
EMPIRICAL STUDY OF DEEP NEURAL NETWORK

ARCHITECTURES FOR PROTEIN SECONDARY

STRUCTURE PREDICTION

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Ming Du

Dr. Yi Shang, Thesis Supervisor

May 2017

The undersigned, appointed by the Dean of the Graduate School, have examined the

dissertation entitled:

EMPIRICAL STUDY OF DEEP NEURAL NETWORK ARCHITECTURES FOR

PROTEIN SECONDARY STRUCTURE PREDICTIONx

presented by Ming Du,

a candidate for the degree of Master of Computer Science.

And hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Yi Shang

Dr. Dong Xu

Dr. Ioan Kosztin

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Yi Shang for all of his guidance,

support and patience for all these time. I also would like to thank Dr. Dong Xu for

the professional opinions and valuable advises he gave me. And, I would like to thank

Dr. Ioan Kosztin for being on the thesis committee. I would like to specially express

my gratitude to my friend Pinwen Xu, he provides me the Alienware computer to run

all the experiments.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

CHAPTER .

1 INTRODUCTION . 1

2 RELATED WORKS . 3

2.1 Recurrent networks . 3

2.1.1 Long Short term memory . 4

2.1.2 Long short term memory . 4

2.1.3 Gated recurrent unit . 7

2.2 DNNs for protein secondary structure prediction 8

3 DEEP NEURAL NETWORK ARCHITECTURES FOR PRO-
TEIN SECONDARY STRUCTURE PREDICTION 10

3.1 Problem definition . 10

3.2 Network architecture . 11

3.2.1 Input and output . 12

3.2.2 Preprocessing . 13

3.2.3 Multiscale convolution . 13

3.2.4 Recurrent layers . 14

3.2.5 Output layers . 15

3.2.6 Loss and optimizer . 16

iii

4 DESIGN AND IMPLEMENTATION OF A DNN LEARNING
SYSTEM IN TENSORFLOW FOR PROTEIN SECONDARY STRUC-
TURE PREDICTION . 17

4.1 System design . 18

4.1.1 A brief introduce of TensorFlow mechanism 18

4.1.2 Overall design . 19

4.1.3 Training, evaluation, inference module design 20

4.1.4 Implementation details . 23

4.1.5 Input . 23

4.1.6 Multi-scale convolution . 25

4.1.7 Recurrent layer . 25

4.1.8 Output layers . 27

4.1.9 loss function . 27

4.1.10 Accuracy operator . 28

4.1.11 Training Monitor . 29

4.1.12 Save and Restore . 30

5 EXPERIMENTS AND RESULTS 31

5.1 Data . 31

5.2 Experiments . 31

5.2.1 Experiment on loss function 32

5.2.2 Experiment of different output layers 34

5.2.3 Experiment of different hidden unit in RNN layer 35

5.2.4 Final result . 36

6 SUMMARY . 39

APPENDIX . 41

iv

A Title of first appendix . 41

A.1 Source Codes . 41

BIBLIOGRAPHY . 42

v

LIST OF TABLES

Table Page

3.1 secondary structure labels . 11

4.1 Comparison of Static and Dynamic RNN 26

5.1 result of different loss functions . 33

5.2 result of different output layers . 34

5.3 result of different hidden unit numbers 36

vi

LIST OF FIGURES

Figure Page

2.1 recurrent network . 4

2.2 unrolled recurrent network . 5

2.3 Detail inside recurrent unit . 5

2.4 Detail inside LSTM . 6

2.5 details in GRU . 8

3.1 Overall architecture . 12

3.2 preprocess layer . 13

3.3 multi-scale convolutional layer . 14

3.4 Recurrent layer . 16

4.1 System overview . 20

4.2 Detail inside modules . 22

4.3 Distribution of protein length . 23

4.4 Input Queues . 24

4.5 Variable length batch Input . 28

4.6 Tensorboard visualization . 30

5.1 result of different loss functions . 33

5.2 result of different output layers . 35

5.3 result of different hidden unit numbers 37

vii

5.4 Detail result of different hidden unit numbers 38

viii

ABSTRACT

Protein secondary structure prediction is a sub-problem of protein structure pre-

diction. Instead of fully recovering the whole three dimensional structure from amino

acid sequence, protein secondary structure prediction only aimed at predicting the

local structures such as alpha helices, beta strands and turns for each small seg-

ment of a protein. Predicted protein secondary structure can be used for improving

fold recognition, ab initial protein prediction, protein motifs prediction and sequence

alignment.

Protein secondary structure prediction has been extensively studied with machine

learning approaches. And in recent years, multiple deep neural network methods have

pushed the state-of-art performance of 8-categories accuracy to around 69%. Deep

neural networks are good at capturing the global information in the whole protein,

which are widely believed to be crucial for the prediction. And due to the development

of high level neural network libraries, implementing and training neural networks are

becoming more and more convenient and efficient.

This project focuses on empirical performance comparison of various deep neu-

ral network architectures and the effects of hyper-parameters for protein secondary

structure prediction. Multiple deep neural network architectures representing the

state-of-the-art for secondary structure prediction are implemented using Tensor-

Flow, the leading deep learning platform. In addition, a software environment for

performing efficient empirical studies are implemented, which includes network input

and parameter control, and training, validation, and test performance monitoring.

An extensive amount of experiments have been conducted using popular datasets

and benchmarks and generated some useful results. For example, the experimental

results show that recurrent layers are useful in improving prediction accuracy, achiev-

ing up to 5% improvement on 8-category accuracy. This work also shows the trade

ix

off between running speed and building speed of the model, and the trade off between

running speed and accuracy. As a result, a relatively small size recurrent network

have been build and achieved 69.5% 8-category accuracy on dataset CB513.

x

Chapter 1

INTRODUCTION

Accurately and reliably predicting 3D structures, from protein sequences is one of

the most challenging tasks in computational biology, and has been of great interest in

bioinformatics. An important intermediate step of predicting the whole 3D structure

is correctly predicting the secondary structure of a protein[1]. In recent years, Deep

neural networks have been widely apply to the problem of protein secondary structure

prediction and continuously pushing the state-of-the-art forward. For example, in[2]

a convolutional Generative Stochastic Network achieved 66.4% Q8(8 categories) on

CB513 dataset. In [3] a convolutional recurrent network which is a combination

of convolutional network and recurrent network achieved 69.7% Q8 accuracy. And

in [4] they use a multi-scale convolutional network together with many techniques

that help accelerating training and prevent over-fitting, such as dropout[5], batch-

normalization[6] and regularization. The best Q8 result they report on CB513 is

70.6%.

One advantage of deep learning and deep neural network is the reusability. On

one hand, a certain kind of architecture can apply to different problems without much

modification. For example, a convolutional recurrent network similar to the one in

[3] have also been apply to video activity recognition and Video Description[7]. And

1

the convolutional architecture in[4] are originally used in image recognition. On the

other hand, most complex networks contain reusable modules such as different layers,

regularizer and optimizer. So in this case a good way to build a deep neural network

is using a reliable deep learning framework such as Torch, TensorFlow Caffe and

Theano. TensorFlow[8] is a python deep learning framework create by Google. Using

TensorFlow, it easy for researchers to visualize the graph and training process. And

the API designs make researchers code shareable, standardize how software engineers

approach deep learning.

The first goal the this work is to design and build a deep learning system that

handles the training, validation, evaluation and save/restore of deep neural networks

for protein secondary structure prediction. The second goal is to use the system

to compare the performances such as accuracy, running speed and building time of

different network architectures.

This thesis will show how to build different deep neural networks using TensorFlow

to solve the protein secondary structure prediction problem. And this work will

particular focus on how to build a recurrent network and the technique difficulties in

doing this. Chapter 2 will introduce the related deep neural network architectures that

designed for protein secondary structure prediction, and the mechanism of recurrent

neural network. And chapter 3 will describe the models in detail. Chapter 4 will

cover the design, implementation and technique difficulties. Chapter 5 will show the

result of all the experiments.

2

Chapter 2

RELATED WORKS

2.1 Recurrent networks

Different from other networks such as feed forward neural network(FFNN) and convo-

lution neural network, recurrent network works well on problems that have sequential

input such as speech recognition, language modeling, translation and image caption-

ing. Figure 2.1 shows how a typical recurrent network looks like. A loop in the

network allows it to pass the information from previous steps to the network to make

a decision for the current input. In contrast to the fix length context window used in

FFNN, RNN stores the activation of previous time step in hidden state and it provide

context information within a undefined window size.

However, training conventional RNNs using back-propagation technique is difficult

due to the vanishing gradient and exploding gradient problems[9]. The gradient

shifting problem make also make it difficult for the network to remember long time

dependency that longer than 5-10 time steps between input and output.

3

Figure 2.1: Illustration of recurrent network

2.1.1 Long Short term memory

In order to address the problem above, a special recurrent network architecture Long-

Short-Term Memory(LSTM) have been proposed[10]. LSTM and it’s variations have

been successfully applied to sequence prediction, translation and sequence labeling

tasks. The rest of this chapter will introduce how LSTM and one of its variantion

GRU(gated recurrent unit) works.

2.1.2 Long short term memory

To make it easier to understand the idea of LSTM, in Figure 2.2 the loop in the

network been unrolled and results in a fix length static version of the same network.

The operation in the two RNN version are the same, the difference is the static version

only take fix length input and don’t have to consider when to stop the iteration thus

it runs faster.

When we look at the inside of each recurrent unit(Cell), a conventional RNN can

be represent as Figure 2.3. The cell take the concatenation of input of time t and

output of time t-1 as input. Going through a dense layer the cell will output the

4

Figure 2.2: unrolled recurrent network

activation of the dense layer.

LSTM also have the same loop structure of conventional RNN, but it has different

structure inside the cell. Instead of having only a single dense layer in the cell, the

LSTM cell has four dense layers. One of them is the counter-part in conventional

RNN cell, the rest three, however, works as three ”gates” controlling the behavior of

the cell(Figure 2.4).

Figure 2.3: Detail inside recurrent unit

The first step of calculating the output ht of each time step is updating the cell

state Ct. Because the output of each time step is essentially the cell state masked

by a weight matrix. In order to update the cell state, the output of the first three

5

Figure 2.4: Detail inside LSTM

dense layer inside the cell needed to be calculated. They are forget gate layer, input

gate layer and tanh layer respectively. The activation of these three layers can be

calculated by using 2.1a, 2.1b and 2.1c. Then according to 2.2 the network will decide

how to update the cell state by forgetting some of the old state and remember some

of the new input state.

After updated the cell state, the network will calculate the output of this time

step using 2.3a and 2.3b. More specifically speaking, 2.3a calculate the output gate

weights ot and 2.3b apply the weight to the activation of cell state.

ft = σ(Wf · [ht−1, xt] + bf) (2.1a)

it = σ(Wi · [ht−1, xt] + bi) (2.1b)

C̃t = tanh(Wc · [ht−1, xt] + bc) (2.1c)

Ct = ft ∗ Ct−1 + it ∗ C̃ (2.2)

6

ot = σ(Wo · [ht−1, xt] + bo) (2.3a)

ht = ot ∗ tanh(Ct) (2.3b)

2.1.3 Gated recurrent unit

The gate recurrent unit(GRU)[11] is a variance of LSTM. In fact there are many

different version of LSTM. The version described in previous chapter is the simplest

one. One problem of this LSTM version is that the number of parameters is about

4 times of a conventional recurrent network, because it have four dense layers inside

the cell. And it have to keep the cell state which will consume more memory. These

problems slow down the speed of the network. The GRU is a special variance of

LSTM that only has three dense layer and doesn’t have the cell state.

As illustrate in Figure 2.5, GRU merge the input gate and forget gate in LSTM

cell into a single update gate zt. The update gate zt selects whether the hidden state

is to be updated with a new hidden state h̃. The reset gate rt decides whether the

previous hidden state is ignored. See Eqs. 2.4a-2.4b for the detailed equations of

r, z, h and h̃.

zt = σ(Wz · [ht−1, xt]) (2.4a)

rt = σ(Wr · [ht−1, xt]) (2.4b)

h̃ = tanh(W · [rt ∗ ht−1, xt]) (2.4c)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃ (2.4d)

7

Figure 2.5: details in GRU

2.2 DNNs for protein secondary structure predic-

tion

Despite some early attempts using neural networks as submodules to predict protein

secondary structure such as condition conditional neural fields [12]. Several end-

to-end trainable deep neural networks have also been proposed to solve the 8-class

secondary structure prediction problem. The first one is a convolutional Generative

Stochastic Network proposed by Zhou et al.[2]. This method achieved 66.4% 8-class

accuracy on CB513. This model is not very effective since simply using multiple

convolutional layers can also achieve 66% accuracy. The second method, or second

kind of architecture is using recurrent network combine with convolutional layers.

Sren[13] and Z.Li et al. [3] both proposed their recurrent neural network and achieved

8

67.4% and 69.7% 8-class accuracy respectively. The major difference of these two

method is the first one using 1 layer bidirectional long short term memory(LSTM)

cell as recurrent unit, the second one using 3 layers of bidirectional gated recurrent

unit(GRU) cell instead. Sren provides the theano source code of the method on

github and continues the development, the current best accuracy is 68.9%. The last

architecture is proposed by Busia et al.[4]. They stacks multiple convolutional blocks

which similar to inception architecture in the network and get 70.6% accuracy on

CB513. Their convolutional model is designed to mimic the behavior of a recurrent

sequence to sequence model and is evaluated using beam search.

9

Chapter 3

DEEP NEURAL NETWORK
ARCHITECTURES FOR
PROTEIN SECONDARY
STRUCTURE PREDICTION

3.1 Problem definition

The exact definition of protein secondary structure prediction in this work is the

following. Given the amino acid sequence a0a1...al−1, 0 ≤ i < l and the profile

p0p1...pl−1, 0 ≤ i < l of the of a protein. The goal is to predict the secondary structure

of the protein which can also be represented as a sequence s0s1...sl−1, 0 ≤ i < l. In

general there are 21 different kinds of amino acid, so each ai have 21 different classes.

And the profile pi is a vector of probabilities, pi[k] representing the possibilities of the

ith amino acid to be kth class. As for the si, it has following 8 classes.

10

label name
H alpha-helix
E beta-strand
L loop or irregular
T beta-turn
S bend
G 310-helix
B β-bridge
I π-helix

Table 3.1: The label and its correspond names of 8-class secondary structure

3.2 Network architecture

Z.Li et al. [3] proposed a deep convolutional and recurrent neural network for pre-

dicting protein secondary structure. In their work a multiscale convolutional layer is

followed by bidirectional GRU recurrent layers. This work follows their general archi-

tecture as illustrate in Figure 3.1 which have preprocessing, multiscale convolution,

recurrent and output four major parts. More details of these parts are explained in

the following sections.

11

Figure 3.1: Overall architecture

3.2.1 Input and output

Input

The input of the network have the shape of [sequence length, features]. In this work

the number of features is 42, which contains two parts. For each amino acid in the

sequence, the first 21 features is a one-hot-encoding indicate which amino acid it is.

The last 21 features are the profiles features obtained from PSI-BLAST[14] which is

a dense vector.

Output

The output the network have the shape of [sequence length, 8]. So for each amino

acid in the sequence it will output a one-hot-encoding to indication which secondary

structure it is.

12

3.2.2 Preprocessing

As illustrate in Figure 3.2 What the preprocessing module does is converting the

sparse one-hot-encoding of amino acid to a dense representation, and merge it with

the dense profile feature vector. In order to avoid the inconsistency of feature repre-

sentations. Same as the original work, a 21-by-50 embedding matrix is used. Another

poteintial benefit of using a embedding matrix is the embedding matrix can be ini-

tialized with a pretrained matrix which comes from a sequence auto-encoder.

Figure 3.2: preprocess layer

3.2.3 Multiscale convolution

After getting embedded features, the next step is using different 1-D convolutional

kernels to extract loacl context information from the sequence. As shown in Figure

3.3, total three kernels are used. Each of them have 64 output channels. And the

shape of the kernel are 3, 7, 11 respectively. The kernel will moving along the protein

with stride size 1. A concatenate layer will merge the output of three convolution

layers and then a RELU layer will generate the activation. So far the module is the

same as the one in original work. However in this work, a batch normalization layer

13

is added after the activation. This layer will normalize the output of the module

to have same distribution at each position and speed up the converging make the

network learn faster. However, while learning faster, the model is more likely to

overfit. Thus a dropout layer will also add at the end of this module.

Figure 3.3: multi-scale convolutional layer

3.2.4 Recurrent layers

In addition to the local dependency extracted by convolutional network, Z.Li et al.

[3] argued that long-range dependency is also important for secondary structure pre-

diction. However a convolutional layer can not capture dependencies that longer than

the kernel size. In order to capture long-range dependencies, bidirectional recurrent

layers are placed after the multiscale convolution layer. Although conventional recur-

rent network are able to capture long dynamic range dependency, it very difficult to

train due to gradient vanishing problem. So in recent years, only RNN with LSTM

cells and its variance are practically used. In this work, are used instead of standard

LSTM since it has less parameters and can achieve comparable result[15]. Figure

3.4 shows the structure of a single bidirectional GRU layer. In this layer, there are

14

actually two RNN layers, a forward layer scan from the first position of the sequence

to the last position, and a backward layer which scan from the last to the first posi-

tion. And the output features of forward and backward layer at each position will be

concatenated together to form the final output of the bidirectional GRU layer.

3.2.5 Output layers

The main function of the output layers is adjusting the dimension of the feature from

previous layer to match the size of the label. In typical classification task, several

fully connected layers are served for this purpose. For example in [3] 2 fully connected

layers are put together, adjusting the hidden feature to the size of 14 for each residue

in the sequence.

However busia et al. [4] use a little different approach. In stead of using the hidden

feature of each amino acid as the input of the fully connected layer, they use a sliding

window of 11, and use the flattened context features of 11 amino acid as the input of

the fully connected layers. Inspired by the sliding window method, this work use a

simple convolution layer of kernel size 11 for the same purpose, because it easier to

implement.

15

Figure 3.4: Recurrent layer

3.2.6 Loss and optimizer

The loss function are composed of three parts, the average cross-entropy loss between

predicted secondary structure and true secondary structure, the average cross-entropy

loss of solvent accessibility and the summary of all l2 norm weight regularization. For

each protein sequence of length l the loss function formulate as equation 3.1a.

Loss =
1

l

l

Σ
i
Ls(si, s

∗
i) +

λ1
l

l

Σ
i
La(ai, a

∗
i) + λ2Σ ‖θj‖2 (3.1a)

Ls(si, s
∗
i) = −s∗i log(si) (3.1b)

La(ai, a
∗
i) = −a∗i log(ai) (3.1c)

Where si, ai represent the predicted secondary structure and solvent accessibility for

each residue. s∗i , a
∗
i represent is the true label and θj is the weight to be regularized.

Adam optimizer [16] are used for training the network.

16

Chapter 4

DESIGN AND
IMPLEMENTATION OF A DNN
LEARNING SYSTEM IN
TENSORFLOW FOR PROTEIN
SECONDARY STRUCTURE
PREDICTION

Deep learning in these days are not just simply building a model, train it on training

set and test it on testing set. On one hand, there is a common trend in recent de-

velopment of new network architectures. That is modularization, instead of finding

a best architecture for a certain task, the most exciting and successful techniques

are focusing on finding modules or strategy that can be add to current architectures

and improve the performance. For example, dropout and batch normalization are

layers that can be add after every activation in order to speed up the learning and

prevent overfitting. And residue net and inception [17] construct their structure by

stacking modules repeatedly. So a good deep learning program should be able to

easily add or remove certain module or function to/from the model. On the other

17

hand, while the network architecture becoming more complex and the dateset getting

bigger, the training time are getting longer and often need to run the program on

GPU, multi-GPUs or clusters. In order to meet different requirements without chang-

ing the program too much, a robust and flexible program are needed. Fortunately,

TensorFlow provides excellent building blocks to build such programs and the follow-

ing sections will introduce the design and TensorFlow implementation of a system

that has training, validation, testing, inference, logging, monitoring and save/restore

functions.

4.1 System design

4.1.1 A brief introduce of TensorFlow mechanism

The unique way of how TensorFlow works have a huge influence on the system de-

sign fashion. So it’s important to have some understanding of TensorFow, before

introducing the system.

There are two major parts in every TensorFlow program, that is graph and session.

1. Graph: a computational model contains all the operation you want to perform

on the dataset.

• The graph is only a data structure record all the operations that will be

executed when data feed into the graph.

• The graph can’t run by itself, it need a session to provide the running

environment.

• Once the graph is finalized, the structure of the graph can not be changed

anymore.

2. Session: encapsulates the environment for a graph to be executed.

18

• the environment include data input/output, multithread coordinator, save/restore

mechanism, logging and monitor.

• Training, validation, and early stopping will handled by session

4.1.2 Overall design

As illustrate in Figure 4.1, the system has four module in general:

1. Main module: The most important module in the system, contains the network

architecture described in Chapter 3. And inside the main module, there are

three sub-modules in order to separate the training validation and inference

procedure. This design makes it possible to run the training, validation and in-

ference procedure using different threads and on different devices(CPUs/GPUs).

2. Input module: There are several different data input method in TensorFlow(From

memory from files etc.). So the input module handles the different input from

different source and different formats. This module separate the main module

from the data by providing a standard input interface.

3. Monitor module: This is a utility module that help keep track the training pro-

cess in real time. This module will run in a separate thread and save requested

intermediate results and statistics to log file periodically. And these results can

be visualized using TensorBoard in real time.

4. Save and restore module: It’s common for a deep neural network to train for

days. And there are also many things can interrupt the training(power down,

run out of memory, pause by user etc.). So it’s really helpful to have a module

to save checkpoint files periodically and restore the training procedure when the

user want to continue training.

19

Figure 4.1: System overview

4.1.3 Training, evaluation, inference module design

Now let’s further demonstrate the detail of the main module in Figure 4.1. As il-

lustrate in Figure 4.2 the main module have three different sub-modules, they are

training, evaluation and inference. According to different functionality, they have

different components. The simplest one is the inference module. This module is

only used when user already have a trained model and what to predict the secondary

structures for new proteins. The only output is the prediction. The other relative

simple one is the Evaluation model, this module is useful when user want to calculate

the model performance on certain dataset. So beside prediction, this module also cal-

culate the accuracy and loss. The last module is the training module, which calculate

the gradient and update the correspond parameters in the model.

The following pseudo code is a pipeline for training a deep neural network. Gen-

erally speaking, when training a network, it’s better to evaluate the training model

20

in real time. It can save running time by early stopping the training when the model

start overfitting or the improvement is really small. Comparing to the method that

save a series of candidate best models. This approach also saves disk space, because

at each time the system only need to keep two checkpoint files, one file records the

current training process, the other records the best model which is the one with the

highest validation accuracy.

Training pipeline

begin

while iteration < max iteration do

call trainingṙun one batch()

if timetovalidate

call valid accuracy = validation()

if valid accuracy > best accuracy

call save model()

bestaccuracy = validaccuracy fi

if call should early() == True

break

The most straightforward way to implement the training pipeline with validation

and early stopping is only build one model and switch the input dataset for training

or validation. However it’s not a good idea in practice. The disadvantages are the

following:

1. There are different input methods for data in memory and data on hard disk.

In FensorFlow you can not switch between this two methods for a single model.

Because the input method is part of the Graph and can not be modified once

the graph finish building.

21

2. If only one model is built for training and validation, the output and statistics

of training and validation will be mixed together, since the monitor and output

operator is also parts of the TensorFlow Graph, and can not be modified after

the building phase.

So with different modules for different purposes in the graph, users can have separate

input, output and monitor method for each module. When users want to train a

model with validation, they can first build the training module, and then build a

Evaluation module with validate dataset. And the two modules are set to share

the same model parameters, to make sure the validation module are actually using

learned model. When users need test result on test dataset, only a evaluation module

will be build with test dataset, and the model will be initialized using saved model

on hard disk.

Figure 4.2: Detail inside modules

22

4.1.4 Implementation details

4.1.5 Input

In the network architecture discussed in Chapter 3, the input is a single training ex-

ample. However in practice, the input should always be a batch of multiple examples.

In this case, the batch contain 64 protein sequences. And each protein sequence are

normalized to 700 hundred length(protein shorter than 700 hundred pad with zeros

and protein longer than 700 are cut into segments). Figure 4.3 shows the distribution

of protein length, the mean value is 208, most of the proteins are shorter than 300.

So in each batch, there will be more than half of the data in it are zero paddings.

And these zero paddings are actual affect the performance of the network, which will

be shown in following sections. So in order to deal with zero paddings, besides the

original input data, the length of each protein will also add to each batch. So each

batch will have a shape of [64, 700, 42 + 1].

Figure 4.3: Distribution of protein length

23

There are two major data input method in general. Input data from memory and

input data from disk. The most popular way you will found in TensorFlow tutorials

or examples are input data from memory. That is read all the data into memory

and prepare each batch by your self. This method is easy to use, and user have more

control of the input process. However when you can not put all the data into memory,

this method is inadequate. TensorFlow also provides a build-in method for reading

data from file. Users can convert all data into TensorFlows default binary format,

or provide reader functions. Then TensorFlow will help you handle the data input

process, as long as user provides the list of input file names. As illustrate in Figure

4.4, a file name queue and a data queue are built as input buffer. For each step the

model will read a batch from the data queue.

In this project, training module is using the file input pipeline. However evaluation

module is using the light weight memory input method, since testing and validation

data are usually have small size and only need to scan through the data only once

for evaluation.

Figure 4.4: Input Queues

24

4.1.6 Multi-scale convolution

4.1.7 Recurrent layer

When implementing the recurrent layer, there are two things should be considered.

1. Use dynamic RNN or a static RNN.

2. When shoul RNN stop calculating for each batch.

In TensorFlow and most other deep learning libraries, there are two common RNN

versions: static RNN and dynamic RNN. Dynamic RNN is pretty much what RNN

should be like, it use a loop structure to process variable length of sequences. The

static one, however, unrolls the loop and have a fixed number of computational nodes

to process fixed length sequences, just as what Figure 2.2 shows.

The benefits of using static RNN is it runs faster than a dynamic RNN, since it

doesn’t have to test the terminate condition for each time step. The actual speed

comparison is listed in Table 4.1.7. What’s more it is the only RNN implementation

in early version of TnesorFlow. The problem of static RNN is that it makes the model

too big. A big model have a lot of disadvantages. It use too much memory, both GPU

and CPU memory, it consume more disk space to store the best model, and it takes

more time to build the model. In this project the 700 sequence length 3 layers with 64

units model will some how use 20G memory and over 4G GPU memory. Comparing

to the 4MB model file of dynamic RNN, It took 275MB to store the static model

described above, which will slow down the training process every time it same the

current best model. And the build time is longer than 10 minutes comparing to the

several seconds of dynamic RNN’s build time.

The reason using a dynamic RNN is that it can adapt to different input and

network architectures. Such as sequence to sequence model, which needs the encoder

and decoder to be able to handle variable length sequences. When dealing with real

25

life data, a model that accepts variable length input are general easier to use. The

dynamic RNN is light weight, flexible and can achieve comparable speed of a static

RNN(In table 4.1.7 the dynamic rnn is about 8% slower than the static one).

Model Performance

Multi conv RNN Output layers Build time (s)
speed

(batch/s)
test accuracy(%)

32 channels - conv 11 0.69 5.28 65.3
64 channels - conv 11 0.72 3.44 65.7

64 channels
1 layer

static 32
conv 11 166.61 0.77 -

64 channels
1 layer

dynamic 32
conv 11 1.43 0.71 68.7

64 channels
1 layer

dynamic 2
conv 11 1.43 0.76 67.8

64 channels
1 layer

dynamic 10
conv 11 1.47 0.758 68.3

64 channels
1 layer

dynamic 128
conv 11 1.41 0.54 69.2

64 channels
2 layer

dynamic 128
conv 11 1.94 0.27 69.5

Table 4.1: Comparison of Static and Dynamic RNN

Another important detail about RNN is when to stop the iteration. Continuing

the iteration after reach the end of the sequence is inefficient, and may cause error

when doing back propagation, since the network will try to learn the zero paddings

that are irrelevant to the protein sequence. The problem is that proteins in each batch

will have different length, so in order to stop the iteration correctly, it is required to

provide the length information for every protein in the batch.

In summary, RNN layers in this project are dynamic bidirectional RNN, and

provided with sequence length information for each sequence in the batch. The unit

number of the RNN cell is 128.

26

4.1.8 Output layers

There are two 1D convolution layer are build after RNN layers. The first one use

kernel shape [1] and output channel size is half of the input channel size. The second

layer use kernel shape [7] and the output channel is 14.

4.1.9 loss function

Different from convolution networks, RNN need several additional steps to calculate

the correct average loss value for each batch. Because RNN always deals with variable

length data, such as English sentences and ,in this project, proteins. As illustrate in

Figure 4.5 the output of the network would be a 3D array with shape [batch size,

sequence length, feature length]. As you may notice in the figure, there are blanks at

the end of each sequence, those are zero paddings. Due to the variable length input

data, the blanks are always exist. And consider the distribution in Figure 4.3, over

half of the data in a batch are zeros. The correct loss function for individual sequence

is Equation 3.1a. However in practice, due to the parallel feature of TensorFlow, it

is required to calculate the loss for all the sequence in a batch at the same time. The

result of the batch loss operation is a 2D array with shape [batch, sequence]. Each

element in this array is the loss of a single amino acid. After calculating the loss

array, a mask array is constructed using the length vector on the left of Figure 4.5.

Apply the mask array to the loss matrix will set the loss of the blanks to zero. Finally

the average loss per amino acid will be sum(LOSS ARRAY)/sum(length vector).

27

Figure 4.5: Variable length batch Input

4.1.10 Accuracy operator

The evaluation of the project is 8 classes accuracy(Q8). The algorithm of calculating

Q8 accuracy from predictions and labels is the following.

Data:

Prediction [batch size, seq len, feature len]

label [batch size, seq len, feature len]

length vector [batch size, 1]

Result: Q 8: real number

conf mat = Confusion Matrix(label, prediction);

true positive = sum(diag(conf mat));

Q 8 = true positive/sum(length vector);

Algorithm 1: Q8 accuracy

28

The implementation of this part is some how tricky. Because when users train the

network, they want to monitor the training and validation accuracy in TensorBoard

and TensorBoard only monitors the operator inside the Graph. So whatever calculate

the accuracy should be an operator inside the TensorFlow Graph. And it should not

be a python function outside the Graph. So the correct implementation here is

constructing a accuracy operator using basic TensorFlow operators, and add it to the

model. Then the calculation will perform inside the Graph and inside GPU. For more

details see the code in Appendix.

4.1.11 Training Monitor

The actual monitor of the system has two separate parts. The first part is the

summary operators inside the TensorFlow Graph which save the value of desired

tensors in log files periodically. The tensors(variables) that are monitored in this

projects are the following:

1. training module

• training loss

• training accuracy

2. validation module

• validation loss

• validation accuracy

3. Input module

• input queue occupancy

• running speed (batch/sec)

4. Distributions and histogram

• output of Multi CNN

• output of RNN layers

The second part is a visualization tool called TensorBoard. It a command line

tool come with the TensorFlow library. What it dose is reading the log file from the

path you provide, and start to host a web page(Figure 4.6) which have all the graphs

on it. The web page will refresh periodically, so users can use the web page as a

29

real time monitor of the training process. The advantage of using TensorBoard is the

flexibility. Users can choose when they want the visualization, one can easily turn off

the monitor without interrupting the training. And users can also choose where they

wan to put the visualization, a model may be trained on a server, and the use can

monitor the training by visiting the web page on other computers.

Figure 4.6: Tensorboard visualization

4.1.12 Save and Restore

The system saves checkpoint files periodically, since the training process usually take

hours to complete, it’s important to only keep the newest N checkpoints files. In this

project, when training the system will check if there are more than 5 checkpoint files,

if true then delete the oldest one. When the system restore training, it will search

for the newest checkpoint file and start the training from there. Another file need to

save is the best model file, it similar to a checkpoint file, but it only save the trainable

parameters instead of all the variables inside the model that are needed to restore

training.

30

Chapter 5

EXPERIMENTS AND RESULTS

5.1 Data

In this project, two public available datasets are used, CB6133 produced with PISCES

CullPDB[18] and CB513. To better evaluate the performance of the network, a

smaller filtered version of CB6133 is formed by removing redundant sequences in

CB6133 that have over 25% similarity with some sequence in CB513. 80% of the

filtered CB6133 dataset are random selected as training set and the rest are the

validation set. CB513 here is the standard test set. Both CB513 and filtered CB6133

can be found at http://www.princeton.edu/ jzthree/datasets/ICML2014/.

5.2 Experiments

In the following experiments, all network structures are trained using the pipeline

described in Chapter 4. The system calculate the validation performance every 50

iterations(batch). The early stop strategy is based on the valid accuracy, if the

system doesn’t get better accuracy for 30 times of validation it stops training. That

31

approximates to a tolerance of 23 epochs. And the best model get from training will

be evaluated using CB513. All the experiment are run on an Alienware desktop with

Intel core i7-4700MQ CPG @ 2.4GHz8, 23.5 GB memory and Geforce GTX 780M

GPU.

5.2.1 Experiment on loss function

To demonstrate the effectiveness of the modified loss function described in chapter

4, comparison is made between the test result of several different architectures with

regular loss and modified loss function. All the architectures been tested and the

results are listed in Table 5.2.1. The first four columns are models without RNN

layer, with 1, 2 and 3 RNN layers respectively. They are trained with regular loss

function. The other fours are the same models which been trained with modified loss

functions. As you can see in Figure 5.1, all the model with modified loss function(red

bars) achieved higher test accuracy than models with regular loss function(blue bar).

Which means the modified loss function performs better when the input data has

variable length. So in other experiments, only modified loss function are used.

32

Model Performance
Multi conv RNN Output layers loss test accuracy(%)
64 channels - fc regular 63.1

64 channels
1 layer

static 50
fc regular 63.1

64 channels
2 layer

static 50
fc regular 65.7

64 channels
3 layer

static 50
fc regular 66.2

64 channels - fc modified 63.5

64 channels
1 layer

static 50
fc modified 68.0

64 channels
2 layer

static 50
fc modified 68.0

64 channels
3 layer

static 50
fc modified 67.8

Table 5.1: result of different loss functions

Figure 5.1: result of different loss functions

33

5.2.2 Experiment of different output layers

This experiment compares the performance of models using fully connected layers

and convolutional layers at the end of the network, as described in section 3.2.5.

As listed in Table 5.2.2, the first three models use fully connected layers as output

layers. The other three are the same model replacing the fully connected layers with

convolutional layers. The first kernel size is 3 and the second kernel size is 11. As

illustrate in Figure 5.2 the convolutional layers improve the performance of all three

models by at least 1 percent. The difference between fully connected a layer and a

convolutional layer here is the kernel size. The fully connected layer in this project

is equivalent to a convolutional layer with kernel size 1. So this means that when the

network making final prediction of secondary structures, considering more context

information is helpful. In addition, this kind of context information can not be fully

captured by the previous RNN layers.

Model Performance
Multi conv RNN Output layers test accuracy(%)
64 channels - fc 63.1

64 channels
1 layer

dynamic 128
fc 68.13

64 channels
2 layer

dynamic 128
fc 68.02

64 channels - conv 65.4

64 channels
1 layer

dynamic 128
conv 69.2

64 channels
2 layer

dynamic 128
conv 69.5

Table 5.2: result of different output layers

34

Figure 5.2: result of different output layers

5.2.3 Experiment of different hidden unit in RNN layer

This experiment focuses on how does the hidden unit number in RNN layer affect the

performance of the model. Only 1 layer bidirectional RNN are used here because a

series of model need to be tested and using more than 1 layer of RNN the experiment

would take too long. As shown in table 5.2.3, a model without RNN layer are the

baseline, then four models with 2, 10, 32 and 128 hidden units RNN layer have been

evaluated. Figure 5.3 is the line chart of accuracy vs hidden unit number. As you

can see, with a very small number of 2 hidden units 1 RNN layer can improve the

accuracy by 2%. From 2 to 30 units it improve the accuracy by 0.8%, and from 30

to 128 the improvement is only 0.5%.

35

Model Performance
Multi conv RNN Output layers test accuracy(%)
64 channels - conv 65.4

64 channels
1 layer

dynamic 2
conv 67.9

64 channels
1 layer

dynamic 10
conv 68.2

64 channels
1 layer

dynamic 32
conv 68.7

64 channels
1 layer

dynamic 64
conv 68.8

64 channels
1 layer

dynamic 128
conv 69.2

Table 5.3: result of different hidden unit numbers

To further demonstrate the performance on individual secondary structures, a

precision vs number of unit graph is ploted in Figure 5.4. The y axis is the precision for

each class of secondary structure, the x axis is the number of units in RNN layer, zero

represent without RNN layer. The number after the label in legend is the frequencies

of these secondary structures appear in protein structures. As shown, basically the

higher the frequency is, the higher the precision is. The model without the RNN

layer can achieve comparable precision on the high frequency secondary structures.

However it fails to predict class B, G and I. The RNN layer, even with very few

hidden units, significantly improves the performance on low frequency classes. While

the number of hidden units increase, the model tend to have higher precision on those

rare classes. However the model still fail to predict the class I which is super rare in

training dataset.

5.2.4 Final result

The best model from all these experiments in previous sections is the model with 2

layers of 128 hidden units bidirectional RNN with convolutional output layer. The

test accuracy on CB513 is 69.5%. To train this model, it took about 20 hours on the

36

Figure 5.3: result of different hidden unit numbers

computer described at the beginning of this Chapter.

37

Figure 5.4: Detail result of different hidden unit numbers

38

Chapter 6

SUMMARY

The major achievements of this work is the following:

1. Design and implement a DNN learning system in TensorFlow for PROTEIN

SECONDARY STRUCTURE PREDICTION.

2. Provide detailed information on how to use RNN correctly.

3. Test and explore the trade off between speed and accuracy of the RNN.

4. Achieve 69.5% accuracy on CB513, which is comparable to current state-of-the-

art.

This work, following the basic network architecture in [3], use bidirectional GRU

RNN after multiscale convolutional layers. Instead of using the exact architecture

in their work which has 3 RNN layer and 600 hidden units in each layer. Only 2

128-hidden-unit RNN layers have been used, due to the insufficient GPU memory.

However, by using less layers and less hidden units and add batch normalization to

the network. The network managed to achieve comparable performance on dataset

CB513. The best Q8 accuracy is 69.5% which is 0.2% lower than theirs. However,

because of the smaller model, it need less time to train the model. This thesis also

39

shown how to design and build a system to train a recurrent network with variable

length inputs.

The recurrent structure can capture the global context information in the protein

sequence and boost the performance of protein secondary structure prediction. How-

ever it can not fully capture the context information, simply stack the RNN layer

can not out perform a single RNN layer with convolutional layers after it. A possible

reason is the current off-the-shelf RNN structures can not deal with extremely long

dependencies such as the average 230 length proteins. But there are huge potential

in RNN networks. More powerful but complex RNN architectures such as RNN with

attention mechanism[19] and RNN with batch normalization[20] may be able to solve

this problem.

40

Appendix A

Title of first appendix

A.1 Source Codes

Source code can be found on Github: https://github.com/duming/Deep protein.

41

Bibliography

[1] Ashraf Yaseen and Yaohang Li. Context-based features enhance protein sec-

ondary structure prediction accuracy. Journal of chemical information and mod-

eling, 54(3):992–1002, 2014.

[2] Jian Zhou and Olga Troyanskaya. Deep supervised and convolutional generative

stochastic network for protein secondary structure prediction. In International

Conference on Machine Learning, pages 745–753, 2014.

[3] Zhen Li and Yizhou Yu. Protein secondary structure prediction using cascaded

convolutional and recurrent neural networks. arXiv preprint arXiv:1604.07176,

2016.

[4] Akosua Busia, Jasmine Collins, and Navdeep Jaitly. Protein secondary structure

prediction using deep multi-scale convolutional neural networks and next-step

conditioning. arXiv preprint arXiv:1611.01503, 2016.

[5] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 2014.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

42

[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,

Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent

convolutional networks for visual recognition and description. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2625–

2634, 2015.

[8] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous distributed systems.

arXiv preprint arXiv:1603.04467, 2016.

[9] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE transactions on neural networks,

5(2):157–166, 1994.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

[12] Zhiyong Wang, Feng Zhao, Jian Peng, and Jinbo Xu. Protein 8-class secondary

structure prediction using conditional neural fields. Proteomics, 11(19):3786–

3792, 2011.

[13] Søren Kaae Sønderby and Ole Winther. Protein secondary structure prediction

with long short term memory networks. arXiv preprint arXiv:1412.7828, 2014.

[14] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang,

Zheng Zhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast:

43

a new generation of protein database search programs. Nucleic acids research,

25(17):3389–3402, 1997.

[15] Wojciech Zaremba. An empirical exploration of recurrent network architectures.

2015.

[16] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[17] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[18] Guoli Wang and Roland L Dunbrack. Pisces: a protein sequence culling server.

Bioinformatics, 19(12):1589–1591, 2003.

[19] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective

approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

[20] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron

Courville. Recurrent batch normalization. arXiv preprint arXiv:1603.09025,

2016.

44

