-stage detectors generate many 

region proposals, which may potentially contain the objects. Then, these sparse proposals 

are further classified into different object categories. In general, two-stage detectors are 

more accurate, but slow when compared to one-stage detectors. In one-stage detectors, the 

bounding boxes proposal step is eliminated and both, object localization and classification, 

are done in one pass. This strategy significantly improves the speed of detection when 

compared with two-stage detectors.  

In a two-stage detector, the regions that potentially contain objects are first 

proposed. Then, detection refinement is applied to classify proposed regions and regress 

the bounding box location. For example, the Selective Search method [26] is used in R-

CNN [27] to generate category-independent region proposals to localize the regions that 

may contain the target objects. R-CNN then uses a convolution neural network to refine 
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regions. Each region proposal is fed into the CNN independently, which is a slow process. 

Fast R-CNN [28] addressed these issues by only computing the convolutional feature map 

once. Therefore, each region proposal shares the computation of the same feature map. The 

region proposals are generated in a Region of Interest (RoI) pooling format to feed into 

fully connected layers [28].  

Faster R-CNN [29] further improved the detection speed by using a fully 

convolutional network, called Region Proposal Networks (RPNs), to generate the region 

proposals, replacing the Selective Search method used in previous methods.  In the second 

stage, a CNN is used for proposal refinement and object classification. The main benefit of 

this design is that the RPN shares the same convolutional layers with the object detection 

network, which reduces the detection time [29]. Furthermore, FPN was proposed to 

improve Faster R-CNN [37]. FPN used the concept of a feature pyramid. Instead of 

applying a pyramid on the input images, it used the feature map pyramid, since CNN 

already provide a hierarchy between the different feature layers. The idea was implemented 

in a bottom-up and top-down path with lateral connections. FPN utilized a lower, high-

resolution feature layer, compared to other algorithms, which dramatically improve 

detection accuracy, especially for small objects.  

In one-stage detectors, the proposal generation stage is removed, resulting with 

localization and classification being performed in one stage.  Recently, YOLO [30][31], 

SSD [32], and their variations achieved promising results. YOLO [30] divided input 

images into 7 × 7 cells and each cell predicts two bounding boxes. The network has 

convolutional layers followed by fully connected layers. Even though YOLO achieved a 

45 frame per second detection speed, which is extremely fast when compared to other 
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algorithms, the main drawbacks result from localization prediction errors and low object 

detection recall [30].  

DSSD [35] is a variation of SSD [32]. It improved the performance of SSD, 

especially for small objects, by using a larger network as well as adding additional context 

information with de-convolutional neural networks. DSSD achieved higher accuracy, 

especially for small objects. Recently, RetinaNet [38] achieved state-of-the-art results for 

one-stage detection. It outperformed existing two-stage detectors while maintaining a fast 

detection time. The work in [38], found that the accuracy gap between one-stage detectors 

and two-stage detectors was mainly due to the positive and negative examples being highly 

unbalanced, since there are extremely large amounts of background examples 

overwhelming the process. Even though each loss of the background examples is small, 

the large number of the background cases result in dominating the total loss, which results 

in a degenerated model. This problem was solved by introducing a new loss function, called 

focal loss, to change the weights between positive examples and negative examples, so 

they cannot affect the loss function dramatically. Huang et.al. in [36] compared the 

detection accuracy and detection time between two-stage detectors and one-stage detectors. 

They concluded that, on average, one-stage detectors are faster than two-stage detectors, 

while two-stage detectors tend to be more accurate than one-stage detectors. The 

performance of most detection algorithms dropped dramatically when applied to small-

object detection. In addition, several one-stage detectors were developed for small face 

detection, including Tiny Face [33] and SSH [34].  
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3.3.2 Instance segmentation methods 

FCN [40] is one of the first methods that use CNNs in the semantic segmentation 

area. FCN employs CNNs without fully connected layers, which allows the input image to 

have an arbitrary size. This method laid the foundation for later methods.  

A key issue of segmentation methods is the pooling layers. Adding pooling layers 

can reduce the computation time and increase the reception field size. U-Net is based on 

FCN [40], with the encoder-decoder architecture to address the issue of determining the 

appropriate numbers of pooling layers. It has a U-shape architecture to balance the trade-

off between good localization accuracy and efficient context information. Therefore, it only 

needs a small number of training images. In the encoder stage, it uses pooling layers to 

gradually reduce the layer size, whereas, in the decoder stage, it uses up-convolution to 

gradually increase the layer size. Moreover, U-Net uses the short-cut connection from 

encoder to decoder to help the decoder recover fine-grain information.  Regarding the 

trade-off between reception field and localization accuracy, large reception fields lead to 

lower localization accuracy. On the other hand, when the reception field is too small, the 

localization accuracy may also decrease due to the lack of context information.  

Mask R-CNN [39] is a recent work based on Faster R-CNN and FCN. Faster R-

CNN already provides two predictions: bounding box localization and recognition. Mask 

R-CNN added the third output on top of Faster R-CNN, which is the instance mask 

prediction for segmentation. The Mask R-CNN architecture can output bounding box 

localization, classification, and segmentation at the same time.  The improvement of Mask 

R-CNN from FCN comes from the new ROI-Align layer, multitask training, and a better 

backbone network [39] [40]. 
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3.4  LBAI Dataset 

3.4.1 Dataset overview 

 The LBAI dataset was provided by the Illinois Natural History Survey at the 

University of Illinois at Urbana-Champaign. The total dataset has 230GB of data, with 440 

high-resolution images that have a resolution of 5760 × 3840, and an altitude value of 

approximately 90 meters above ground level (AGL). LBAI has the cropped images, with 

different color, shape, resolution, background, and scale, as shown in Fig 8. Due to the 

large size of images, it is difficult to train CNNs directly on the original images.  

 LBAI: There were 336 images with high-resolution that were used, and this dataset 

was divided into the training, validation, and test sets based on these images. For each set, 

we take the original image and crop it into the small patches with a size of 512 × 512, 

without overlapping the patches. This will insure that the original image does not get put 

into different sets (e.g. a patch from the original image gets put into the training set and 

another patch from the same original image gets put into the validation set). The incomplete 

boundary regions were discarded after cropping, since resizing may change the ratio and 

shape of the birds. For the training set, there are a total of 3,158 cropped images with 24,836 

birds. We only keep the small patches with birds in the training and validation set. 

However, the test set contains all the cropped images, both with birds and without birds. 

After applying the various object-detection methods on the cropped images to detect the 

birds, the detection results from the patches were merged back into the original images. In 

our experimental results on this dataset, the performance comparisons of the various 

methods are based on the merged patches which form the original images.  
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Figure 8 Examples of the new LBAI dataset for small object detection and instance 

segmentation. Cropped images with different color, shape, resolution, background, and 

scale are shown. 
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3.4.2 Dataset labelling 

 When we received this dataset, it contained the bird counting labels, i.e. the number 

of birds per image, from the Illinois Natural History Survey at the University of Illinois at 

Urbana-Champaign. However, it did not contain the bounding box locations for the birds, 

which is the labelling needed for detection. We generated the annotations for the birds’ 

location, so that the number of birds would match the total number of birds received from 

the expert annotations. A labelling tool, called Sloth, was used to label the images. For 

each image, a dot was put at the center of each visible bird for all of the birds. This dot 

label was used for blob detection to generate the bounding box and pixel level labels. Next, 

we used image processing techniques to find the contour of the labeled birds. A bounding 

box was drawn around the bird’s contour to generate bounding box labels. All labeled 

results are saved in an xml file. These labels were created from multiple observers with 

varying levels of training and experience. 

3.4.3 Dataset separation based on difficulty levels 

 The backgrounds of the LBAI images are very different, which have a significant 

impact on the bird detection results. Some images have clear backgrounds with uniform 

colors, which usually correspond to rivers and water. In this case, the main problem is to 

identify the birds among different colors, shapes, and resolution situations. On the other 

hand, in the images with backgrounds of land, trees, or vegetation, detection of birds is 

much harder, even for humans with great eyes. It is hard to distinguish emergent vegetation 

and submersed aquatic vegetation from birds. Therefore, following ideas from other 

datasets, we split each dataset into easy and hard cases based on the background. In LBAI-



48 
 

A, 3,158 images are categorized as easy cases, which contributed 52% of our labeled data, 

and 2,907 images as hard cases.  In LBAI-B, there are 2,416 easy case images and 2,056 

hard case images. The proportions of easy and hard cases are 54% and 46%, respectively. 

3.5  Model Adaption of DNN Object Detector 

3.5.1 Single Shot MultiBox Detector  

  SSD is a one-stage detector that performs object localization and classification in a 

single forward pass of its CNN. SSD’s network is built on the VGG-16 architecture, with 

the fully connected layer removed. Instead of using a fully connected layer, several small 

convolutional feature maps are added on top of VGG-16 to predict the target objects. 

Moreover, to capture different object scales, SSD generates different scales of feature maps 

for detection. This will result with two predictions being generated, one predicts the 

bounding box category and the other predicts the location of the bounding box. At the end, 

non-maximum suppression (NMS) is used to generate the final detection results. SSD 

achieved good accuracy, comparable to two-stage detectors, but much faster. However, 

SSD’s performance on smaller objects was much worse. The reason is that small objects 

may not appear on higher-level feature maps. Even though increasing the input image size 

can help slightly, SSD cannot address the problem well. 

  In our experiments on the new LBAI dataset, we used the source code of SSD built 

on the Caffe framework with a VGG-16 architecture as the backbone network. VGG-16 is 

pretrained on ImageNet for image classification and fine-tuned on our LBAI dataset. We 

used the same data augmentation and hard negative mining as SSD. In addition, we set 

batch size set to 16 and input image size of 512 × 512. In order to generate promising 
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results, default anchors are changes based on our LBAI bird dataset, due to the small size 

of pixels for each bird. In terms of model optimizer, we used Adam with 1e-4 as initial 

learning rate in order to converge faster than SGD implemented in the original SSD 

architecture.  

3.5.2 YOLO v3 

  YOLO v3 is an improved version of the original YOLO network with several 

adjustments. It is the modification version of YOLO v2 but keep most of advantage of 

YOLO v2. In YOLO v2, batch normalization on the convolutional layers is used to stabilize 

network training. The performance is increased by approximately 2% mAP with batch 

normalization. As found by other research, higher resolution can capture more information, 

especially for small objects [30]. This strategy increases the performance by approximately 

4% mAP. In YOLOv2, the fully connected layers are removed. Instead of directly 

predicting the location of bounding boxes, YOLOv2 adopted an anchor box strategy similar 

to that used by Faster R-CNN. This can improve the recall by a large margin while only 

slightly lowering precision.  A dimension clustering algorithm is used to find the starting 

anchor box dimensions based on the data from the training set. With dimension clustering 

and direct location prediction, the location accuracy is improved by over 4%. Finally, for 

improving performance on small objects, the lower feature map is concatenated with the 

higher feature map. In YOLO v3, multi-scale strategy is used to improve the performance 

from YOLO v2. 

 In our experiments on LBAI, we used the source code for YOLOv3 built on the 

Darknet framework. We loaded weights from pretrained weight generated by COCO 
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dataset and fine-tuned them on the LBAI dataset for 16,000 batches. We changed the 

number of output classes to one and adjusted the last convolutional filter to 30.  The 

network was trained with a batch size of 64 and subdivisions set to 8.  We applied a jitter 

of .4 to the training set and used a resolution of 512 × 512 without any randomization.  We 

set the learning rate to 0.0001 with a decay of 0.0005. In terms of anchor sizes, we use k-

means to pre-calculated box aspect ratio of training data. For different scale of feature map, 

we put box sizes which is 20 *20 into scale information.  

3.5.3 RetinaNet 

Retinanet is current state-of-the-art one stage detector using deep learning. RetinaNet 

uses FPN as feature extractor and then feed all the convolution features into classification 

and box subnet. For each convolution feature, it uses anchor box to make prediction, for 

each cell in the feature map, it generates 3 different aspect ratios and 3 different scales of 

anchor boxes. For each anchor, it will make prediction using subnet. The classification loss 

is using Focal Loss instead of normal cross-entropy to solve out unbalanced classification 

problem. Regression loss are using L2-smooth loss. The final objective loss function uses 

Focal loss + Regression loss with same weight.  

In our implementation of RetinaNet, modification is necessary to get better 

performance based on our LIBAI data. Specifically, we keeped aspect ratios to {1:2, 1:1, 

2:1}, but changed anchor sizes to {2, 20.5, 0.3}. The reason is that all of objects in the data, 

which is waterfowl, are relatively small compared with raw images so that small anchor 

will provide better precision information and features on localization and classification. In 

our training, we trained the whole network instead of fixing any parameter in the network. 
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The optimizer is using Adam optimizer with 1e-4 as starting point, the learning rate decay 

is 0.1 for each 7 epochs.  

3.6 Model Adaption of DNN Instance Segmentation 

3.6.1 U-Net 

  U-Net is built on fully convolutional networks, specifically designed for biomedical 

image segmentation. In the contracting path, the convolutional layers are applied with 

pooling layers to extract context features. In the expanding path, the up-sampling layers 

are added to increase the localization accuracy. More importantly, the feature maps from 

the contracting path are concatenated with the up-sampling layers to improve localization. 

In addition, elastic deformations are applied as data augmentations during training. U-Net 

is the winner of the ISBI challenge for segmentation and the ISBI cell tracking challenge 

in 2015. With a 512 × 512 input image, the inference time is less than one second. 

 In our experiments, the basic U-Net architecture was used to train on the LBAI 

dataset. However, because of the significant difference between the natural images in LBAI 

and bio-cell images, we added zero-padding after each convolution operation block, instead 

of cropping the reception field as in Isola [49] and Zhu’s work [50]. This prevented the 

network from losing too much pixel label information, which was needed because objects 

in LBAI are very small. With padding, the U-Net architecture would have the same size of 

input and output. 

  In order to apply the segmentation method for object detection, instance 

segmentation labels were prepared as the ground truth. However, it is time and labor 

consuming to generate segmentations for every target object in LBAI. So, instead of using 



52 
 

object contours as labels, we used a 20 × 20 square as a ground truth mask, centered at the 

coordinate of each object. After fixing the network architecture, specifically the inputs and 

outputs, we fed 512 × 512 images into U-Net and trained the network. In the training phase, 

we used the VGG-16 pretrained weights on ImageNet [46] as initial weights in all encoder 

blocks and the Xavier initializer in all decoder blocks. The learning rate was set to 0.001 

with a learning rate decay equal to 0.1 for every 7 epochs. The batch size was set to 2 in 

the training phase and since we were using a GTX 980M GPU with 8GB memory, the 

Adam optimizer was used. In the inference phase, blob detection on the final output was 

used to calculate the coordinates after running through the segmentation network.  

3.6.2 Mask R-CNN 

  Mask R-CNN is a recent work for segmentation and object detection, as explained 

in the related work section.  The major change in Mask R-CNN is that it solves the ROI 

pooling problem that causes the feature maps and original image not to be aligned. Mask 

R-CNN uses the ROIAlign layer to replace the ROI pooling layer. In the ROIAlign layer, 

the rounding for boundaries or bins are removed and bilinear interpolation is applied to 

compute the exact values for the feature maps. Moreover, Mask R-CNN uses a binary 

cross-entropy loss for the instance mask, which avoids the competition among all classes.  

Mask R-CNN achieved state-of-the-art results of instance segmentation on the COCO [47] 

test dataset with a running time of 5 FPS.  

 When implementing Mask R-CNN on the LBAI dataset, we used the same input 

and output described in the U-Net implementation. In the training phase, we froze the 

weights of ResNet-101 and trained all the other weights in the original Mask R-CNN 
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architecture. For the hyper-parameters, we used the Adam optimizer with the value of 

0.0001 as the learning rate until the loss curve converged. Other implementation details for 

the training and inference phases were the same as U-Net for a direct comparison between 

these two methods, e.g. batch sizes and blob detection. 

3.7  Experimental Results and Analysis 

 In this research, we evaluate the detection results and the counting results of various 

deep learning methods on a common dataset, the LBAI dataset. For detection, the 

performance metrics include precision, recall, and F1 score. Precision is the percentage of 

correctly predicted instances over the total number of predictions, while recall is the 

percentage of correctly predicted instances over the total amount of instances, defined as 

follows: 

                                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
                         (11) 

  

                                    𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
                             (12) 

where 𝑡𝑝 is true positive, 𝑓𝑝 is false positive, and 𝑓𝑛 is the false negative instances.  

 F1 is the harmonic mean of precision and recall: 

                             𝐹1 =  2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
              (13) 

 For counting results, the performance metric is the mean absolute error (MAE), i.e., 

the difference between the predicted count of birds in an image and the true count based 
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off the labels described in the previous section. Using LBAI-A, we compared the 

performance of five representative state-of-the-art deep learning methods, including 

YOLOv3, SSD, RetinaNet, Mask R-CNN, and U-Net. 

Table 7. Performances of object detectors on the EASY CASES in the LBAI-A dataset. 

 

The results on the test cases are shown in Table 7 and 8. There is a total of 944 test 

images for the easy cases and 944 images for the hard cases in LBAI-A. As shown in Table 

7, on the easy cases in LBAI-A, RetinaNet obtained the highest F1 score, 91.2%, which 

were much higher than the other 4 methods. In terms of MAE, RetinaNet was much better 

than the other methods, outperforming them by at least 53%.  

Table 8. Performances of object detectors on the HARD CASES in the LBAI-A dataset. 

 

As shown in Table 8, focusing on the hard cases in LBAI-A, the precision, recall, 

and F1 scores of all methods were much worse than their corresponding results on the easy 

Methods Precision Recall F1 Score MAE 

YOLOv3 0.887 0.909 0.898 23.6 

SSD 0.202 0.869 0.328 155.2 

RetinaNet 0.906 0.917 0.912 17.8 

Mask R-CNN 0.772 0.842 0.805 49.0 

U-Net 0.861 0.781 0.819 38.5 

Methods Precision Recall F1 Score MAE 

YOLOv3 0.568 0.238 0.335 22.0 

SSD 0.182 0.534 0.213 105.3 

RetinaNet 0.595 0.572 0.582 19.8 

Mask R-CNN 0.193 0.659 0.299 89.5 

U-Net 0.55 0.51 0.53 20.1 
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cases in Table 8, however, the best model is still RetinaNet, regarding F1 score and MAE 

score.  

Based on the results shown in Table 7 & 8, models with feature pyramid network 

(FPN) architecture, like YOLO and RetinaNet, outperformed with the model without it, 

even though the model extract different levels of features, like SSD. The reason is that the 

features extracted in FPN are finetuned by higher level of features and reconstruction from 

lower level features. It will generate more robustness features of objects. However, even 

though the model with different scale of features, like SSD, also extract small objects 

information and features, the performance of small objects, like bird, are sensitive to the 

extracted features so that it makes the poor performance on LIBAI dataset.  

In terms of instance segmentation models, the UNet outperformed with Mask R-

CNN, the main reason is similar as DNN object detectors, which is the small objects, like 

bird, are sensitive to the features extracted from CNN. Across two tables, the performance 

of Mask R-CNN drops more on the hard cases compared with other 4 models. The classifier 

in Mask R-CNN won’t provide too much help on final performance if the features extracted 

are bad and noisy.  

3.8  Conclusion 

  In this chapter, we have presented a new aerial imagery dataset based on real-life 

images including waterfowl and other water birds in wetlands around the Midwest. 

Different from most of the existing datasets, the new LBAI dataset contains small birds of 

sizes ranging from 10px to 40px. Several state-of-the-art deep learning object detection 

and instance segmentation techniques have been applied to the LBAI database and obtained 
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a range of performance results.  Among object detection methods, RetinaNet performed 

the best on both cases. Between instance segmentation methods, U-Net achieved better 

performance than Mask R-CNN. These results are useful for identifying the strengths and 

weaknesses of existing methods and the development of future methods with improved 

performance. 
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4.  NEW DEEP LEARNING BASED AUTOMATIC 

DETECTION OF ALCOHOL USAGE (DEEP ADA) 

4.1  Abstract 

With the development of IoT and mobile health, biosensor has been widely used to 

collect research data. However, in terms of data analysis and prediction of signal data 

collected by bio-sensor data, it is still a challenging problem because of the difficulty of 

useful features and information extraction from signal data and the shortage of label data 

in the experiment. Most feature learning techniques on bio-sensor data are handcrafted 

features so it may be too arbitrary to select features. In terms of those two problems, in this 

chapter, we proposed a ADA system (Automatic Detection of Alcohol) which can provides 

the statistical analysis of bio-sensor data at first. Then, based on the ADA system, we 

extended it with a novel deep learning based feature extraction method on bio-sensor signal 

data using deep learning algorithm to predict alcohol usage of real subjects in their daily 

lives (Deep ADA). The features extracted are based on Convolutional Neural Network 

without any human intervention and uses a significant amount of unlabeled data to augment 

the features. The method proposed using deep learning outperformed the other traditional 

feature extraction methods by 19% accuracy improvement on the real subject’s data. 

4.2  Introduction 

Currently, most methods in clinical psychology research primarily rely on 

questionnaires and interviews with examiners in the lab setting. With the rapid 

development of mobile technologies, a new promising solution is a mobile ambulatory 
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assessment system with real-time data monitoring and collection of real-life subject 

behavioral and psychology data, as well as physiological data. Ambulatory assessment is 

the use of field methods to evaluate subjects in natural or unconstrained environments [67]. 

By combining information about the external environment, and participants’ physiological 

and mental states, collected through system-generated and self-report surveys, machine 

learning models can be developed to identify changes in mood, alcohol use and/or craving, 

as well as other psychological problems. This same information can also be applied to 

context aware applications. In context aware computing, context is information that can be 

used to describe the state of something that is relevant to a user’s interaction with an 

application [68,69]. Combining methodology from psychophysiological field research with 

body area wireless sensor networks and mobile devices can improve context aware 

computing. Mobile systems based on wireless wearable sensors have been actively 

developed for a variety of applications in mobile health and physiological monitoring. They 

are capable of continuously collecting bio-sensor and self-report data to assess or predict 

physical and psychological conditions, such as alcohol consumption, in daily life. 

Automatically identifying patterns of interests based on various physiological signals and 

survey results for each individual remains a challenge.  

In recent years, deep neural networks have achieved huge success in many areas of 

computer vision, such as image classification [82]–[84], and object detection [85]–[92]. 

The reason why CNN has a breakthrough improvement is that it can generate multi-layer 

features with better representation of input data to make classifications. In addition to the 

development of computation power, deep learning has been widely used in popular 

classification problem, like image, audio and speech. However, to our knowledge, few 
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efforts have been made in trying to identify, using deep learning, certain attributes about 

ones current state of well-being based off of body sensor data, such as heart rate. There are 

three reasons. (1) Noisy information. The raw sensor data collected from bio-sensor is too 

noisy to make prediction. The raw data may be affected by human emotion, activity or 

other environmental factors. Most of researchers in bio-senor may focus on extracting 

useful features using domain knowledge from pre-cleaned signal data and then make 

predictions [93], [94]. (2) Hard to explain features using deep learning. Feature extraction 

from sensor data or transformed sensor data is very necessary since the raw sensor data is 

too noisy to get better performance. In terms of feature selection, since the CNN based 

model is hard to explain, the majority of researchers mainly used CNN as black box to 

make classification for other specific research problem. (3) Lack of labeled data. Subjects’ 

action in daily life for the study is very hard to collect, for example, the drug use study 

[95]. Basically, deep learning may need to be fed by large-scale input data to have better 

performance on classification. This requirement may not be applied to small samples data. 

The goal in this chapter is to solve out the problems of bio-sensor data classification using 

deep learning. We propose to use a deep learning approach to predict whether or not 

someone has consumed alcohol based off their physiological sensor data, by extracting 

features using 1D CNN deep learning model and then feeding useful features which can 

reconstruct raw 1D signal into machine learning model to make classifications. Instead of 

using CNN as black box, multiple tests in architecture of CNN have been applied. An 

accurate prediction model for alcohol consumption would be very useful and open avenues 

into research where self-reporting of alcohol consumption would no longer be necessary, 

giving more accurate prediction results. In our study, all the experiments are based on 
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sensor data collected from a newly developed mobile ambulatory assessment system for 

automatic detection of alcohol usage and craving, ADA [96]. We feed our proposed models 

into ADA system to have a better prediction performance. Furthermore, it acts as proof that 

useful features of waveforms outside of audio can be extracted by CNNs and outperformed 

with other traditional hand engineer features. The findings in this work are only the 

beginning of this area of research that will continue to expand. In terms of evaluation of 

performance of the model with our proposed method, we collected 16 real subjects with 

multiple drinking periods to make classifications. Our experimental results show the 

features extracted by deep learning have 19% accuracy improvement compared with other 

feature extraction methods. 

4.3  Related Work 

Deep learning for classification task has been widely used in multiple domain, 

including image and audio. However, due to the limitation of physiological bio-sensor data, 

raw input with deep learning classifier may not be a good solution. Feature extraction from 

raw input is necessary. In this section, we will discuss the existing work and its potential 

problem for feature extraction of physiological sensor data and the solution of few labeled 

data. 

4.3.1 Physiological sensor data collection and analysis 

Wireless body-area sensor networks have been a hot topic and used for a variety of 

applications in mobile health, physiological monitoring, and context aware computing. 

Mobile systems have been developed to continuously collect biosensor and self-report data 

to assess or predict psychological states [73,81]. For example, in [73], the iHeal project 
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uses a biosensor that measures electro-dermal activity, motion, temperature, and heart rate 

to attempt to identify substance cravings. When the system detects a change in sympathetic 

nervous system activity, it collects information from the biosensor and self-reported 

information from the user about stress, cravings, activities, and other various information.  

Self-assessment of emotion, usually through surveys, provides important, yet 

oftentimes inaccurate information [78]. In lab experiments in [72], users correctly self-

assessed their own stress only 84% of the time. To try to explain the incorrect self-

assessments, humans do not necessarily experience emotions in a binary way. For example, 

a person can experience different degrees of happiness at different times. Another problem 

with self-assessed psychological information in a natural environment is there is little 

control over the participants’ physical and social environments, unlike in a laboratory 

setting, which makes the ability to identify the participants’ contexts critical [79].  

Research to identify drug use in daily life is also being actively pursued. In [80], 

experiments and analysis were done separately in field studies and in labs. Mathematical 

models were built to predict if the subject has used cocaine. A main difference between 

detecting cocaine use and alcohol use is that the effect of cocaine is much greater and 

sharper on the human body when compared to alcohol use or smoking cigarettes. 

4.3.2 Feature Engineer of Physiological Sensor  

In recent years, bio-sensor data, like EEG, ECG, are used to analyze human activity 

and prevent human disease, like sleeping quality assessment [97], [98] and disease 

detection [93]. Most of their model pipeline uses preprocessed data to transfer the data into 

different format using data transformation, like spectrogram [97], [98] or FFT 
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transformation [97], [98], and then use statistical features to represent the transformed data 

to make predictions. However, feature extraction based on transformed data may lose raw 

data information and selection of transformation methods is arbitrary for different domains 

of bio-sensor study. To avoid problems of transformation, feature engineering on raw data 

is also provided by multiple bio-sensor research studies [99]. Most of them use statistical 

features, FFT features and other domain features for each window of raw data to establish 

feature pools and then feed them into machine learning pipeline to make predictions [94], 

[100]. This method may incur several problems: (1) high dimension of features; (2) domain 

knowledge required; (3) arbitrary feature selection. Even though it may have promising 

results on some domains [94], [98], [100], it may not be the most robust solution to other 

biosensor studies. 

4.3.3 Few Labeled Data  

Another common scenario happening in bio-sensor data is few labeled data 

problems, especially in drug detection [95]. Most of the successful model using deep 

learning on biosensor data are based on large scale labeled data to train a better model using 

supervised learning. Deep learning on classification needs large scale labeled data, like 

COCO [101] and ImageNet [102]. On time series domain, most of the promising results 

are generated from many labeled events’ data using deep learning [103]. In order to solve 

out this problem, feature extraction of raw input sensor signal data using unsupervised 

learning [104], [105] and few-shot learning [106] are promising methods. Recently, auto-

encoder for feature extraction [107] are used to work on MFCC 1D signal data. The feature 

extracted from bottle-neck layers of Deep Neural Network will be used to feed into other 
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machine learning classifiers which are good at working on few labeled data problems. 

However, it may incur two important factors of performance for feature extraction using 

auto-encoder. (1) performance of reconstruction. Since the complexity of input data, it may 

not get good performance for all types of signal data. If the reconstruction is bad, 

represented features from bottle layers may not be useful for prediction. (2) Dependency 

data. In the time-dependency or spatial dependency data, most of auto-encoder does not 

consider the correlation of each input data point. Most of them are treated as independent 

points and it may lose information of correlation.  

4.4  Automatic Drinking Analysis (ADA) 

 ADA is a data analysis and machine learning system designed to investigate the 

relationship of many factors related to alcohol use, including participants’ activities, 

emotional states, emotion dysregulation, and surroundings in order to better understand the 

conditions and triggers of alcohol usage and craving. All sensor and survey data are first 

cleaned and then analyzed or run through machine learning methods.  Next, two main 

components of ADA will be discussed in detail. One is data preprocessing that cleans 

sensor data and survey data automatically. The other is statistical data analysis and 

visualization, enabling domain experts to understand the data and perform their 

investigation and discovery. 

4.4.1 Sensor Data Cleaning 

The physiological data obtained using mAAS came from the Affectiva Equivital EQ2 

sensor and Hexoskin Wearable Body Metrics. Due to the project’s integration of multiple 
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sensor data sources, the raw data are heterogeneous, which needed to be addressed prior to 

analysis. A few issues were: 

• Sampling frequency of accelerometer data did not match heart rate, breathing rate, 

and RR interval. 

• The EQ2 sensor exported multiple files for each metric, each containing features 

needed for analysis.  

• The sensor would generate a new file, whenever the user would take off the sensor, 

therefore each day of data collection included a different number of files.  

• Timestamps were not specified in a uniform format between the EQ2 sensor and the 

Hexoskin. 

 The data cleaning module corrects mismatched data format, removes outliers and 

missing values, filters out noisy data, and smooth out the data using regression.  

Fig. 9 shows an example of a patient’s sensor data of heart rate, breathing rate, 

activity, and skin temperature in one day. The data are noisy with large fluctuations and 

missing data (points with 0 values).  
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Figure 9. Raw signal visualization 

After removing all missing values, Loess Smoothing Model, a locally weighted 

method, is applied to smooth out the noisy data. Equation (14) shows the weighted function 

of Loess Smoothing: 

𝑤𝑖 = (1 − |
𝑥−𝑥𝑖

𝑑(𝑥)
|3)3                              (14) 

Where x is the predictor value associated with the response value to be smoothed, xi are 

the nearest neighbors of x as defined by the span, and d(x) is the distance along the abscissa 

from x to the most distant predictor value within the span. In this study, a span parameter 

of 0.01 is chosen, since the observation number is large enough. After fitting Loess model 

for the four types of data, the outliers were detected using a 95th percentage confidence 

interval. In Fig. 10, the red crosses are the outliers detected by Loess model, the black solid 

line is the Loess fitting result, and the blue points are smoothed data.  
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Figure 10. loess fit and outlier remover for physiological signal 

 To find the underlying tendency of the smoothed signals, a moving average, median 

filter, and a smoothing spline were applied. Equation (15) shows the object function of 

smoothing spline spline 𝑠: 

min   𝑝 ∑ 𝑤𝑖(𝑦𝑖 − 𝑠(𝑥𝑖)𝑖 )2 + (1 − 𝑝) ∫(
𝑑2𝑠

𝑑𝑥2)2𝑑𝑥            (15) 

Where p is the smoothing parameter between 0 and 1, 𝑤𝑖 is the weight, and 𝑥𝑖 and 

𝑦𝑖 are a training example. If p = 0, this will produce a least-squares straight-line fit to the 

data, while if p = 1 produces a cubic spline interpolant. The smoothing parameter of 0.5 is 

chosen for all signals. Fig. 11 shows the result of the fitting given the result shown in Fig. 

10. The legend shows the quality of the smoothing line, the 𝑅2  value, has a close 

correspondence with how noisy the original data are.  
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4.4.2 Survey Data Cleaning 

 The other type of data in this research is survey data, collected using mAAS’s 

survey module from subjects in the natural environment. While using the smartphone app, 

the users answer questions during different times of the day. The survey data includes 

different attributes, such as the type of survey trigger, survey time, user ID, and many 

different survey questions. For example, the survey questions for mood dysregulation 

include how much did your mood change, are you in a better or worse mood now than 

before, and what triggered your mood change. Based on the user's responses, different 

mood indexes are calculated in automatically. 

A goal of the research is to identify when drinking episodes occur in order to predict 

alcohol usage from the sensor and survey data. A drinking episode is defined as when the 

subject endorses the activity of drinking alcohol. To determine a drinking episode from 

survey data, a dynamic moving window searching algorithm was developed.  

 

Figure 11. Cleaned physiological signal 



68 
 

Because the survey data report discrete drinking times, which have unknown time 

offsets from real drink activities, the reported drinking time points are enlarged to a window 

of time. In our experiments, the window size is 2 hours. If a user has multiple drinking 

events in one window, they are all considered as one drinking episode. As the window 

moves, if the user has another drink within the two-hour window, it will be considered the 

same drinking episode, but the number of drinks and drink times will increase. If the user 

does not have a drink within the two-hour window, the current drinking episode ends, and 

the next drinking episode will begin when the subject drinks again. Therefore, the subject 

may have many drinks and drink times during one episode and there may be multiple 

episodes in one day. One important variable used in this research is the number of drinks 

per episode.  

4.5  1D CNN for feature engineer 

 Due to the limit and problem of 1D bio-sensor physiological data, current work 

mentioned in related work may not be the best solution. In our section, we proposed a novel 

deep learning feature extraction on 1D bio-sensor physiological data. This method mainly 

uses Convolution Neural Network and keeps encoder-decoder shape to extract features of 

raw input signal data without any transformation or information loss. The convolution 

operator will consider the information of time correlation and encoder-decoder shape will 

help to extract useful features of raw input. In addition, unsupervised learning for feature 

extraction will solve out the few labeled data problem in bio-sensor physiological data. 

After generating features from deep learning feature extraction, it will be fed into machine 

learning classifiers, like SVM, to make classification and prediction of drinking action of 
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subjects in real lives. In order to prove the efficiency of our proposed method, real subjects’ 

data generated from ADA [96], which is the data process and analysis pipeline focusing on 

Hexoskin sensor data, will be used to make prediction.   

4.5.1 Data preparation  

 The sensors used, the Equivital EQ2 and Hexoskin smart shirt, collected the sensory 

data. The data collected was heart rate, breath rate, skin temperature, and activity level, at 

a frequency of one recording every 5 seconds. We used ADA system [96] to find the 

drinking episode based on self-report survey data. Every time the user consumes a drink of 

alcohol, they fill out a survey which then indicates in the data when the drink was consumed. 

The data is set up so that each row has the associated date and time, followed by the sensor 

data and survey data. While the survey also records the mood the user is in, the only data 

used for this research was the time, date, heart rate, skin temperature, activity and instances 

of alcohol consumption. After generating drinking episode data, we treat them as positive 

samples. For each drinking episode, we consider each 30 minutes as positive drinking 

blocks to keep time series correlation information. In terms of negative samples, because 

there are much more data point than drinking data for each study user, down-sampling 

method is applied to figure out the unbalanced classification problem. In order to compare 

the model performance, we randomly selected negative samples from non-drinking days 

for each user to make it a 50:50 ratio. Finally, in our research, two types of classifications 

are demonstrated, one is within-subjects, the other one is cross-subjects. Within-subjects 

case are using 80% one user’s data as training data, the remaining data for this user are test 

data, all the data are sorted by time order to mimic the real scenario. Cross-subjects are 
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using 80% user’s data as training data, the remain users are test data in order to test the 

generalization across all the people. In our study, there are 214 samples used as training 

and 50 samples as testing for within-subjects case. For the Cross-subjects case, 212 samples 

are used as training and other 52 samples are testing from 3 independent subjects. In order 

to generate competitive results, 4 methods are demonstrated in our experiments, stats-

feature engineer, CNN-based feature engineer, ResNet50, and SVM with raw input for 

classifications. 

4.5.2 Descriptive statistics features 

  To describe features of each signal, basic descriptive statistical features are 

calculated to represent each data block. It is the common way in physiological domain to 

analyze the data block. Since the complexity and noise of information for each drinking 

block and some information are redundant for future analysis, basic tendency will be 

discovered using descriptive statistics. In terms of our physiological data block, we follow 

the other papers’ work [94], [100] to extract mean, standard deviation, covariance, 

skewness, range, root mean square, zero crossing rate, and mean crossing rate for each 

signal. In our study, there are 3 signals for consideration, heart rate, skin temperature and 

accelerator, so there are 24 features in the dataset. Due to the limitation of sample size, we 

hold the view that 8 features for each signal would be enough for future analysis. 

4.5.3 CNN-based features 

 The popular CNN model for signal analysis is to transfer the signal into 

spectrogram, however, in physiological data, it may have many limitations, because of the 

low frequency of raw signal. Spectrogram transformation will lose significant information 
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and no pattern can be recognized. In our experiments, instead of using any transformation, 

we only work on the raw signals to extract features using CNN. In addition, due to the 

number of labeled data are limited and lots of unlabeled data are not redundant, we also 

want to take advantage of unlabeled data to improve the models. We proposed a novel 1D 

CNN feature extraction for physiological data, the methods we used came from image 

segmentation. In the image segmentation, encoder-decoder architecture has been much 

more popular than other segmentation models, like Unet [108] and Segnet [109]. The key 

idea is to use encoder to down sample the raw input into high level feature description and 

use decoder to reconstruct the high-level feature into raw segmentation. In our work, we 

combine semantic segmentation and auto-encoder ideas together, our input of architecture 

are raw signals and output is same as input. Our goal is to let CNN models reconstruct the 

raw signal. If performance of reconstruction is pretty good, the bottleneck features in the 

middle will be very important features to represent the input. As shown in the Fig. 17, Our 

proposed network keeps encoder and decoder shape with multiple convolution block. For 

each convolution block, it contains convolution operator with 1*3 kernel, zero-padding and 

activation function. In our convolution operator, the formula is as follow:  

    (16) 

Where xi
l−1  is 1D time-series signal data from l-1 layer, I is kernel size of convolution 

filter, j is jth output of convolution operator, wij is weight matrix as convolution filter with 

I*J dimension, bj
l is bias vector with j dimension in layer l,  is dot production. Based 

on previous formula, the x dimension will be reduced on the boundary. In case of losing 

information of boundary, in our implementation, zero-padding on boundary are added in 

each convolution block. After convolution operator, activation function is applied to the 
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output of previous formula. In our experiments, multiple activation functions are tested 

based on our 1D signal data, finally, Leaky Relu is used in our network.  

    (17) 

where x is the output of convolution operator in each convolution block. Based on this 

formula, the effect of negative value of input are reduced to next block in network. In order 

to extract context information of input time series and make it robust to small variations 

for previous learned features, pooling layer is used in our network. The most popular 

pooling methods is to computer average value in each neighborhood at different position 

without overlapping, call Average Pooling. In our network, average pooling with kernel 

size 1*2 are used in first top 3 convolution block and 1*5 in the remaining blocks in 

encoder section. In terms of decoder section, the process in each convolution block is same 

as encoder section. However, the main difference in order to reconstruct the raw  input is 

unpooling layer. Unpooling method is to use extracted features to represent and evaluate 

the learned feature in the network. To perform unpooling, the position of each maximum 

activation value when doing max pooling need to be remembered. Then, the remembered 

position is used for unpooling. In our implementation, we did not remember the index of 

pooling layer since we use average pooling instead of max pooling. When use unpooling, 

all the receptive position will be given the same value of each point of input. The kernel 

size of unpooling layer is same as same level of pooling layer, respectively. In order to 

make reconstruction is independent with given information, we did not use U-Net [108] 

architecture which are connect encoder information into decoder section to improve the 

reconstruction performance. 
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4.5.4 Supervised Learning 

 To compare with other supervised learning, in our experiments, we also test two 

popular supervised learning method, ResNet50 and Support Vector Machine (SVM), using 

the same input. However, ResNet50 usually works on 2D image classification problems so 

that it cannot deal with 1D signal without any modification. In our implementation, all the 

2D convolution operator are modified into 1D convolution operator. All other parameters 

keep as same as original architecture. In terms of SVM, we considered each data point in 

the block as one feature instead of extracting any features.  

4.6  Experimental Result  

4.6.1 ADA Survey Data Analysis 

Table 9 shows the basic drinking statistics of 16 subjects, including the number of 

alcohol drinks, number of drinking activities, number of drinking episodes, and how many 

drinks in each episode for each subject, which represents different levels of alcohol use. 

All these numbers vary significantly from one person to another. 
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Table 9. statistics of survey data of all subjects in alcohol craving study 

 

 Next, we divided the survey data for each subject into two categories: drinking and 

non-drinking days’ data. If a person had at least one drink in a day, this day is considered 

as a drinking day of this person. Otherwise this day is a non-drinking day.  

 Fig. 13. shows an example for the analysis of drinking versus non-drinking day’s 

data. The graph shows how many drinking and non-drinking days for this subject in the 

title and how the mood changes for all days. The bar plots give the mean value of the 

number of drinks, number of drinking activities, and the number of drinking episodes for 

all days. Moreover, the different colors of each line demonstrate five different moods and 

how mood changes for each subject over time.  
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Figure 13. Graph of subject 1001’s survey data. (day comparison) 

 When comparing the plots of drinking and non-drinking day’s data, the mood level 

and mood changes are very different between these two plots. In Fig. 13, the Positive mood 

slightly decreases over time on drinking days but increases over time on non-drinking days. 

In addition, the level of different emotions for drinking and non-drinking days is different. 

The level of Sadness from 15 to 20 for non-drinking days is greater than 2 but it is less than 

2 for drinking days.  

Fig. 14 shows box plots for two subjects. They compare the distribution of mood 

data in drinking with non-drinking days. It is apparent that the distribution of some mood 

data for drinking days is significantly different from the distribution of mood in non-

drinking days. In addition, the two subjects have significantly different overall emotional 

levels. The distribution of sadness for subject 1001 for non-drinking days is remarkably 
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larger than that for drinking days. The median of level of sadness during non-drinking days 

for subject 1001 is 2.5 but that value is 1.0 for 1019. 

 

Figure 14. Box plots of two different subjects’ survey data (drinking day) 

Next, we investigated mood and drinking changes between drinking and non-

drinking times. Fig. 15 compares the mean mood for each subject between drinking and 

non-drinking times. The bar plot also indicates the mean value of drinking. In Fig. 15, it is 

clear to see how alcohol affects mood for subject 1001. Positive mood changes differently 

during drinking times when compared with non-drinking times.  

 

Figure 15. Graph of subject 1001’s survey data. (time comparison) 
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 Fig.  16 shows the box plot of mood for each subject’s survey data during drinking 

versus non-drinking times. From the plots, some significant differences can be seen, for 

example sadness in the top graph, for each subject. In addition, different subjects have 

different mood levels, e.g. sadness for subject 1001, when they are drinking, as shown in 

Figure 16. 

Table 10. The value in the left sub-column is drinking day’s p-value for each subject.  

 

 We also tested whether the levels of each emotion within a drinking day was 

different that for a non-drinking day, as well as for a drinking versus non-drinking time. In 

Table 10, the p value of the drinking effect based on an Unbalanced Nested ANOVA is 

presented. This approach treats drinking as the main effect, and data included each 

participant’s emotion score values, using matched times between drinking and non-

drinking. If there was no matched time available for a participant, a null value to the p-

value was indicated. In Table 10, at most 40% in the sample have significant differences 

for negative affect during drinking versus non-drinking matched times. Considering 

drinking day results indicated that approximately around 25% in the sample shows a 

significant effect for drinking across all emotions.  
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Figure 16. Box plots of two subjects’ survey data (drinking time) 

Next, we used the Shapiro-Wilk test to determine whether the mean and variance 

of emotion scores were significantly different between drinking and non-drinking across 

all subjects. Table 11 indicates that the variance of positive affect scores is significantly 

different for drinking time while the means of the other four affect scores are statistically 

different. Table 12 shows the percent increase or decrease of scores by drinking versus 

non-drinking status, e.g. for mean hostility scores. There is a decrease of 9.68% across all 

subjects when drinking alcohol. Results from these two tables suggest that drinking time 

versus day reveals more differences in level of emotions for this sample. In addition, the 

variance of positive affect significantly decreases (i.e., -27.46%) when people drink 

alcohol.  

Table 11. Comparison of mood in drinking day/time 

 

Table 12. Increasing ratio of mood in drinking day/time 
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4.6.2 Analyzing combined sensor and survey data of ADA 

In this section, results of analyzing sensor and survey data together are reported. 

All the drinking day’s data are summed together, for each of the four physiological indices 

mentioned above, and then the mean value is calculated for each minute to generate the 

plots for the drinking times’ data, as shown in Figure 17. The blue dots represent the mean 

value averaged by minute. Since the dot plots are too noisy to see any tendencies, the 

smoothing spline was used again. The black solid line in Figure 16 shows the smoothing 

line for these values. The smoothing plot for the four variables is created by combining the 

sensor data with the mood data for each subject. The mood data is found in the survey data. 

Some basic tendencies in the physical data for this subject are clearly seen. The plots show 

the respective physical indexes during periods of drinking times for this subject. 

 

Figure 17. The smoothing graph for 4 signals of all data for 1001  
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As with the survey data alone, an unbalanced Nested ANOVA for individual case 

was conducted. We tested whether levels of four physiological variables differed during 

drinking versus non-drinking periods for each individual.  

Table 13. Drinking Effect for Each Individual 

P Value of Drinking Effect for Each Individual 

ID Heart Rate Breath Rate Activity Skin Temp 

1001 0.201 0.182 0.352 0.066 

1003 Null Null Null Null 

1004 0.000 0.001 0.224 0.432 

1005 0.001 0.014 0.001 0.639 

1007 0.741 0.263 0.163 0.186 

1008 0.000 0.004 0.006 0.797 

1010 Null Null Null Null 

1013 0.970 0.158 0.035 0.386 

1019 0.450 0.162 0.578 0.011 

1020 0.000 0.949 0.051 0.035 

 

Table 13 shows p value of the drinking effect for four physiological factors 

mentioned above for each subject, within the same time block. If there was no matched 

time between drinking and non-drinking periods for an individual, the system assigned a 

Null value. Four out of eight participants showed significantly different heart rate levels 

during the drinking versus non-drinking periods, and at most 3 out of 8 showed 

significantly different for other indexes. After calculating mean value of these four indexes 

for each subject, the results shows heart rate increases 8.78% in drinking compared with 

non-drinking. These results suggest that heart rate are promising candidates for the 

prediction of alcohol use. 
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Table 14. Correlation matrix between heart rate, breathing rate, activity, and skin temp and 

different indexes of drinking alcohol for subject 1001 and 1005. 

 

 

Pearson correlations were computed to test the associations between sensor and survey 

data. Table 14 shows the correlation matrix for two individuals. For subject 1001, activity 

(-0.86) and skin temperature (-0.44) has a strong negative correlation with the number of 

drinking episodes, the activity variable has a strong negative correlation on number of drink 

times (-0.60), and skin temperature has a strong correlation on drink quantity (-0.56). 

However, for subject 1005, the correlation patterns are different, suggesting individual 

differences in these associations. Table 15 shows the mean and variance of correlations for 

8 subjects mentioned in Table 15. The mean correlational value for each index is relatively 

low but the variance is quite high, suggesting high variability across participants. Overall, 

this is consistent with our conclusion that there is a wide range both physiological reactions 

and physical movements when drinking alcohol. Analyses at the individual level seem 

warranted. 

Table 15. correlation between the four factors and different indexes of drinking alcohol 

for 8 subjects 
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4.6.3 Experimental Design for Deep ADA 

 In our experiments, there are two types of experiments, one is within-subject case, 

the other one is cross-subject case. In the within-subject case, there are 26,366 unlabeled 

data blocks across 8 subjects, need to be trained using 1D CNN. In order to test the 

performance of reconstruction, all the labeled data are used as testing data in 1D CNN. 

After extracting features from human engineer and 1D CNN, there are 214 data blocks 

across 8 subjects with 80 % head of time as training data, the remaining 50 data blocks as 

testing data. The cross-subject cases are similar as within-subject cases, however, the main 

difference is how to prepare the training and testing of data. In this scenario, we use 5 

subjects’ data as training, the remaining 3 subjects’ data considered as testing. In order to 

train 1D CNN model, there are 13,450 unlabeled data blocks across 5 subjects are used in 

the training and remaining labeled data across 8 subjects as testing. In training machine 

learning classifier, 212 data blocks with half positive and half negative across 5 subjects 

are treated as training, remaining 52 as testing across other 3 subjects. There are three types 

of signals that are used in our experiment, heart rate, skin temperature and activity. For 

each signal, hand feature engineer will extract 8 types of statistical features, and 1D CNN 

extract the same number of features with reconstruction. 

After extracting features from hand feature engineer and 1D CNN models, we fed 

them into several popular machine learning models. The models we used in our experiment 

includes naïve bayes, decision tree, random forest, adaboost and support vector machine. 

Our machine learning pipeline implemented in Matlab and multiple parameters and kernels 

are tested in the experiments to get the best performance. The theory of each model has 

been discussed in the related work.  
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4.6.4 Within-subject cases 

 The experimental design has been discussed in the previous section. At first, we 

will go through the performance of 1D CNN reconstruction to see if our proposed model 

has capability to reconstruct the raw signal. As shown in the Fig. 18, the worst correlation 

between group truth signal and reconstructed signal on the test dataset are 0.7259, the best 

one is 0.9525. The MSE loss and correlation curve of train and test dataset have been 

demonstrated in the first two plots of Fig. 18, and all of them converged very well. The 

right two plots on the first row show that the majority of correlation in train and test dataset 

are around 95% and 85%, respectively. The mean of correlation of test data is 0.85. Due to 

the complexity of 1D bio-sensor physiological data, the reconstruction performance is 

promising to extract features which can be used to represent the raw input signal. As shown 

in the Table 16, we compare the performance of two unsupervised learning methods for 

feature extraction using statistical features and 1D CNN features with the same machine 

learning classifier model, and another two supervised learning models, ResNet50 and SVM. 

Based on the results, feature extraction from deep learning outperforms the hand extracted 

features by 19% accuracy improvement in test data compared with stats feature extraction 

methods. Compared with the other two supervised learning methods, both of them are over-

fitting on training dataset and our proposed methods outperformed them by around 21% 

accuracy. 

4.6.5 Cross-subject cases 

 The experiments in cross-subject cases are similar as within-subject cases. 

However, because of the variation of distribution of train and test in cross-subject cases is 
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greater than its in within-cases, it makes the classification task on cross-subject cases 

harder. As shown in Fig 19, the mean of correlation in cross-subject cases is 0.81, most of 

the correlation in train and test is 0.9 and 0.8, respectively, worse than its in within-cases. 

The reason why it has worse performance compared to within-subject cases is that some of 

users’ data was not provided in the training phase, however, in the within-subject case, all 

the unlabeled data were used to extract feature. Even though the result is a little bit worse, 

the features extracted from bottleneck layer are still able to reconstruct the tendency of raw 

input signal. However, the results showing in the Table 17 using 1D CNN features 

extraction are still better than stats feature extraction by 19%. Same as within cases, it has 

the same overfitting problem on two supervised learning methods so that our proposed 

methods outperform the other two models by 24% accuracy improvement. 

4.7  Conclusion  

In this chapter, the design, implementation, and preliminary analysis results of 

ADA are presented. The system is reliable, fast, and easy to use.  Our analysis results show 

that the variability of positive affect decreases significantly and the mean level of negative, 

fear, hostility, and sadness affect also decrease significantly when people are drinking 

alcohol. In addition, we found that heart rate appears to be promising predictors of alcohol 

use. At the same time, it is important to note that there appear to be important individual 

differences in physiological reactions and physical activity associated with drinking 

alcohol. Finally, the results for drinking time (versus drinking day) reveal more significant 

patterns of association between both mood and physiology and drinking. 
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  On the other side, we extend ADA system with a novel deep learning-based feature 

extraction method on bio-sensor physiological data. Our proposed method mainly focuses 

on extracting features using convolution operator. This method has 3 advantages, first, it 

can solve out the problem of losing information when transforming input signals into other 

data structures. Second, it also considers time-correlation in input signal when we use 

autoencoder to extract feature and reduce dimension. Finally, with the significant amount 

of unlabeled and few labeled data cases in bio-sensor physiological data, our proposed 

model fully utilizes all the provided data in the experiment. Based on our experiments, 

multiple cases of studies have been tested, and our proposed method outperforms other 

state-of-the-art models with the same bio-sensor dataset. This method can be migrated into 

other low frequency sensor data domains. 

 In a focus group interview in [73], participants indicated they would prefer more 

interactive interventions, such as games or calming music. Once our system can predict 

alcohol and the mental state of the users more accurately, context-aware features may be 

added. This might include various interactive intervention methods in cases of predicted 

alcohol craving or mood dysregulation. 
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Table 16. classification result of within subject case 

 

Table 17. classification result of cross subject case 
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5. CONCLUSION 

In this dissertation, we proposed data mining and two novel deep learning based 

algorithm to figure out problem in ambulatory assessment and aerial image detection.  

In terms of aerial image object detection, for the problem of bird counting in aerial 

images, we compared the performance of different types of deep learning architectures for 

this problem. Based on the results, more discussion of character for each deep learning 

object detector has been made for this problem. Among object detection methods, 

RetinaNet performed the best on both cases. Between instance segmentation methods, U-

Net achieved better performance than Mask R-CNN. These results are useful for 

identifying the strengths and weaknesses of existing methods and the development of 

future methods with improved performance.  

In addition, after comparing the performance of the state-of-the-art models, novel 

deep learning algorithm, adaptive saliency biased loss (ASBL), has been proposed to deal 

with the problem of object detection in aerial images. The method use complexity 

information of input images to weigh the inputs differently in training. Without loss of 

generality, the ASBL approach was applied to RetinaNet to show its effectiveness. Using 

two large benchmark datasets, DOTA and NWPU VHR-10, experimental results show that 

ASBL-RetinaNet outperformed existing state-of-the-art deep learning methods, with at 

least 6.4 mAP improvement on DOTA, and 2.19 mAP on NWPU VHR-10. Furthermore, 

ASBL-RetinaNet improved over the original RetinaNet by 3.61 mAP on DOTA and 12.5 

mAP on NWPU VHR-10. 
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In terms of ambulatory assessment analysis, the ADA algorithm for alcohol craving 

is reliable, fast, and easy to use.  Our analysis results show that the variability of positive 

affect decreases significantly and the mean level of negative, fear, hostility, and sadness 

affect also decrease significantly when people are drinking alcohol. In addition, some other 

patterns in physiological data has been demonstrated in this dissertation. Based on all the 

analysis made in ADA, further analysis using machine learning has been used. In terms of 

the problem of feature extraction in physiological domain, we extended ADA using a novel 

deep learning based feature extraction method for raw 1D signal, called Deep ADA. 

Proposed method mainly focuses on extracting features using convolution operator. This 

method has 3 advantages, first, it can solve out the problem of losing information when 

transforming input signals into other data structures. Second, it also considers time-

correlation in input signal when we use autoencoder to extract feature and reduce 

dimension. Finally, with the significant amount of unlabeled and few labeled data cases in 

bio-sensor physiological data, our proposed model fully utilize all the provided data in the 

experiment. Based on our experiments, multiple cases of studies have been tested, and our 

proposed method outperforms other state-of-the-art models with the same bio-sensor 

dataset. 
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