

TigerAware Conditional Action Engine
An Extensible Framework for Providing Real-Time

Intervention to EMA Surveys

A Project

Presented to

The Faculty of the Graduate School

At the University of Missouri

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science, Computer Science

Implemented and defended by

Logan Harrison

Dr. Yi Shang, Advisor

May 2020

2

Table of Contents

Table of Figures 3

Acknowledgements 4

Abstract 5

1 Introduction 6

2 Motivation 7

3 System Design 9

3.1 Related Work 9

3.2 Grammar 11

3.3 Supported Question Configurations 12

4 UI Additions 14

4.1 Considerations 15

4.2 UI Components 17

4.3 Implementation 23

5 Backend Architecture 24

5.1 Technologies 26

5.2 Conditional Action Pipeline 28

5.3 Workflow 29

5.4 External Services 34

6 Future Opportunities 36

6.1 Historical Aggregators 37

6.2 Machine Learning-Based Aggregators 38

6.3 Sentiment Analysis Aggregators 39

7 Conclusion 39

References 41

Appendix 43

3

Table of Figures

Figure 1: Grammar for a conditional action 12

Figure 2: Supported data types for TigerAware question types 13

Figure 3: Valid operators for TigerAware question types 14

Figure 4: Visualization of nested operator- and action-select components 17

Figure 5: Operator-select component with various valid operators 18

Figure 6: Action-select component with current action options 19

Figure 7: Number box conditional action component 20

Figure 8: Dropdown conditional action component 21

Figure 9: Text box conditional action component 22

Figure 10: UI components for TigerAware question types 23

Figure 11: An example conditional action configuration 25

Figure 12: Example mapping of conditional action using grammar 26

Figure 13: Current TigerAware architecture 27

Figure 14: Conditional action pipeline 28

Figure 15: Example conditional action configuration for workflow demonstration 30

Figure 16: Example mapping of conditional action using grammar for workflow demonstration

 30

Figure 17: Conditional Action Engine evaluation workflow 31

Figure 18: Yes/no question type 43

Figure 19: Scale question type 43

Figure 20: Continuous scale question type 44

Figure 21: Text field question type 44

Figure 22: Number question type 45

Figure 23: BACtrack sensor used in BAC question type 45

file:///C:/Users/lkh6y/Desktop/LoganHarrison2020.docx%23_Toc39954209

4

Acknowledgements

 I would first like to thank Dr. Yi Shang for his support in my research, undergraduate

studies, and graduate studies. I would also like to thank Dr. Tim Trull, Dr. Tom Piasecki, and Dr.

Denis McCarthy from the Department of Psychology who have provided ample feedback and

guidance as I developed this project. I am also grateful for the support from all the professors I

have had during my studies.

 I want to extend thanks to members of the Distributed and Intelligent Computing Lab for

their assistance and camaraderie throughout my tenure in the lab. I would specifically like to thank

Connor Rowland for his help and knowledge about the TigerAware cloud infrastructure, Luke

Guerdan for his availability and readiness to help whenever there was an obstacle, and Zachary

Kipping for his willingness to share his expertise about Angular development. And to everyone

else, thank you for making these years in the lab memorable.

I also want to thank Dr. Dong Xu, Dr. Chi-Ren Shyu, and Dr. Yi Shang for taking the time

to be on my committee. I am honored to have the opportunity to present to such prestigious and

decorated faculty members. I also want to thank them for their direct influence on my studies while

at Mizzou and their administrative work to always improve and push the department forward.

 Finally, I would like to thank my family and friends who have supported my academic

career. I would like to specifically thank my mother for always providing love and support in my

studies, even when times were tough. Without the support of these people, I would not be in the

position I am today, and for that I am forever grateful.

5

Abstract

 TigerAware is a cross-platform system for collecting information from participants via

smartphones in real life over time. The system is inspired by applications in Ecological Momentary

Assessment (EMA), but it can be used in research studies spanning many domains. TigerAware is

one of the first mobile survey platforms to provide an experience tailored specifically to EMA

studies through its extensive features that allow surveys to be prompted randomly, connection with

external devices, such as blood alcohol sensors, and extensive participant compliance monitoring.

In this project, I propose and implement a new component, called Conditional Action Engine, to

provide closed-loop feedback for researchers to enable them to interact with their participants as

data is collected. The Conditional Action Engine is a highly extensible framework for triggering

configurable actions in real-time based upon participants’ responses to surveys. This will allow

researchers to be notified or perform essentially any action within seconds of the response being

recorded. A grammar is created to define the bounds in which a researcher may create conditional

actions via the web dashboard. This grammar allows the platform to be extensible while also

staying robust enough to handle the various types of data TigerAware can collect. Firebase Cloud

Functions are also leveraged to provide this feedback in real-time without a costly polling

approach. Cloud Functions also give the ability to connect to any third-party service via a RESTful

API, thus providing nearly endless possibilities for the Conditional Action Engine.

6

1 Introduction

 TigerAware is a mobile survey platform founded and developed by students and

researchers at the University of Missouri – Columbia. TigerAware allows researchers to

seamlessly create surveys via a web application dashboard. These surveys can then be deployed to

their participants’ iOS or Android devices where they can be taken immediately. Mobile survey

platforms, like TigerAware, are ideal for ecological momentary assessments (EMA). In fact,

TigerAware was explicitly developed for EMA studies after researchers from the Department of

Psychology expressed frustration with finding a survey solution that provided all the functionality

they needed out of the box [1]. This led to the researchers paying for a custom solution or settling

with an imperfect out of the box solution. TigerAware aims to be a pre-built solution that provides

the same functionality as expensive custom-built solutions.

 EMA studies differ greatly from traditional studies. In a 2006 paper, Moskowitz and

Young cite several advantages of EMA studies including the ability for a participant to “report on

symptoms, affect, behavior and cognitions close in time to experience, and these reports are

obtained many times over the course of a study” [2]. One important aspect of an EMA study is the

need to collect data from participants in real time, over time. This is incredibly hard to achieve

with traditional survey methods because participants in an EMA study often take multiple surveys

in a day with strict timing regulations. Furthermore, it is imperative for the integrity of these studies

that the survey protocol is followed diligently. With traditional methods, it is hard to regulate

participant compliance and follow a strict survey schedule.

 For example, several researchers we are working with have complex survey protocols that

would not be possible with traditional methods. Some protocols require a survey in the morning at

a scheduled time, a survey at night at a scheduled time, and a randomly scheduled survey at some

7

time in the afternoon. This type of protocol is not feasible with a survey platform intended to be

used on a computer, and the control is not available in out of the box mobile survey software, so

it must be custom designed. All this functionality is included by default in TigerAware. In addition,

TigerAware supports integration with external devices via Bluetooth. One such integration is with

the BACtrack BAC monitor, which is used by researchers studying alcohol consumption. Overall,

TigerAware meets many needs of researchers whose research requires complex EMA protocols.

2 Motivation

 TigerAware provides a revolutionary set of tools for conducting EMA studies easily and

reliably. As mentioned, EMA studies focus on collecting the same data from participants over

time. These studies can last anywhere from several days to several months and generate a great

amount of temporal data about a participant’s behavior and tendencies. However, I noticed a

disconnect. EMA studies are designed to detect changes in participant behavior in real time, over

time. Researchers were using our platform to administer cutting-edge EMA protocols but were

still performing data analysis as if it had been a traditional study. After the entire protocol was

over, researchers would download all the data and view it (often for the first time). There was no

opportunity for researchers to delve into the data and easily detect the type of behavior the studies

were intended to identify. I wanted to make researchers an active part of the data collection process

– a process which, historically, has been incredibly passive.

We will use an example to look at how researchers can be a more active part of data

collection to better illustrate the vision for the Conditional Action Engine. Imagine I am a

researcher studying the causes and effects of alcohol abuse. In particular, I am interested in

studying what I consider “extreme intoxication,” classified as a BAC of above 0.2% (0.08% is the

8

legal limit to drive in most states, so approximately 2.5x that level of impairment). My protocol

has three surveys: a survey that randomly gets delivered at some point in the afternoon that collects

various information about the participant’s mood, a survey that gets delivered every night at

10:00pm, and a survey that gets delivered each morning at 10:00am that asks about the alcohol

use the previous night. The nighttime survey asks general information about the participant’s

alcohol use that night and concludes by utilizing TigerAware’s BACtrack sensor integration to

record the participant’s current BAC.

 As a researcher, I want to know when someone’s BAC goes above 0.2%, so I can go look

at their responses from that afternoon to see if there is anything that indicates they might binge

drink. In addition, if someone’s BAC goes above 0.3%, I want to personally reach out to them and

manually check on their well-being. Currently, to do this I must download the entirety of the survey

responses, find the most recent day, and search through each participant’s response. This is an

incredibly tedious process, even with the aid of spreadsheet software. Doing this daily is

impractical for researchers, who are often very busy, and very menial for lab assistants.

 The Conditional Action Engine seeks to solve this problem and others that are similar in

nature. As a researcher who is leveraging the conditional action, I could configure two conditional

actions to handle the above scenario. For the first case, detecting BAC above 0.2%, I can configure

a conditional action to retrieve the value from the survey question where the participant interacts

with the BACtrack sensor, compare it to my threshold of 0.2%, and if it is higher, I will send

myself and all of my lab assistants an email to alert us. For the second case, the same configuration

could be used, but with a threshold of 0.3%, and I will send only myself a SMS that alerts me.

Once deployed, as soon as a participant submits a response, the conditional actions will be

automatically evaluated, then perform the action if the condition is met. This system involves the

9

researcher in the data collection process by alerting them in real time to responses that fit criteria

they have specified.

 The goal of the Conditional Action Engine is to provide an extensible framework that is

highly configurable for researchers. In addition, it should be flexible enough to handle the wide

variety of data that TigerAware can collect while being robust enough that the behavior is

consistent and controlled. In this project, I lay the groundwork for the Conditional Action Engine

and create the basic workflows called the core actions. The major components included in this

project are the system design, UI additions to the existing TigerAware web dashboard, and the

backend architecture of the Conditional Action Engine.

3 System Design

System design is one of the most import aspects in any project. This is especially true for

a project that is designed to be used, extended, and iterated on in the future. To build a strong

foundation for this project, I spent many hours scrutinizing, with the help of my colleagues,

every design I came up with. The design presented in this project is the amalgamation of many

previous designs with an explicit focus on extensibility and backwards compatibility with the

existing TigerAware system.

3.1 Related Work

 Related works in computer science are typically used as starting points or inspiration for

new projects. However, in this project I used similar works slightly differently. The inspiration for

this project came from the desire of researchers to have more control and information in their

studies. Once this desire was clear, early plans for the Conditional Action Engine were discussed

10

from scratch simply as a new feature that would be added to the existing TigerAware platform and

was not based on any existing work. Rather, the design was verified by analyzing similar systems

in different applications.

 The application that had the system most like the Conditional Action Engine was ZenDesk.

ZenDesk is an all-in-one customer service and customer relationship management (CRM) solution

[3]. One product of interest is their customer service ticketing system. This product aims to

automate customer contact through an easy to use web portal. Customers can open a ticket with

details of their concern or inquiry, and the company can manage these tickets and assign employees

to handle them.

 One feature of the ticketing solution is the ability to conditionally automate certain actions.

For example, if a ticket has the “open” status and has not been assigned to anyone for at least 3

days, it can be randomly assigned to a team member and alert the appropriate manager via email.

As you can see, there are many parallels between this system and the Conditional Action Engine.

Furthermore, on one of the documentation pages for their system, Jessica Marasco of ZenDesk

says, “The condition statements you create for automations contain conditions, operators, and

values” [4]. This is very similar to the conditional actions used in the Conditional Action Engine.

In TigerAware, a conditional action contains three major user-facing components: a target value,

an operator, and an action. In the ZenDesk system, “conditions” (status is open) are analogous to

“target values” (0.3% BAC) in the Conditional Action engine – making the systems nearly

identical.

 Discovering this application after the Conditional Action Engine had been designed

provided great validation to the design. ZenDesk is large enterprise software company with a

current market valuation of nearly $9 billion (May 2020). It is safe to assume that the system they

11

designed for automating the ticketing process has been successful, or at least operational, given

their large user base. Furthermore, it provides validation for the motivation of this project.

ZenDesk and TigerAware are both applications that revolve around the collection and organization

of data. Before the automated ticketing system, presumably, employees were responsible for

manually monitoring their data (customer service tickets in this case). In TigerAware, researchers

are also responsible for manually monitoring their data (participant survey responses). The fact

that ZenDesk added automation to their system proves that users want the ability for data to

automatically perform what were once manual workflows. The Conditional Action Engine seeks

to implement this same data-driven paradigm that has been successful for ZenDesk into

TigerAware.

3.2 Grammar

 As mentioned, conditional actions in TigerAware are made up of three user-facing

components: a target value, an operator, and an action. In addition, there is a fourth component,

called an aggregator, that is abstracted away from the user. The target value is the value to which

the participant’s response will be compared. The operator defines how the two values will be

compared. The action defines what will happen is the condition is satisfied. The aggregator defines

how we will extract a value from participant’s survey response. In the previous examples, the target

value is a BAC of 0.2%, the operator is greater than, and the action is send email. These

components are discussed in more detail in section 5.2.

 To a human, putting all these pieces together is very straight-forward, but how does one

make a machine understand? We must first formalize what a conditional action is. This is

especially challenging because conditional actions are inherently configurable and flexible.

12

Conditional actions will be used by many different question types in TigerAware surveys, and

these question types deal with different types of data that must be evaluated in different ways. The

best way to capture this need to be flexible is to create a grammar, or set of rules, that defines the

bounds in which conditional actions may be configured. Figure 1 below defines the syntax used

by a valid conditional action. It is important to note that this grammar will change as new

extensions are made to the Conditional Action Engine. For example, there are currently only three

acceptable values for action. Once new actions are added to the platform, the grammar must be

updated to include that new action. This represents changes that need to be made to the constants

configurations in the web dashboard codebase.

3.3 Supported Question Configurations

 The grammar that was created defines the syntax in which conditional actions are created.

However, we must go one step further. We must also ensure that the semantic meaning of each

conditional action is sound and bridge the gap between the grammar and its use in the UI. As we

have seen, conditional actions can be used in many ways through different configurations.

TigerAware also supports many different question types that collect different types of data.

ConditionalAction:

 action → ‘sendSMS’ | ‘sendEmail’ | ‘sendNotification’

 aggregationType → ‘1Q’

 message → String

 operator → ‘eq’ | ‘neq’ | ‘con’ | ‘ncon’ | ‘gt’ | ‘gte’ | ‘lt’ | ‘lte’

 questionId → String

 value → String | Number

 recipients → [String]

 Figure 1: Grammar for a conditional action

13

Therefore, not all configurations for conditional actions are valid for all question types. For

example, it does not make sense for a question that accepts textual input to be evaluated using the

less than operator. In addition, each question type has an associated data type: string or number.

This must be taken into consideration while configuring the UI because we need to guarantee

researchers are only able to configure conditional actions that make sense semantically. To provide

context for the following question configurations, the screenshots of the question types from the

view of the participant are provided as figures 18-23 in the Appendix.

 The following tables describe how the above question types are permitted to interact with

the Conditional Action Engine. These properties are all inherent to the question types, and for that

reason, they will not change. Because of this, they are defined as constants in the web dashboard

codebase. These configuration constants are then used by the UI components to properly regulate

how conditional actions can be configured by researchers. For each question type there is an

associated data type. In addition, there are operators that can or cannot be used by that question

type.

Question Type Data Type

Yes/No string

Text Field string

Scale number

Continuous Scale number

Number number

BAC number

Figure 2: Supported data types for TigerAware question types

14

Question Type Equals > or < ≥ or ≤ Contains

Yes/No ✔ ❌ ❌ ❌

Text Field ✔ ❌ ❌ ✔

Scale ✔ ✔ ✔ ❌

Continuous Scale ✔ ✔ ✔ ❌

Number ✔ ✔ ✔ ❌

BAC ❌ ✔ ✔ ❌

Figure 3: Valid operators for TigerAware question types

4 UI Additions

 The next major component of this project is the addition of the UI components for the

Conditional Action Engine into the existing TigerAware web dashboard. This was by far the most

time-consuming part of the project. The UI needs to be intuitive so researchers who are new to

using it are not overwhelmed. In addition, it needs to be flexible enough to allow the wide variety

of configurations the system supports. The combination of intuitiveness and flexibility complicates

the design process a significant amount. In addition, the UI needs to be backwards compatible with

15

the existing system, so current versions of the application do not crash when this new system is

added. The sections in this chapter describe the process from basic UI concepts, through design

and implementation.

4.1 Considerations

 When designing and implementing the UI, there were several themes that needed to be kept

in mind. First, TigerAware is primarily maintained by members of the Distributed and Intelligent

Computing Lab. Therefore, developers frequently come and go. This presents numerous

challenges. One of these challenges is on-boarding new developers to the platform. To keep this

process smooth, we need to make sure the new code added to the web application for this project

follows the same design patterns as the rest of the application. TigerAware is built using Angular,

Firebase, and microservices – technologies that most undergraduate (and graduate) students have

very little experience with. Following the same programming patterns as the rest of the application

will reduce confusion during on-boarding by only forcing new developers to learn one major

design pattern. In addition, the patterns used in the dashboard project were designed by Zachary

Kipping, who now travels the country doing workshops for enterprise clients who are switching to

a technology stack based on Angular and/or Firebase, so they are a good guideline to follow.

 Another challenge that would present itself in this portion of the project was the shear size

and complexity of the TigerAware dashboard codebase. The dashboard allows researchers to

configure nearly every aspect of their studies which are highly configurable. This leads to a very

complex codebase to capture all the different settings and options available to researchers.

Furthermore, Firebase is a realtime, NoSQL database [5]. This further complicates the code for the

dashboard because JavaScript streams must be used to display data to the user in real time as it is

16

modified in the database. To modify this data as it is streamed to the web application, functional

programming techniques must be employed to transform the data to the appropriate form for

display on the UI. To do this, a library called “RxJS” (short for reactive JavaScript) is utilized

because it was created for this exact purpose [6]. These technologies are discussed in more detail

in section 5.1, but they are worth mention here because of the added complexity it brings to the

frontend of the web dashboard.

 To minimize added complexity to an already complex codebase, the last consideration that

was made in designing and implementing the UI was to reuse as much of the existing code as

possible. Furthermore, the new code that is added for this project should by highly reusable

between the new components. This notion has several advantages in addition to avoiding further

complicating the codebase. The first advantage is it is simply less code to maintain. As previously

discussed, many different people are working on many different parts of this TigerAware project.

By adding less code, it is less of a hassle for future developers to maintain. By keeping the codebase

concise, developers in the future will not be “spread thin” trying to maintain a massive codebase.

The second big advantage of code reusability is fewer places for bugs to be introduced. TigerAware

is available as commercial software for researchers to conduct studies that are funded by various

organizations. It is imperative that bugs are not introduced into the system. Deploying code with

bugs to researchers conducting these studies could, in the worst case, discredit their results and

force them to start data collection again. This is an expensive process in both time and money.

Therefore, any opportunity to reduce the introduction of bugs into the system should be taken.

17

4.2 UI Components

 After considering the general principles from the previous section, along with the supported

question configurations from section 3.3, three main UI components were designed. These

components encompass the current, and future, needs of the Conditional Action Engine. The three

main components differ only in the input method for the target value and they are: dropdown, text

box, and number box. In addition, the operator-select and action-select portions of the UI are

separated into their own components which are reused through all the possible UI configurations.

This design of the components minimizes lines of code added to the project while maximizing

code reusability. A visualization of how the UI is split into different components is shown in figure

4.

Figure 4: Visualization of nested operator- and action-select components

 As shown previously, not all question types support all operators. Therefore, the operator-

select component needs to take many forms. This is accomplished by utilizing the supported

question configurations that are stored as constants in the dashboard codebase. For each question

18

type, there is a list of the supported operators. When the operator-select component is constructed,

a list of the valid operators is passed as a parameter to the component, so the proper operators can

be displayed for the different question types. Figure 5 below shows some of the many forms the

operator-select component can take. Each operator has a user-facing label that is displayed in the

list and a corresponding string value that matches the operators defined in the grammar.

Figure 5: Operator-select component with various valid operators

 Unlike the operator-select component, the action-select component behaves the same

regardless of which question type for which the conditional actions are being configured. The

action-select component contains three major components: the action, the message, and the

recipients. The component is designed to read similarly to an English sentence to help make the

component more intuitive for new users. For example, in figure 4 the configuration reads “If the

response equals yes, then send an email with message ‘A participant has shown suicidal

tendencies’ to john@example.com.” The list of actions is stored as a constant in the project and

simply accessed by the component upon construction. In figure 6 you can see the dropdown options

for the desired action.

19

Figure 6: Action-select component with current action options

The operator- and action-select components are utilized by the three main UI components.

The first UI component to be discussed is the number box conditional action component. This

component utilizes a number type HTML input and can be seen in figure 7. The component is

utilized by the continuous scale, number, and BAC question types. One important configuration

for this component is the ability to add bounds to the number input. For example, a conditional

action for a BAC question type should not accept an input below zero because a BAC value will

not be below zero. In addition, the continuous scale question type sets both an upper and lower

bound, so these bounds should also apply to the conditional action input. These are optional

parameters passed to the constructor for the component. They are optional because for the number

question type, there are no inherent bounds that need to be set.

20

Figure 7: Number box conditional action component

 The next component is the dropdown conditional action component. This component

utilizes a dropdown menu that allows users to select a value from a pre-determined set of values.

This component is used for the scale and yes/no question types. When constructed, a list of

dropdown options must be passed as a parameter. For the yes/no question, this is simple because

it is a static list of either “yes” or “no”. However, for the scale question type the dropdown options

must be dynamic based on the bounds set for the question. This requires passing a parameter that

is an Observable type so new values are passed through as they are changed in the scale question

configuration. An example of this component’s use in a scale question type is shown below in

figure 8.

21

Figure 8: Dropdown conditional action component

 The last component is the text box conditional action component. This is the simplest of

the three components because the input is a simple HTML text input. In addition, there is no

validation needed (other than the existence of a value) because the text value can realistically be

anything needed by the researcher. Currently, the component is only used by the text field question

type. An example of this component is shown below in figure 9.

22

Figure 9: Text box conditional action component

 Overall, we have seen that with the addition of five new components, we have covered all

configurations currently supported by the system. In a minimal amount of additional code, the UI

contains all necessary controls researchers need to configure and use conditional actions in their

projects. The ability to reuse the operator- and action-select components drastically cuts the

amount of development time that was needed and prevented duplicated code being added to the

codebase. Figure 10 below shows a summary of the UI component utilized by each of the six

currently supported question types.

Question Type UI Component

Yes/No dropdown

Text Field text box

Scale dropdown

Continuous Scale number box

23

Number number box

BAC number box

Figure 10: UI components for TigerAware question types

4.3 Implementation

 The UI components above were developed by utilizing Angular components, reusable

snippets of code that serve one purpose [7]. In addition, the UI is styled using Angular Material.

Angular material provides pre-built components that meet material design standards that can easily

be used in an Angular project to style and add basic functionalities [8]. For example, each action

is embedded in a material card. This gives the appearance that the content is layered on top of the

background – a key component of the material design standard. Angular material also provides a

set of icons which can be used in the project to make basic actions more intuitive. As shown above

in figure 9, a trashcan and plus icon are used to represent deleting a recipient and adding a recipient.

This allows the design to remain uncluttered while remaining intuitive. The styling for the

dropdowns and buttons is also included in Angular Material. Angular Material is used throughout

the entire web application, so its use in the Conditional Action Engine UI was paramount for design

continuity.

 Angular reactive forms are used to represent data throughout the web application. Because

everything on TigerAware is configurable by nature, maintaining the data in an Angular reactive

form allows us to easily track and validate user input – an essential step to ensure the system

behaves as expected [9]. Reactive forms allow developers to specify certain criteria that must be

met for certain user inputs. For example, through the use of a pre-built form validator, I can ensure

that the input is at least 8 characters long [10]. The reactive form object has several metadata

properties that provide insight to the current state of the form. If a validator is not satisfied, a

24

property in the form metadata will represent that the entire form is invalid. Forms can be made up

of many elements, including additional forms, and for the form to be valid, all children inside of

that form must also be valid.

 The above fact proves very useful in TigerAware. The entire question configuration is

stored as a form with many forms contained within as children. One example that proves the

usefulness of this is when a question is being edited. The button to save all changes can be disabled

whenever the top-level form is invalid. This means that somewhere inside of that form, the user

entered an illegal value. Thus, they cannot save their changes, preventing bad user input. In

addition, nested forms are used heavily by the conditional action UI components. The entire

component data is stored in a form on the containing question. Within the form for the conditional

action components are two fields and a nested form. The fields represent the operator and the target

value, while the child form is used to represent information about the action. Within in the action

form, validators can be dynamically set on the list of recipients based on if the action is send email

or send SMS. This is very valuable because it validates the recipients as they are entered and alerts

the user if they enter an invalid value. Additionally, nesting the form inside of the question form

means very little code was changed regarding question validation. Since validation is defined

recursively within forms, the new changes were completely backwards compatible due to the

validation metadata that is stored on the top-level form. Without Angular reactive forms, validating

user input for this project would be much more difficult and prone to bugs.

5 Backend Architecture

 The backend for the Conditional Action Engine is the workhorse that powers the incredibly

diverse courses of action that can be triggered automatically by the system. The goal of this

25

backend architecture is to utilize microservices and database triggers to provide a robust and

extensible way to automatically handle participant responses. An example is shown to provide

context into what type of data is stored for conditional actions. This data model is important

because it is what is used in the pipeline when the backend needs to evaluate conditional actions.

As shown in figure 11 below, a conditional action has been configured by a researcher. In figure

12, you can see the result of that configuration, i.e. what is stored in the database and used at

evaluation time. Aside from the aggregationType and questionId fields, everything else should

look familiar and is mapped relatively intuitively. In this chapter, the rationale behind and the use

of these additional fields will be discussed. In addition, it will be shown how these fields are

essential to the current operation of the pipeline as well as its future extensions.

Figure 11: An example conditional action configuration

26

Figure 12: Example mapping of conditional action using grammar

5.1 Technologies

 The natural starting point when discussing any new architecture is to outline the existing

architecture and technologies. Figure 13 below shows the current architecture of TigerAware. The

main feature of this architecture is the extensive use of Firebase Cloud Functions to handle

“server”-side operations – though there is not a server we must maintain since it is hosted in the

cloud. Firebase Cloud Functions are “a serverless framework that lets you automatically run

backend code in response to events triggered by Firebase features and HTTPS requests” [11]. One

of these “events triggered by Firebase” allows us to watch a specific part of the database for

specific actions. These are referred to as database triggers. Triggers are used across TigerAware

to maintain data integrity since Firebase, a NoSQL database, does not have the data integrity

constraints that a typical SQL database would have. In addition, these actions trigger in real time

(on the order of milliseconds). The Conditional Action Engine uses triggers to initiate the

evaluation process by watching for new participant responses to be written to the database – called

an “on create” trigger.

27

Figure 13: Current TigerAware architecture

 The next feature of the architecture of relevance is the microservice pattern. Microservices

are also implemented with Cloud Functions, much like database triggers were. A microservice

simply refers to a small piece of code that performs one and only one action. This allows for easy

debugging as they cleanly separate code out into independent pieces with no side-effects.

Microservices also allow for easy code reuse. For example, in the Conditional Action Engine, one

possible action is the send a notification to participants. This functionality already exists in

TigerAware. Therefore, the Conditional Action Engine can simply call that microservice via HTTP

with the appropriate parameters, and the notification will be delivered. This plays an important

role in the Conditional Action Engine also when creating new actions like sending email and SMS.

28

 Along those lines, the final architecture feature allows for the possibility of sending email

and SMS easily. Cloud Functions can easily access any third-party API via HTTPS. This is

paramount for the Conditional Action Engine because it means there are nearly endless

possibilities to add as options for actions. In section 5.4, the benefit of being able to utilize REST

APIs from Cloud Functions will be very clear while discussing the implementation of the send

email and send SMS services. Essentially, cloud functions provide immense flexibility for

developers to leverage other technology, while scaling very well.

5.2 Conditional Action Pipeline

 The biggest breakthrough of the project, and the most critical part, was the development of

the conditional action pipeline. This pipeline, shown in figure 14 below, defines the way in which

conditional actions are evaluated. There are three main parts to the pipeline: the aggregator, the

operator, and the action. The aggregator is responsible for retrieving and formatting data in a way

that can be understood by the operator. The operator then evaluates that value against the

configured target value using the configured operator. Finally, the action step is responsible for

routing to the correct service for performing an action and formatting the appropriate parameters

for that service.

Figure 14: Conditional action pipeline

 The aggregator is the solution to perhaps the hardest question that had to be answered when

designing this whole system: “How can we provide room to extend the system in a way that the

29

core fundamentals of the platform stay the same from as they are from day one?” This question

was incredibly difficult to answer at first because it seems so easy to get the data you need: just go

to the database and get it. However, designing the system like this would “handcuff” it in the sense

that it would have to be re-developed to tackle more complex use cases. The aggregator design is

intentionally over-engineered for now, so extensions in the future have a convenient and well-

defined interface to plug into. The design should allow developers in the future to simply adhere

to the defined API and perform a wide variety of data aggregation techniques.

 The operator and action steps have a much more straightforward job than the aggregator.

The operator simply compares the output of the aggregator to the target value the researcher

specified using the operator the researcher specified as well. While it is straightforward, there are

numerous precautions taken in this step. The first precaution is to guarantee the data is the type

that was expected. For example, comparing a string to a number should not accidentally happen –

that would impact the predictability and reliability of the system. The second precaution during

development was testing the operators with the different data types. JavaScript is notorious for

having unexpected results with some comparison operators, so diligently testing the code before

deploying is essential. The action step simply checks the output of the operator. If the operator

indicated that the response met the criteria, the action handler routes to the appropriate service to

handle that action. This step is discussed in more detail in section 5.4.

5.3 Workflow

 To provide insight into the overall workflow of the Conditional Action Engine, this section

will use the BAC example from the Motivation chapter as an example of how conditional actions

are evaluated. In figure 15 below, you can see the UI configuration that corresponds to the

30

example. Figure 16 shows the corresponding conditional action data that will be stored in the

database for the given survey. This is the data that is available for use while evaluating the

conditional actions. Finally, figure 17 depicts the steps that the Conditional Action Engine

performs while evaluating the conditional actions.

Figure 15: Example conditional action configuration for workflow demonstration

Figure 16: Example mapping of conditional action using grammar for workflow demonstration

31

Figure 17: Conditional Action Engine evaluation workflow

1. In this step the user just created a response to a survey in which they are currently enrolled.

When a user submits a response, they are stored in a database location which includes the

survey key in its path. For this example, say the survey has only one question: the

participant uses the Bluetooth BAC sensor to record their BAC. Assume the participant

records a BAC of 0.24%. This value is stored in the survey response object with the key of

the question id. In this case, the researcher has configured the question id to be “bac”.

2. When this response is recorded, the on create database trigger fires. Recall that database

triggers watch a certain location in the database for certain actions to happen. In the

32

Conditional Action Engine, the triggers are configured to watch the path

‘data/{surveyKey}/answers/{responseKey}’. The surveyKey and

responseKey are wildcards that will match any value. Additionally, those tokens become

variables which contain the value they matched. This allows the trigger to have context of

the event that just fired. This begins the execution of our cloud function.

3. Next, the list of conditional actions is retrieved. TigerAware has a concept called

blueprints. A blueprint holistically defines every aspect of a survey including the questions

in the survey and other metadata. The conditional actions are stored in this metadata. The

JSON representation of the conditional action as shown in figure 16 exists in an array on

the blueprint object in Firebase. This blueprint object is keyed on the surveyKey from the

context of the database trigger. Using this key, we can retrieve the list of conditional actions

for the survey. If the list is empty, there is no need to continue so function execution stops.

In this case, there is one conditional action in the list, so execution would continue.

4. For each conditional action present, the conditional action pipeline is started. Furthermore,

since the pipeline includes many asynchronous operations (database reads, HTTPS calls),

each conditional action is handled in parallel. The first step in the pipeline is the aggregator.

The aggregation type is retrieved from the conditional action which is then used to

determine which aggregator function should be used to aggregate the data. In this example,

the aggregation type is “1Q” which stands for single question. This is the simplest

aggregator possible and currently the only supported aggregator. The function for this

33

aggregation type simply retrieves the response value for the provided question. It takes the

response key and question id as parameters and returns the value from the response object

from the database. In this example, the single question aggregator function would retrieve

the value for question “bac” which would be 0.24.

5. Now, the operator takes the output of the aggregator, 0.24, and evaluates it against the

target value by way of the operator. Before this is done, however, the data types are checked

to make sure they are the expected types. In this case, the operator, greater than, expects

the target and response values to be of type number. Both values are of number type, so we

continue. The response value, 0.24, and target value, 0.2, are compared, and since 0.24 is

greater than 0.2, the operator returns true.

6. The action step first looks at the output of the operator. If the operator returns false,

execution stops because the participant’s response did not meet the specified criteria. If the

operator returns true, the action step can continue processing the conditional action. The

first requirement is to retrieve the action from the conditional action. In this case the action

is “sendEmail”. Before routing to the email service to send the email to the recipients, the

parameters must be generated. For an email, a subject, body, and recipient list need to be

generated and passed to the email service. The subject is simply a constant property defined

in the codebase that reads “TigerAware conditional action triggered.” The recipient list is

already defined by the researcher, so that can simply be used as-is. Last, the body must be

generated. The body includes useful information about the action that was triggered

34

including the survey name, the participant, the question, the participant’s response, and the

message that the researcher configures. In this example, the parameters would be generated

then passed to the email service.

7. In the last step, the action is performed by the corresponding microservice. Currently, there

are three supported actions: send email, send SMS, and send notification. The send

notification service already existed in the system, but the send email and send SMS services

are new in this project. For the current example, an email would be sent to the two

participants via the NodeMailer API that will be discussed in more depth in the following

section.

Overall, this workflow provides a clear and efficient way of evaluation conditional actions. By

separating each step into a simple input-output problem, a lot of complexity is simplified out and

the process becomes very clear. In addition, by utilizing asynchronous JavaScript techniques like

async/await and promises all conditional actions for a survey can be performed in parallel. Not

only is this beneficial for performance, but Cloud Functions are priced based on runtime [12]. The

workflow is also extensible to new aggregators and actions. Since each step in the process performs

just one task, if the addition follows the same programming patterns it should fit in seamlessly.

5.4 External Services

 A major part of this project was the addition of two new services to TigerAware. The ability

to send emails and SMS to users is a widely popular feature found on apps spanning many domains.

Rather than simply “hardcoding” the services to work for the Conditional Action Engine, a generic

interface was set up to utilize the two new services. Now, different parts of TigerAware can utilize

35

these services to send any message to any person. The services both utilize the ability of Cloud

Functions to access third-party APIs via HTTPS. While this section only covers the two services

that were added, the following chapter discusses a few extra ideas of other services that could be

utilized from Cloud Functions.

 The first major service added in this project was the ability to send email programmatically.

NodeMailer is a popular JavaScript library that allows users to send email via an HTTPS call [13].

This library is particularly powerful because it allows users to send email without configuring a

SMTP server. This is very inconvenient, especially for TigerAware. Recall that TigerAware is

hosted entirely in the cloud with no servers managed directly. Creating a SMTP server in the

typical fashion would break the clean architecture that currently exists. In addition, this would add

cost to running TigerAware. NodeMailer is free to use and bypasses the need to create your own

SMTP server – all you need is a working email account from a service like Gmail. NodeMailer

uses your email credentials to access the SMTP server of your email provider. Not only is it free

and easy to use, but it is also secure. NodeMailer uses TLS to connect to the SMTP server.

NodeMailer does need to be given access to the email username and password, but Firebase

provides a way to store these securely in project-wide environment variables [14]. Furthermore, a

separate email account was created specifically for this purpose that has a unique password not

reused anywhere else. Finally, NodeMailer provides an easy-to-use library for JavaScript that

contains convenient wrappers for the HTTP calls being made.

 The second major service added in this project is the ability to send SMS. Unfortunately,

there is not an equivalent SMS version of NodeMailer. That is, there is not a free API to send SMS

that meets the needs of TigerAware. Instead, the Twilio API was used instead. Twilio provides a

similar interface to NodeMailer: simply provide what you want to send, who you want to send it

36

to, and then send it. It was incredibly easy to use [15]. They provide a nice library for JavaScript

that has wrappers around the HTTP calls, much like NodeMailer. As mentioned, it is not a free

API. The pricing is two-fold: “leasing” the phone number and a per-message cost. At the low end

of the spectrum, a local phone number leases at $1 per month and costs $0.0075 per message sent

[16]. This plan has a limit of one message sent per second, but this fits well within the current

needs of TigerAware. The Twilio API does not support sending the same message to multiple

people in one API call like NodeMailer does. To make the interface match that of the NodeMailer

interface, I add a wrapper over the library function that accepts a list of phone numbers and makes

subsequent calls to the Twilio API. This will allow other TigerAware developers to use the two

new services in the exact same fashion, further proving their accessibility for new features.

6 Future Opportunities

 As we have seen, the Conditional Action Engine is very robust and flexible – designed

with the future in mind. There are nearly endless ways this system could be used and adapted for

future studies conducted using TigerAware. The design of the system allows the actions module

to be particularly extensible. Any service that provides a REST API accessible via HTTPS can be

utilized by the Conditional Action Engine. Some interesting ideas here would be to schedule

meetings via a Gmail API or to connect to smart homes via smart speakers like Google Home or

Amazon Echo. Furthermore, there are numerous opportunities for more advanced data

aggregators. The following sections give a brief overview of useful aggregators that could be

added.

37

6.1 Historical Aggregators

 A historical aggregator encompasses any data aggregator that would use previous

responses from the participant – not just the current response. These aggregators would be useful

because EMA studies focus on detecting changes in participant behavior over time. Two research

questions that could be answered in real time by using these aggregators are “Is this the first time

a participant has answered a question this way?” and “Does this response seem normal for this

participant?” Being able to answer these types of questions in real time would be extremely

valuable in EMA studies since they provide great insight into the behaviors that are being studied.

I will provide a few examples of how these could be used in practice because I believe this is the

most intuitive aggregator to the platform.

 Say I am a researcher studying mental health disorders and I have a survey question that

reads “Are you happy?” I am interested in knowing if someone answers this question in a way they

have not answered before (after they have recorded at least three responses). The current

aggregators cannot support this. I cannot set an action to trigger on “yes” or “no” because the value

I am looking for is dependent on previous values. In this case, I would need a historical aggregator

that pulls all previous responses for that question from the participant and checks if the most recent

response appears in the list. This aggregator could be called a unique value historical aggregator

and would take a minimum number of responses as a parameter. It could simply return a boolean

to indicate if the value were unique. Then, an equals operator could be used to check if it is true.

 The previous example uses discrete values as a response. However, TigerAware supports

continuous numerical data as well. To deal with continuous data as a researcher, I want to answer

the question “Does this response seem normal for this participant?” Say I have a question that

38

reads “How many drinks have you had tonight?” To detect a change, I need to know how likely it

is that the participant would answer the way they did. One way to do this is to return the number

of standard deviations away the latest response is from the previous responses. This aggregator

would take the minimum number of responses as a parameter and return the number of standard

deviations away from the average the latest response was. I could then use a greater than or less

than operator to compare to a set number of standard deviations that I configure. For example, if

the person has answered the question with responses consistently between zero and three, then

they respond with thirteen, the number of standard deviations would be large, and I could trigger

an action.

6.2 Machine Learning-Based Aggregators

 Another interesting aggregator would be based on a machine learning model. This would

be the most specialized and development-intensive option, but under the correct circumstances

could be extremely useful and cutting edge. The pre-requisite for this aggregator is that you have

already developed a machine learning model based on data that is being collected by the survey.

Then, the model must be hosted in the cloud where it can be accessed by HTTPS. The difficulty

with this aggregator is mapping the survey question responses to the inputs for the machine

learning model. In addition, there is a lot of flexibility which means there need to be lots of

precautions taken from the dashboard to allow all the configuration necessary.

 There is a study currently being conducted on TigerAware by Dr. Denis McCarthy that is

studying the effects of alcohol use. This study utilizes an “active task” that TigerAware provides:

the gait and balance test. This test uses the device’s accelerometer sensors to record data while

participants walk in a straight line. Dr. McCarthy uses this to gauge impairment of participants.

39

As a class project, some members of the Lab built machine learning models to analyze the sensor

data and predict whether the subject was impaired or not. This is a perfect example of an

opportunity to use a machine learning aggregator. The model could be stored in the cloud, then

accessed via an aggregator to trigger a multitude of options based strictly on raw accelerometer

data. If the model is accurate enough, this could be used by researchers to eliminate the need to

provide BACtrack sensors for all the participants – saving a significant amount of money.

6.3 Sentiment Analysis Aggregators

 The final proposed aggregator attempts to provide insight into free text responses provided

by users. Google and Microsoft have very powerful sentiment analysis models that are available

via a REST API. This aggregator would take the text response from participants and feed it to the

model to receive numerical values about different sentiments available from the text. For example,

say a sentiment analysis model returns happiness, sadness, and anger scores in [0,1] for each text

input. One way this aggregator could be used is to retrieve certain sentiment scores for a given

emotion. This aggregator would take that output dimension as a parameter, then simply return the

value. From there, a greater than or less than operator could be used to trigger an action. These

models are the most accurate that are publicly available and offer a very easy to use API – making

it a great extension of the Conditional Action Engine.

7 Conclusion

 The Conditional Action Engine is a fantastic addition to the TigerAware platform. It

engages researchers in their study and provides methods to gain insights that were previously

impossible to retrieve. This project created the basic system design including the formal definition

of what constitutes a conditional action – an integral part of ensuring extensibility and reliability.

40

This project also adds the ability for researchers to configure conditional actions from the web

dashboard. Also, the backend infrastructure was designed, implemented, and tested to guarantee

effectiveness for many different types of data and surveys. In addition, re-usable services were

created to send emails and SMS. These services can now be utilized by other parts of TigerAware

to better engage our users. Lastly, the groundwork was laid for the ability to extend the system and

add more advanced features.

41

References

[1] "TigerAware," 2020. [Online]. Available: https://tigeraware.com. [Accessed 2020].

[2] D. S. &. Y. S. N. Moskowitz, "Ecological momentary assessment: what it is and why it is a

method of the future in clinical psychopharmacology," Journal of Psychiatry &

Neuroscience, vol. 31, no. 1, pp. 13-20, 2006.

[3] "ZenDesk," 2020. [Online]. Available: https://support.zendesk.com/hc/en-us. [Accessed

2020].

[4] Jessica Marasco, "Automation conditions and actions reference," ZenDesk, February 2020.

[Online]. Available: https://support.zendesk.com/hc/en-us/articles/115015611667-

Automation-conditions-and-actions-reference. [Accessed 2020].

[5] "Firebase," Google, 2020. [Online]. Available: https://firebase.google.com/. [Accessed

2020].

[6] "RxJS," 2020. [Online]. Available: https://rxjs-dev.firebaseapp.com/. [Accessed 2020].

[7] "Angular Components," Google, 2020. [Online]. Available:

https://material.angular.io/components/categories. [Accessed 2020].

[8] "Angular Material," Google, 2020. [Online]. [Accessed 2020].

[9] "Angular Reactive Forms," Google, 2020. [Online]. Available:

https://angular.io/guide/reactive-forms. [Accessed 2020].

[10] "Reactive form validation," Google, 2020. [Online]. Available:

https://angular.io/guide/form-validation#reactive-form-validation. [Accessed 2020].

[11] "Cloud Functions for Firebase," Google, 2020. [Online]. Available:

https://firebase.google.com/docs/functions. [Accessed 2020].

[12] "Firebase Pricing," Google, 2020. [Online]. Available: https://firebase.google.com/pricing.

[Accessed 2020].

[13] "NodeMailer," 2020. [Online]. Available: https://nodemailer.com/about/. [Accessed 2020].

[14] "Environment configuration," Google, 2020. [Online]. Available:

https://firebase.google.com/docs/functions/config-env. [Accessed 2020].

[15] "Sending Messages," Twilio, 2020. [Online]. Available:

https://www.twilio.com/docs/sms/send-messages. [Accessed 2020].

42

[16] "SMS pricing," Twilio, 2020. [Online]. Available: https://www.twilio.com/sms/pricing/us.

[Accessed 2020].

43

Appendix

Figure 18: Yes/no question type

Figure 19: Scale question type

44

Figure 20: Continuous scale question type

Figure 21: Text field question type

45

Figure 22: Number question type

Figure 23: BACtrack sensor used in BAC question type

