
	

	

		

APPLICATION	OF	DEEP	LEARNING	
TO	

FISH	RECOGNITION	
	

A	Project	

Presented	to	

The	Faculty	of	the	Graduate	School	

At	the	University	of	Missouri

In	Partial	Fulfillment	

Of	the	Requirements	for	the	Degree	

Master	of	Science

Implemented	and	Defended	by:	

Fuming	Xiang	
Prof.	Yi	Shang,	Advisor	

May	2018

	

	

2	
	

TABLE	OF	CONTENTS	

TABLE	OF	CONTENTS	---	2	

List	of	Figures	---	4	

List	of	Tables	--	7	

ACKNOWLEDGEMENTS	--	8	

Abstract	--	9	

Introduction	---	10	

1.	 Related	Works	--	12	

1.1	 Convolutional	Neural	Network	(CNN)	--	12	

1.2	 VGG16	---	13	

1.3	 ResNet	50	---	13	

1.4	 SSD	Caffe	--	14	

2.	 Design	and	Implementation	---	16	

2.1	 Design	---	16	

2.1.1	 Data	Preprocessing	--	16	

2.1.2	 Image	Pipeline	--	17	

2.1.3	 Instance	Pipeline	---	18	

2.1.4	 Instance	Rotation	Pipeline	---	19	

2.1.5	 Ensemble	Pipeline	---	21	

2.2	 Implementation	--	23	

2.2.1	 Configuration	---	23	

	

3	
	

2.2.2	 Evaluation	Metric	--	24	

2.2.3	 Image	Pipeline	--	29	

2.2.4	 Instance	Pipeline	---	34	

2.2.5	 Instance	Rotation	Pipeline	---	38	

2.2.6	 Ensemble	Pipeline	---	44	

3.	 Results	---	49	

4.	 Conclusion	and	Future	Work	--	53	

4.1	 Conclusion	and	Contribution	 ---	53	

4.2	 Future	Work	---	53	

5.	 References	---	54	

	

	 	

	

4	
	

List	of	Figures	

Figure	1	Fish	Species	and	Distribution	in	Missouri	--	10	

Figure	2	Fish	size	ratio	distribution	---	11	

Figure	3	VGG	16	Architecture	--	13	

Figure	4	ResNet	50	Architecture	--	14	

Figure	5	SSD	Caffe	Architecture	---	15	

Figure	6	Examples	of	grayscale,	non-fish	or	missing-fish,	and	ambiguity	images	-----------------------------	16	

Figure	7	Example	of	labeled	image	---	17	

Figure	8	Image	Pipeline	--	17	

Figure	9	Instance	Pipeline	---	18	

Figure	10	Instance	images	generation	---	19	

Figure	11	Instance	Rotation	Pipeline	---	19	

Figure	12	Orientation	split	--	20	

Figure	13	Orientation	vector	---	20	

Figure	14	Instance	Rotation	images	generation	---	21	

Figure	15	Ensemble	Pipeline	---	22	

Figure	16	Confusion	Matrix	Example	---	25	

Figure	17	Intersection	over	Union	--	26	

	

5	
	

Figure	18	Threshold	example	of	Intersection	over	Union	---	27	

Figure	19	Python	code	for	accuracy	calculation	---	29	

Figure	20	Accuracy_0	and	Accuracy_1	orientation	distribution	---	29	

Figure	21	Modified	VGG	16	Architecture	---	30	

Figure	22	Compile	model	in	Keras	with	cross-entropy	loss	function	---	30	

Figure	23	Image	Pipeline	loss	and	accuracy	curve	–	VGG16	Classifier	---	32	

Figure	24	Image	Pipeline	training	confusion	matric	–	VGG16	Classifier	---	32	

Figure	25	Image	Pipeline	validation	confusion	matric	–	VGG16	Classifier	--------------------------------------	33	

Figure	26	Image	Pipeline	testing	confusion	matric	–	VGG16	Classifier	--	33	

Figure	27	SSD	Caffe	training	loss	--	34	

Figure	28	SSD	Caffe	precision-recall	curve	on	the	test	dataset	--	35	

Figure	29	Instance	Pipeline	loss	and	accuracy	curve	–	VGG16	Classifier	--	36	

Figure	30	Instance	Pipeline	training	confusion	matric	–	VGG16	Classifier	--------------------------------------	37	

Figure	31	Instance	Pipeline	validation	confusion	matric	–	VGG16	Classifier	-----------------------------------	37	

Figure	32	Instance	Pipeline	testing	confusion	matric	–	VGG16	Classifier	---------------------------------------	38	

Figure	33	Pose	Estimator	loss	and	accuracy	curve	--	39	

Figure	34	Pose	Estimator	training	confusion	matrix	---	40	

Figure	35	Pose	Estimator	validation	confusion	matrix	---	40	

	

6	
	

Figure	36	Pose	Estimator	testing	confusion	matrix	---	41	

Figure	37	Instance	Rotation	Pipeline	loss	and	accuracy	curve	–	VGG16	Classifier	----------------------------	42	

Figure	38	Instance	Rotation	Pipeline	training	confusion	matrix	–	VGG16	Classifier	--------------------------	42	

Figure	39	Instance	Rotation	Pipeline	validation	confusion	matrix	–	VGG16	Classifier	-----------------------	43	

Figure	40	Instance	Rotation	Pipeline	testing	confusion	matrix	–	VGG16	Classifier	---------------------------	43	

Figure	41	Ensemble	Pipeline	-	ResNet	50	loss	and	accuracy	curve	---	44	

Figure	42	Ensemble	Pipeline	training	confusion	matrix	–	ResNet50	Classifier	---------------------------------	45	

Figure	43	Ensemble	Pipeline	validation	confusion	matrix	–	ResNet50	Classifier	------------------------------	45	

Figure	44	Ensemble	Pipeline		testing	confusion	matrix	–	ResNet50	Classifier	---------------------------------	46	

Figure	45	VGG	ratio	-	validation	accuracy	curve	--	46	

Figure	46	Ensemble	Pipeline	training	confusion	matrix	–	Weighted	Classifier	--------------------------------	47	

Figure	47	Ensemble	Pipeline	validation	confusion	matrix	–	Weighted	Classifier	------------------------------	48	

Figure	48	Ensemble	Pipeline	testing	confusion	matrix	–	Weighted	Classifier	----------------------------------	48	

Figure	49	Image-Classifier	Accuracy	--	49	

Figure	50	Image	Pipeline	test	accuracy	--	50	

Figure	51	Instance	Pipeline	test	accuracy	---	50	

Figure	52	Instance	Rotation	Pipeline	test	accuracy	---	51	

Figure	53	Ensemble	Pipeline	test	accuracy	---	51	

	

7	
	

	

List	of	Tables	

Table	1	Dataset	downloaded	from	ImageNet	--	11	

Table	2	Image	Pipeline	dataset	--	18	

Table	3	Instance	Pipeline	dataset	---	19	

Table	4	Pose	estimator	dataset	--	21	

Table	5	Instance	Rotation	Pipeline	dataset	---	21	

Table	6	Ensemble	Pipeline	dataset	---	23	

Table	7	Development	environment	configuration	--	24	

Table	8	Image	Pipeline	training	phase	–	VGG16	Classifier	--	31	

Table	9	Instance	Pipeline	training	phase	–	VGG16	Classifier	---	36	

Table	10	Pose	Estimator	training	phase	---	39	

Table	11	Instance	Rotation	Pipeline	training	phase	–	VGG16	Classifier	---	41	

Table	12	ResNet	50	training	phase	---	44	

Table	13	Final	test	results	---	52	

	

	 	

	

8	
	

ACKNOWLEDGEMENTS	

	 Firstly,	 I	 would	 like	 to	 thank	 Prof.	 Yi	 Shang	 for	 his	 mentorship,	 guidance,	 and	 support	

throughout	my	graduate	school	and	through	this	research	project.	 I	would	also	 like	to	thank	Joel	 for	

the	opportunity	 to	collaborate	with	 the	Missouri	Department	of	Conservation	and	their	 feedback	on	

this	project.	

I	 would	 also	 like	 to	 thank	 everyone	 from	 the	 Computer	 Science	 lab,	 especially	 Guang	 Chen,	

Peng	Sun,	Yang	Liu,	and	Nickolas	Wergeles,	for	sharing	their	experiences	and	being	an	integral	part	of	

this	project.	 I	would	also	 like	to	show	appreciation	to	Jodie	Lenser,	Shirley	Holdmeier	for	guiding	me	

through	my	application	process	to	Mizzou	as	well	as	advising	me	on	my	courses.	

	 Finally,	 I	would	like	to	thank	my	family.	Without	their	support,	trust	and	belief	 in	me,	I	would	

not	be	where	I	am	today.	I	hope	I	have	done	you	proud.	

	 	

	

9	
	

ABSTRACT	

Over	the	past	few	years,	deep	learning	has	been	widely	used	and	obtained	very	good	results	in	

image	recognition.	In	this	project,	several	state-of-the-art	deep	learning	models	and	their	combinations	

have	 been	 applied	 to	 fish	 recognition	 in	 images,	 in	 particular	 9	 common	 species	 of	 fish	 in	Missouri	

rivers.	 Four	 different	 data	 processing	 and	 machine	 learnings	 pipelines	 have	 been	 developed	 and	

extensive	experiments	have	been	conducted	to	evaluate	their	performances.		The	deep	convolutional	

neural	 network	 (CNN)	models	 used	 in	 these	 pipelines	 include	 SSD,	 VGG16,	 ResNet50,	 etc.	 The	 four	

pipelines	 are	 image-based,	 instance-based,	 instance	 rotation	 based,	 and	 ensemble,	 with	 increasing	

complexity.	Without	doing	any	preprocessing,	the	image-based	pipeline	takes	an	entire	image	as	input	

to	 classify	 the	 image	 into	 one	 of	 the	 target	 classes	 using	 deep	 CNNs.	 This	 pipeline	 achieved	 up	 to	

75.57%	 classification	 accuracy	 on	 our	 test	 dataset.	 The	 instance-based	 pipeline	 consists	 of	 object	

detection	by	one	deep	CNN	followed	by	classification	by	another	deep	CNN.	This	method	achieved	up	

to	80.03%	accuracy	on	our	test	dataset.	The	instance	rotation	based	pipeline	adds	a	deep	CNN	to	do	

pose	estimation	between	object	detection	and	classification.	The	posture-adjusted	fish	 image	is	used	

as	the	input	to	the	classification	model,	which	help	the	pipeline	to	achieve	up	to	82.83%	accuracy	on	

the	 same	 dataset.	 Finally,	 the	 ensemble	 pipeline	 is	 a	 combination	 of	 two	 instance	 rotation	 based	

pipelines.	The	difference	of	these	two	instance	rotation	based	pipelines	is	in	the	classification	model:	

one	 is	 VGG16	 and	 the	 other	 ResNet50.	 The	 ensemble	 pipeline	 achieved	 up	 to	 87.22%	 accuracy,	

outperforming	all	other	pipelines	significantly.	

	 	

	

10	
	

INTRODUCTION	

The	project	is	proposed	by	Missouri	Department	of	Conservation	(MDC),	to	solve	the	issue	that	

counting	and	classifying	fish	 in	 image	manually	 is	a	huge	amount	of	work	and	time-consuming.	Since	

the	Convolutional	neural	network	performance	better	and	better,	and	for	now,	the	CNN	in	some	case	

could	get	higher	accuracy	than	human	recognition,	we	are	going	to	use	existing	CNN	models	to	solve	

the	fish	classification	problem.	The	primary	task	of	this	project	is	aiming	to	classify	9	different	species	

of	fish	in	Missouri	river.	

	

Figure	1	Fish	Species	and	Distribution	in	Missouri	

The	 classification	 task	 is	 taking	 a	 or	 a	 batch	 of	 RGB	 images,	 and	 return	 the	 species	 or	 the	

probability	of	fish	species.	

All	the	data	used	in	this	project	is	download	from	ImageNet,	which	is	a	large	image	dataset	with	

categorical	 labels,	 In	 the	dataset,	 there	are	4842	 images	distribute	 in	9	classes,	and	each	 image	may	

contain	several	fish	instances,	but	only	one	species.	

	

11	
	

	

Table	1	Dataset	downloaded	from	ImageNet	

Among	the	whole	dataset,	most	of	 the	 image	contains	1	 fish.	To	visualize	 the	size	of	 fish,	we	

define	the	ratio	by	using	this	 formula	the	ratio	equals	to	the	 labeled	box	area	of	 fish,	divided	by	the	

image	area	in	pixel	measurement.	

𝑅𝑎𝑡𝑖𝑜&'() 	= 	𝐴𝑟𝑒𝑎&'()	/01	/	𝐴𝑟𝑒𝑎'3456 	

	

Figure	2	Fish	size	ratio	distribution	

	

12	
	

1. RELATED	WORKS	

1.1 Convolutional	Neural	Network	(CNN)	

The	Convolutional	Neural	Network	 is	 a	 kind	of	 artificial	neural	network,	which	has	become	a	

research	 hotspot	 in	 the	 field	 of	 speech	 analysis	 and	 image	 recognition.	 Its	 weight-sharing	 network	

structure	makes	it	more	similar	to	biological	neural	networks,	reducing	the	complexity	of	the	network	

model	 and	 reducing	 the	 number	 of	weights.	 This	 advantage	 is	more	 obvious	when	 the	 input	 of	 the	

network	 is	 a	 multi-dimensional	 image	 so	 that	 the	 image	 can	 be	 directly	 used	 as	 the	 input	 of	 the	

network,	 which	 avoids	 the	 complicated	 feature	 extraction	 and	 data	 reconstruction	 process	 in	 the	

traditional	 recognition	 algorithm.	 A	 convolutional	 network	 is	 a	 multi-layer	 perceptron	 specially	

designed	to	identify	two-dimensional	shapes.	This	network	structure	is	highly	invariant	to	translation,	

scaling,	tilting,	or	other	forms	of	deformation.	

CNN	is	 the	first	 learning	algorithm	to	train	multi-layer	network	structures	successfully.	 It	uses	

spatial	 relationships	 to	 reduce	 the	 number	 of	 parameters	 that	 need	 to	 be	 learned	 to	 improve	 the	

training	performance	of	general	back	propagation	algorithms.	CNNs	are	proposed	as	a	deep	 learning	

framework	 to	 minimize	 data	 preprocessing	 requirements.	 In	 CNN,	 a	 small	 part	 of	 the	 image	 (local	

receptive	area)	is	used	as	the	lowest	level	input	to	the	hierarchical	structure.	The	information	is	then	

transmitted	to	different	layers.	Each	layer	passes	a	digital	filter	to	obtain	the	most	significant	features	

of	 the	 observed	 data.	 This	method	 can	 obtain	 significant	 features	 of	 the	 observation	 data	 that	 are	

invariant	to	translation,	scaling,	and	rotation,	because	the	local	perception	region	of	the	image	allows	

the	neuron	or	the	processing	unit	to	access	the	most	basic	features,	such	as	oriented	edges	or	corner	

points.	

	

13	
	

1.2 VGG16	

In	this	project,	different	CNNs	ware	used,	such	as	VGG16,	ResNet50,	and	SSD	Caffe.	The	original	

title	 of	 the	 VGG	 paper	 was	 “VERY	 DEEP	 CONVOLUTIONAL	 NETWORKS	 FOR	 LARGE-SCALE	 IMAGE	

RECOGNITION”.	The	paper	was	published	on	ICLR	2015.	VGG16	and	VGG19	are	two	very	good	DCNN	

(Deep	 Convolutional	 Neural	 Network)	 proposed	 by	 this	 article.	 This	 series	 of	models	 achieved	 best-

performance	in	ILSVRC-2013	and	achieved	good	results	in	other	DCNN-based	work	(eg	FCN).	Compared	

to	 ALEXNET,	 VGG	 has	 a	 more	 accurate	 estimate	 of	 the	 picture	 and	 more	 space.	 VGG16	 has	 3	

convolutional	 blocks	 with	 max	 pooling,	 and	 3	 fully	 connected	 layers	 with	 ReLU	 functions,	 finally	

following	a	softmax	function.	Each	convolutional	block	contains	2	or	3	convolutional	layers.	

	

Figure	3	VGG	16	Architecture	

1.3 ResNet	50	

An	 original	 paper	 of	 the	 ResNet	 model:	 Deep	 Residual	 Learning	 for	 Image	 Recognition.	

It	can	be	clearly	seen	that	the	expressiveness	of	the	network	is	enhanced	as	the	depth	of	the	network	

increases.	The	experiments	of	He	Kaiming	and	others	also	proved	that	the	network	structure	with	the	

	

14	
	

same	complexity,	 the	relative	deeper	network	performs	better.	However,	 it	 is	not.	Regardless	of	 the	

issue	of	computational	cost,	when	the	depth	of	the	network	is	deeper,	increasing	the	number	of	layers	

will	not	 improve	performance,	but	will	cause	the	gradient	diffusion.	Under	the	guidance	of	this	 idea,	

Deep	Residual	Learning	(ResNet)	was	proposed.	ResNet	has	two	basic	blocks,	one	is	Identity	Block,	the	

input	and	output	dimensions	are	 the	 same,	another	basic	block	 is	Conv	Block,	 the	 input	and	output	

dimensions	 are	 not	 the	 same,	 so	 cannot	 be	 connected	 in	 series,	 its	 role	was	 initially	 to	 change	 the	

dimension	of	the	feature	vector.		

	

Figure	4	ResNet	50	Architecture	

1.4 SSD	Caffe	

The	 SSD	 algorithm	 proposed	 in	 the	 paper	 “SSD:	 single	 shot	multibox	 detector”,	 is	 an	 object	

detection	 algorithm	 that	 directly	 predicts	 the	 coordinates	 and	 categories	 of	 the	 bounding	 box,	 and	

does	not	generate	a	proposal	process.	 For	 the	detection	of	objects	of	different	 sizes,	 the	 traditional	

approach	 is	 to	 convert	 the	 images	 into	 different	 sizes,	 then	 process	 them	 separately,	 and	 finally	

synthesize	the	results.	In	this	paper,	the	ssd	can	synthesize	different	convolutional	layer	feature	maps	

to	achieve	the	same	effect.	The	main	network	structure	of	the	algorithm	is	VGG16,	which	transforms	

two	 fully	 connected	 layers	 into	 a	 convolutional	 layer	 and	 then	 adds	 four	 convolutional	 layers	 to	

	

15	
	

construct	a	network	structure.	The	output	of	five	different	convolutional	layers	is	convolved	with	two	

3*3	convolution	kernels,	one	for	the	output	classification,	each	default	box	generates	21	confidences,	

and	the	other	for	localization,	each	default	box	generates	4	coordinate	values	(x,	y,	w,	h).	In	addition,	

these	5	 convolutional	 layers	 also	generate	 the	default	box	 (the	generated	 coordinates)	 via	 the	prior	

box	layer.	Finally,	the	first	three	calculation	results	are	respectively	merged	and	then	passed	to	the	loss	

layer.	

	

Figure	5	SSD	Caffe	Architecture	

	 	

	

16	
	

2. DESIGN	AND	IMPLEMENTATION	

2.1 Design	

2.1.1 Data	Preprocessing	

	 Images	are	downloaded	from	ImageNet	by	the	links	with	keywords.	Thus,	there	would	be	some	

data	that	is	not	suitable	for	our	project,	such	as	grayscale	images,	non-fish	or	missing-fish	image,	and	

ambiguity	image.	What	we	need	to	do	is	to	remove	these	images	to	clean	the	dataset	for	this	project.	

	

Figure	6	Examples	of	grayscale,	non-fish	or	missing-fish,	and	ambiguity	images	

	 Since	the	images	downloaded	from	ImageNet	only	provide	categorical	 labels,	 in	order	to	train	

the	network,	especially	for	the	object	detection	and	pose	estimation,	we	need	to	label	the	fish	with	an	

annotation	tool:	Sloth.	

	 Sloth’s	 purpose	 is	 to	 provide	 a	 versatile	 tool	 for	 various	 labeling	 tasks	 in	 the	 context	 of	

computer	vision	research.	In	this	project,	for	every	image,	the	label	we	need	is	a	position	bounding	box	

(red	 in	 the	 figure	 7)	 containing	 a	 particular	 species	 of	 fish,	 and	 its	 head	 and	 tail	 coordinates	 (green	

points	in	figure	7).	

	

17	
	

	

Figure	7	Example	of	labeled	image	

2.1.2 Image	Pipeline	

	 Image	 Pipeline	 is	 the	 basic	 pipeline	 in	 this	 project.	 It	 takes	 the	 non-processed	 images	 as	 the	

input.	 For	 this	 pipeline,	 we	 used	 VGG16	 as	 the	 prediction	 model.	 Since	 the	 VGG16	 was	 trained	 in	

ImageNet	and	the	output	of	the	pre-trained	model	is	1000,	in	order	to	use	the	pre-trained	weights	to	

get	a	higher	accuracy,	we	used	pre-trained	VGG16	as	the	basic	model	and	added	another	dense	layer	

(fully	connected	layer)	with	the	output	9.	

	

Figure	8	Image	Pipeline	

	 We	randomly	split	4842	images	into	training	(80%),	validation	(10%),	and	testing	(10%)	dataset	

by	species.	

	

18	
	

	

Table	2	Image	Pipeline	dataset	

2.1.3 Instance	Pipeline	

	 However,	in	our	project,	like	we	saw	in	data	overview	part,	the	fish	in	the	image	is	small,	mostly	

smaller	than	half	of	the	image	size,	which	means,	in	the	image,	there	are	plenty	of	useless	information,	

which	would	 influence	 the	performance	of	 classification.	 Thus,	 in	 order	 to	 avoid	 it,	 fish	 detection	 is	

necessary.	 In	 Instance	 Pipeline,	 detection	 is	 added	 before	 the	 VGG16	 classification,	 which	 would	

output	the	box	position	of	fish,	and	we	do	the	padding	to	avoid	distortion	and	crop	it.	

	

Figure	9	Instance	Pipeline	

Based	on	 the	pipeline	we	designed,	 cropped	 images	are	needed	 for	 the	 training	 stage	 to	 the	

classifier.	The	generated	images	are	coming	from	the	Image	Pipeline.	We	padded	and	cropped	the	fish	

into	square	instance	images.	If	the	border	of	the	cropped	image	is	out	of	the	image	border,	we	should	

do	padding	after	cropping,	and	finally,	we	got	5136	instance	images.	

	

19	
	

	

Figure	10	Instance	images	generation	

	

Table	3	Instance	Pipeline	dataset	

	

2.1.4 Instance	Rotation	Pipeline	

	 In	 the	 Instance	 Pipeline,	 we	 did	 object	 detection,	 and	 image	 classification	 to	 filter	 out	 the	

useless	 information	 by	 cropping	 the	 fish	 out.	 However,	 the	 cropped	 images	 still	 have	 some	 useless	

information	which	we	could	filter	out:	the	orientation	of	fish.	Thus,	we	added	a	pose	estimator	after	

the	object	detection	to	align	the	fish	into	a	particular	orientation.	

	

Figure	11	Instance	Rotation	Pipeline	

		

	

20	
	

		 Amount	5136	 instance	 images,	we	assign	the	pose	of	 fish	 into	16	orientations	 in	a	circle,	and	

every	orientation	takes	22.5	degrees.	

	

Figure	12	Orientation	split	

	 To	get	which	orientation	that	the	fish	should	be	assigned	to,	we	used	the	head	and	tail	

coordinates	to	calculate	the	vector	of	each	fish.	

	

Figure	13	Orientation	vector	

𝑣𝑒𝑐𝑡𝑜𝑟	 = 	𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒)64; − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒=4'>	

	 For	the	training,	validation,	and	testing	data	in	pose	estimator,	we	did	data	augmentation	to	

enlarge	the	dataset,	such	as	flipping	and	rotating.	Finally,	we	have	7687	for	the	estimator	dataset.	

	

21	
	

	

Table	4	Pose	estimator	dataset	

	 For	the	training,	validation,	and	testing	data	in	VGG16	classifier,	we	do	the	alignment	from	the	

Instance	Pipeline	VGG16	classifier	dataset.	

	

Figure	14	Instance	Rotation	images	generation	

	 After	alignment,	we	got	the	training,	validation,	and	testing	data	for	the	VGG16	classifier	in	

Instance	Rotation	Pipeline.	

	

Table	5	Instance	Rotation	Pipeline	dataset	

2.1.5 Ensemble	Pipeline	

	

22	
	

	 In	the	results	of	a	massive	machine	learning	competition,	the	best	result	is	usually	the	ensemble	

model	rather	than	the	single	model.	For	example,	ILSVRC	2015's	highest-scoring	single	model	structure	

achieved	the	13th	place.	The	1st	to	12th	have	used	different	types	of	model	ensemble.	

There	are	many	different	types	of	ensemble	model:	one	of	them	is	stacking.	This	type	is	more	

general	and	can	theoretically	characterize	any	other	ensemble	technique.	For	this	pipeline,	 I	will	use	

the	purest	form	of	stacking,	which	involves	averaging	the	ensemble	model	outputs.	Since	the	averaging	

process	 does	 not	 include	 any	 parameters,	 this	 process	 does	 not	 require	 training	 (only	 the	 trained	

model	is	needed).	

In	 the	 Ensemble	 Pipeline,	 we	 train	 another	 classifier	 by	 using	 ImageNet	 pre-trained	 model:	

ResNet	50,	and	take	the	weight	average	to	get	the	ensemble	result.	

	

Figure	15	Ensemble	Pipeline	

When	we	got	the	prediction	results	for	VGG16	and	ResNet50,	we	applied	weight	average	to	get	

the	final	result	for	this	pipeline.	

𝑃𝑟𝑒𝑑6@(63/>6 	= 	𝑟𝑎𝑡𝑖𝑜ABB 	∗ 	𝑝𝑟𝑒𝑑ABB 	+ 	(1 − 𝑟𝑎𝑡𝑖𝑜ABB) 	∗ 	𝑝𝑟𝑒𝑑I6(J6=	

	 The	 only	 difference	 for	 the	 Ensemble	 Pipeline	 is	 that	we	 need	 to	 train	 the	 ResNet50	model	

similarly	as	the	training	stage	for	the	VGG16	model	in	Instance	Rotation	Pipeline.	Thus,	the	dataset	is	

same.	

	

23	
	

	

Table	6	Ensemble	Pipeline	dataset	

2.2 Implementation	

2.2.1 Configuration	

The	 project's	 development	 environment	 is	 Linux,	 Ubuntu	 16.04,	 using	 python	 as	 the	 only	

development	language.	Python	dependency	package	version	information	is	as	follows.	

	

Package	Name	 Version	 Description	

h5py	 2.7.1	 tools	for	*.h5	file	(keras	weights)	

imutils	 0.4.3	 image	processing	tools	

jupyter	 1.0.0	 python	GUI	(in	browser)	

Keras	 1.2.0	 high	level	machine	learning	API	

matplotlib	 2.1.0	 data	visualization	

numpy	 1.14.0	 python	scientific	computing	library	

pandas	 0.20.3	 python	data	analysis	library	

pillow	 3.1.2	 image	processing	tools	

pip	 9.0.1	 python	package	management	tool	

	

24	
	

progressbar	 2.3.0	 progress	bar	view	components	

python	 2.7	 language	

scikit-image	 0.13.1	 image	processing	tools	

scikit-learn	 0.19.1	 machine	learning	toolkit	

scipy	 1.0.0	 python	algorithm	library	and	math	toolkit	

six	 1.11.0	 library	for	compatibility	with	python	2	and	python	3	

sloth	 1.0	 annotation	tools	

Theano	 0.9.0	 Used	to	define,	optimize,	and	efficiently	solve	analog	
estimation	problems	of	multi-dimensional	array	data	

corresponding	mathematical	expressions	
Table	7	Development	environment	configuration	

2.2.2 Evaluation	Metric	

In	 the	 whole	 project,	 we	 use	 object	 detection,	 and	 classification	 (pose	 estimator	 and	 fish	

classifier).	 In	 object	 detection,	 precision	 and	 recall	 are	 the	 primary	 evaluation	 metrics,	 and	 for	

classification,	calculating	the	accuracy	is	a	simple	method	to	evaluate	the	model.	

2.2.2.1 Object	Detection	Accuracy	

	 Traditionally	in	the	evaluation	of	object	detection	algorithms,	for	a	single	detection	file	and	its	

corresponding	 ground	 truth	 file,	 two	 values,	 recall,	 and	 precision,	 can	 be	 calculated.	 Usually,	 in	 the	

object	detection	 task,	we	use	 confusion	matrix	 to	get	 the	prediction	 results.	A	 confusion	matrix	 is	 a	

summary	 of	 prediction	 results	 on	 a	 detection	 or	 classification	 problem.	 The	 number	 of	 correct	 and	

incorrect	predictions	are	summarized	with	count	values	and	broken	down	by	each	class.	To	calculate	

the	confusion	matrix:	

1. You	need	a	test	dataset	or	a	validation	dataset	with	expected	outcome	values.

	

25	
	

2. Make	a	prediction	for	each	row	in	your	test	dataset.

3. From	the	expected	outcomes	and	predictions	count:

a. The	number	of	correct	predictions	for	each	class.

b. The	number	of	incorrect	predictions	for	each	class,	organized	by	the	class	that	

was	predicted.

Efficiently,	scikit-learn	provides	a	function	to	get	confusion	matrix	by	inputting	the	label	and	

prediction	in	order.	For	object	detection	or	binary	classification,	for	example,	we	have	the	confusion	

matrix	as	follows:	

	

Figure	16	Confusion	Matrix	Example	

● True	Positives	(TP):	These	are	cases	in	which	we	predicted	yes,	and	their	label	is	yes.	

● True	Negatives	(TN):	We	predicted	no,	and	their	label	is	no.	

● False	Positives	(FP):	We	predicted	yes,	but	their	label	is	no.	

● False	Negatives	(FN):	We	predicted	no,	but	their	label	is	yes.	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	𝑇𝑃	/		(𝑇𝑃 + 𝐹𝑃)	

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑁)	

	

26	
	

Intuitively,	recall	tells	us	how	many	of	our	objects	have	been	detected,	and	precision	gives	us	

information	 on	 the	 number	 of	 false	 alarms.	 Both	 are	 higher	 if	 better	 and	 should	 be	 close	 to	 1	 for	

perfect	systems.	

In	order	 to	be	able	 to	calculate	 these	 two	measures	 (recall	and	precision),	an	evaluation	 tool	

needs	to	find	out	two	things:	

1. for	 each	 ground	 truth	 rectangle,	 we	 need	 to	 know	 whether	 it	 has	 been	 correctly	

detected	or	not	

2. for	each	detected	rectangle,	we	need	to	know	whether	it	corresponds	to	a	valid	ground	

truth	rectangle	or	not	

	 In	order	to	measure	whether	the	object	is	correctly	detected,	we	use	Intersection	over	Union.	

	

Figure	17	Intersection	over	Union	

Examining	 this	 equation,	 you	 can	 see	 that	 Intersection	 over	 Union	 is	 simply	 a	 ratio.	 In	 the	

numerator,	we	 compute	 the	 area	 of	 overlap	 between	 the	 predicted	 bounding	 box	 and	 the	 ground-

truth	bounding	box.	The	denominator	is	the	area	of	union,	or	more	simply,	the	area	encompassed	by	

	

27	
	

both	the	predicted	bounding	box	and	the	ground-truth	bounding	box.	Dividing	the	area	of	overlap	by	

the	area	of	union	yields	our	final	score	—	the	Intersection	over	Union.	

In	all	 reality,	 it’s	extremely	unlikely	 that	 the	 (x,	y)-coordinates	of	our	predicted	bounding	box	

are	 going	 to	 exactly	match	 the	 (x,	 y)-coordinates	 of	 the	 ground-truth	 bounding	 box.	Due	 to	 varying	

parameters	of	our	model	(image	pyramid	scale,	sliding	window	size,	feature	extraction	method,	etc.),	a	

complete	and	total	match	between	predicted	and	ground-truth	bounding	boxes	 is	simply	unrealistic.	

Because	of	 this,	we	need	 to	define	an	evaluation	metric	 that	 rewards	predicted	bounding	boxes	 for	

heavily	overlapping	with	the	ground-truth:	

	

Figure	18	Threshold	example	of	Intersection	over	Union	

As	you	can	see,	predicted	bounding	boxes	that	heavily	overlap	with	the	ground-truth	bounding	

boxes	have	higher	scores	than	those	with	less	overlap.	This	makes	Intersection	over	Union	an	excellent	

metric	for	evaluating	custom	object	detectors.	

	

	

	

28	
	

2.2.2.2 Classification	Accuracy	

Accuracy	is	one	metric	for	evaluating	classification	models.	Informally,	accuracy	is	the	fraction	

of	predictions	our	model	got	right.	Formally,	accuracy	has	the	following	definition:	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 	

Usually,	 in	 classification	 task,	 we	 use	 confusion	 matrix	 similarly	 to	 the	 object	 detection	 but	

using	multiple-class.

	 By	looking	at	the	confusion	matrix,	we	could	calculate	the	accuracy	easily.	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑇𝑟𝑎𝑐𝑒34=U'1
𝑆𝑢𝑚34=U'1

	

2.2.2.3 Pose	Estimation	Accuracy	

	 Pose	Estimation	is	a	classification	task,	but	we	apply	two	different	measurements	to	calculate	

the	accuracy	of	the	model:	

1. Traditional	classification	accuracy	measurement.	

2. Offsetting	classification	accuracy	measurement.	

	 In	 traditional	 classification	 accuracy	 measurement,	 we	 could	 calculate	 the	 confusion	 matrix,	

and	get	the	accuracy	by	using	the	above	formula.	However,	in	some	cases,	we	allow	some	offset	to	the	

rotated	fish,	which	means	the	nearby	orientation	is	acceptable.		

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	0 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	

	

29	
	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	1	 = 	
𝑂𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑛𝑔	𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 	

	 Where:	

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠: (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	 == 	𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ)	and	

𝑂𝑓𝑓𝑠𝑒𝑡𝑡𝑖𝑛𝑔	𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠: (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	 == 	𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ	||	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	 ==

	𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ4;]0'@'@5)	

Usually,	in	Numpy,	we	could	do	it	easily	by	using	the	following	code	(cm	is	the	confusion	

matrix):	

	

Figure	19	Python	code	for	accuracy	calculation	

For	example,	 in	 the	 following	 figure,	 if	 the	ground	 truth	orientation	 is	 14,	both	of	 those	 two	

measurements	are	acceptable.	

	

Figure	20	Accuracy_0	and	Accuracy_1	orientation	distribution	

2.2.3 Image	Pipeline	

	

30	
	

	 In	the	Image	Pipeline,	as	we	mentioned,	we	used	VGG16	pre-trained	model	and	added	another	

fully	connected	layer	with	output	9.	Since	the	pre-trained	model	is	trained	on	ImageNet	dataset,	and	

our	data	is	also	coming	from	ImageNet,	we	only	train	last	two	layers	(transfer	learning).	

	

Figure	21	Modified	VGG	16	Architecture	

For	the	loss	function,	we	chose	cross	entropy,	which	is	usually	used	in	multi-class	classification.	

𝑙(𝑦, 𝑦) 	= 	−𝑦_𝑙𝑜𝑔𝑦	

	 In	Keras,	it	is	easy	to	set	up	the	loss	function	by	using	the	following	code	

	

Figure	22	Compile	model	in	Keras	with	cross-entropy	loss	function	

	 The	input	of	the	network	is	a	batch	of	RGB	images	with	the	size	of	(3,	224,	224).	3	is	for	R,	G,	

and	B	channel,	and	224	is	the	input	of	traditional	VGG	structure.	Any	images	should	be	resized	to	224	

by	224	before	it	 is	given	to	the	network.	Since	we	used	Theano	as	the	backend	in	Keras,	the	channel	

	

31	
	

should	be	 the	 first	parameter.	Anyone	who	wants	 to	use	Tensorflow	as	 the	Keras	backend,	 the	only	

modification	 is	 using	 the	 (224,	 224,	 3)	 as	 the	 input	 size.	Usually,	 in	 training	 step	of	 traditional	 deep	

learning	problem,	choosing	1e-4	as	the	initial	learning	rate	is	better,	and	when	the	loss	value	no	longer	

declines	in	a	certain	epoch,	or	the	accuracy	of	the	verification	dataset	no	longer	rises,	we	can	reduce	

the	learning	rate	by	0.1	to	achieve	better	results.	

	 In	 this	 pipeline,	 we	 used	 (3,	 224,	 224)	 as	 the	 input,	 initial	 learning	 rate	 1e-4,	 batch	 size	 64,	

optimizer	SGD,	and	trained	the	network	by	reducing	the	learning	rate	by	0.1	if	the	validation	accuracy	

does	not	improve	in	30	epochs.	

input lr # epoch batch size time /
epoch total time last update

epoch loss val_loss val_Acc

3,224,224 1e-4 56 64 39 s 36 min
24 s 25 0.1155 0.9666 0.77

Table	8	Image	Pipeline	training	phase	–	VGG16	Classifier	

	

	 After	25	epochs,	we	achieve	77%	accuracy	on	validation	dataset	with	the	training	loss	0.1155	

and	validation	loss	0.9666.	The	figures	show	the	curve	of	loss	and	accuracy	on	training	and	validation	

dataset.	

	

32	
	

	

Figure	23	Image	Pipeline	loss	and	accuracy	curve	–	VGG16	Classifier		

For	the	training	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.9866	

	

Figure	24	Image	Pipeline	training	confusion	matric	–	VGG16	Classifier	

For	the	validation	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.7711	

	

33	
	

	

Figure	25	Image	Pipeline	validation	confusion	matric	–	VGG16	Classifier	

	 For	the	test	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.7557	

	

Figure	26	Image	Pipeline	testing	confusion	matric	–	VGG16	Classifier	

	

34	
	

2.2.4 Instance	Pipeline	

	 In	the	Instance	Pipeline,	there	are	two	models	which	should	be	trained	on	the	instance	dataset:	

SSD	Caffe	detector	and	VGG16	classifier.	

	 For	the	SSD	Caffe	detector,	we	resize	the	images	to	512	by	512	and	use	the	size	(512,	512,	3)	as	

the	input	with	bounding	box	labels.	Training	phase	took	20,000	iterations	in	12	hours.	In	SSD	Caffe,	the	

loss	function	is	the	combination	of	confidence	loss	and	box	location	loss.	

𝐿(𝑥, 𝑐, 𝑙, 𝑔) 	= 	
1
𝑁 (𝐿b0@&(𝑥, 𝑐) 	+ 	𝛼𝐿>0b(𝑥, 𝑙, 𝑔))	

	 Where	N	is	the	number	of	matched	box	with	ground	truth	box.	

	 After	20,000	iterations,	we	got	the	final	loss	1.28	

	

Figure	27	SSD	Caffe	training	loss	

	

35	
	

	 On	test	dataset,	we	got	the	prediction	results	without	confidence	threshold.	In	order	to	choose	

the	threshold	that	is	best	for	the	model	to	get	relatively	high	precision	and	recall,	we	use	the	precision-

recall	 curve	 to	measure	 the	 performance.	 For	 each	 confidence	 threshold	 from	 0.0	 to	 1.0,	we	 could	

have	a	point	with	the	x	of	recall	and	y	of	precision.	

	

Figure	28	SSD	Caffe	precision-recall	curve	on	the	test	dataset	

	 The	 AUC	 (Area	 Under	 Curve)	 of	 this	 figure	 is	 the	 average	 precision.	 When	 the	 confidence	

threshold	is	0.5,	we	could	have	a	relatively	high	precision	and	recall	with	the	average	precision	0.9275	

	 For	the	VGG16	classifier	in	instance	dataset,	we	use	the	similar	method	to	modify	the	network	

structure:	using	ImageNet	pre-trained	model,	and	adding	a	fully	connected	layer	with	output	9,	freeze	

the	layers	except	for	the	last	two	layers.	We	used	(3,	224,	224)	as	the	input,	initial	learning	rate	1e-4,	

	

36	
	

batch	size	64	and	trained	the	network	by	reducing	the	 learning	rate	by	0.1	 if	 the	validation	accuracy	

does	not	improve	in	30	epochs.	

input lr # epoch batch size time /
epoch total time last update

epoch loss val_loss val_Acc

3,224,224 1e-4 114 64 37 s 1 h 10 m
18 s 83 0.3386 0.4751 0.8236

Table	9	Instance	Pipeline	training	phase	–	VGG16	Classifier	

After	83	epochs,	we	achieved	82.36%	accuracy	on	validation	dataset	with	the	training	loss	

0.3386	and	validation	loss	0.4751.	The	figures	show	the	curve	of	loss	and	accuracy	on	training	and	

validation	dataset.	

	

Figure	29	Instance	Pipeline	loss	and	accuracy	curve	–	VGG16	Classifier	

		

	 For	the	training	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.9589	

	

37	
	

	

Figure	30	Instance	Pipeline	training	confusion	matric	–	VGG16	Classifier	

	 For	the	validation	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.8236	

	

Figure	31	Instance	Pipeline	validation	confusion	matric	–	VGG16	Classifier	

	

38	
	

For	the	testing	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.8064	

	

Figure	32	Instance	Pipeline	testing	confusion	matric	–	VGG16	Classifier	

2.2.5 Instance	Rotation	Pipeline	

	 In	 Instance	 Rotation	 Pipeline,	 the	 detector	 is	 same	 as	 Instance	 Pipeline.	 Two	 models	 are	

needed:	 Pose	 Estimator	 and	 VGG16	 Classifier	 in	 Instance	 rotated	 dataset.	 The	 pose	 estimator	 is	 a	

traditional	classification	problem,	so	we	still	use	the	same	method	to	modify	the	neural	network	based	

on	 VGG16:	 using	 ImageNet	 pre-trained	 model,	 and	 adding	 a	 fully	 connected	 layer	 with	 output	 16,	

freeze	the	layers	except	for	the	last	two	layers.	We	used	(3,	224,	224)	as	the	input,	initial	learning	rate	

1e-4,	 batch	 size	 64,	 and	 trained	 the	 network	 by	 reducing	 the	 learning	 rate	 by	 0.1	 if	 the	 validation	

accuracy	does	not	improve	in	30	epochs.	

	

	

39	
	

input lr # epoch batch size time /
epoch total time last update

epoch loss val_loss val_Acc

3,224,224 1e-4 53 64 54 s 47 min 42 s 23 0.2951 0.2944 0.9138

Table	10	Pose	Estimator	training	phase	

After	23	epochs,	we	achieved	91.38%	accuracy	on	validation	dataset	with	the	training	loss	

0.2951	and	validation	loss	0.2944.	The	figures	show	the	curve	of	loss	and	accuracy	on	training	and	

validation	dataset.	

	

Figure	33	Pose	Estimator	loss	and	accuracy	curve	

		

	 For	 the	 accuracy,	 we	 use	 two	 different	 measurement	 methods	 as	 mentioned	 in	 Evaluation	

Metric	 part.	 accuracy_0	 for	 traditional	 classification	 accuracy,	 accuracy_1	 for	 offsetting	 classification	

accuracy.	For	the	training	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy_0:	0.9768,	

and	accuracy_1:	0.9985	

	

40	
	

	

Figure	34	Pose	Estimator	training	confusion	matrix	

	 For	the	validation	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy_0:	0.9138,	

and	accuracy_1:	0.9948	

	

Figure	35	Pose	Estimator	validation	confusion	matrix	

	

41	
	

For	the	testing	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy_0:	0.9239,	and	

accuracy_1:	0.9961	

	

Figure	36	Pose	Estimator	testing	confusion	matrix	

	 In	 the	VGG16	 classifier	 for	 instance	 rotation	 classification,	we	did	 the	 same	 step,	modify	 the	

VGG16	structure	with	a	basic	VGG	model	and	added	a	fully	connected	layer	(output	shape	9).	We	used	

(3,	224,	224)	as	the	input,	initial	learning	rate	1e-4,	batch	size	64,	and	trained	the	network	by	reducing	

the	learning	rate	by	0.1	if	the	validation	accuracy	does	not	improve	in	30	epochs.	

input lr # epoch batch size time /
epoch total time last update

epoch loss val_loss val_Acc

3,224,224 1e-4 126 64 40 s 1h 24 min 96 0.1039 0.3305 0.8938

Table	11	Instance	Rotation	Pipeline	training	phase	–	VGG16	Classifier	

	

42	
	

After	96	epochs,	we	achieved	89.38%	accuracy	on	validation	dataset	with	the	training	loss	

0.1039	and	validation	loss	0.3305.	The	figures	show	the	curve	of	loss	and	accuracy	on	training	and	

validation	dataset.	

	

Figure	37	Instance	Rotation	Pipeline	loss	and	accuracy	curve	–	VGG16	Classifier	

For	the	training	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.9915	

	

Figure	38	Instance	Rotation	Pipeline	training	confusion	matrix	–	VGG16	Classifier	

	

43	
	

For	the	validation	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.8938	

	

Figure	39	Instance	Rotation	Pipeline	validation	confusion	matrix	–	VGG16	Classifier	

For	the	testing	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.8383	

	

Figure	40	Instance	Rotation	Pipeline	testing	confusion	matrix	–	VGG16	Classifier	

	

44	
	

2.2.6 Ensemble	Pipeline	

	 For	the	Ensemble	Pipeline,	obviously,	we	need	another	CNN	classifier,	ResNet50,	and	train	it	on	

the	instance	rotation	dataset.	Similar	to	the	modification	in	VGG16,	we	load	the	ImageNet	pre-trained	

ResNet50	model	and	added	another	fully	connected	layer	with	output	9.	We	used	(3,	224,	224)	as	the	

input,	initial	learning	rate	1e-4,	batch	size	64	and	trained	the	network	by	reducing	the	learning	rate	by	

0.1	if	the	validation	accuracy	does	not	improve	in	30	epochs.	

input lr # epoch batch size time /
epoch total time last update

epoch loss val_loss val_Acc

3,224,224 1e-4 98 64 46 s 1h 15m 8s 68 0.1912 0.27 0.8717

Table	12	ResNet	50	training	phase	

After	98	epochs,	we	achieved	87.17%	accuracy	on	validation	dataset	with	the	training	loss	

0.1912	and	validation	loss	0.27.	The	figures	show	the	curve	of	loss	and	accuracy	on	training	and	

validation	dataset.	

	

Figure	41	Ensemble	Pipeline	-	ResNet	50	loss	and	accuracy	curve	

		

	

45	
	

	 For	the	training	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy		

	

Figure	42	Ensemble	Pipeline	training	confusion	matrix	–	ResNet50	Classifier	

	 For	the	validation	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy		

	

Figure	43	Ensemble	Pipeline	validation	confusion	matrix	–	ResNet50	Classifier	

	 For	the	testing	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.8683	

	

46	
	

	

Figure	44	Ensemble	Pipeline		testing	confusion	matrix	–	ResNet50	Classifier	

	 For	the	ensemble	model,	we	use	a	weighted	average	instead	of	the	average	algorithm.	In	order	

to	find	the	best	ratio,	we	use	VGG	as	a	standard,	and	the	ratio	is	increased	by	0.001	from	0	to	1	as	we	

mentioned	in	design	part.	On	the	validation	dataset,	we	have	the	following	curve.	

	

Figure	45	VGG	ratio	-	validation	accuracy	curve	

	

47	
	

	 When	𝑟𝑎𝑡𝑖𝑜ABB 	=	0.501,	the	maximum	accuracy	of	the	ensemble	model	is	0.9098.		

	 For	the	training	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.9915	

	

Figure	46	Ensemble	Pipeline	training	confusion	matrix	–	Weighted	Classifier	

For	the	validation	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.9098	

	

48	
	

	

Figure	47	Ensemble	Pipeline	validation	confusion	matrix	–	Weighted	Classifier	

For	the	testing	dataset,	we	get	the	following	confusion	matrix	with	the	accuracy	0.8802	

	

Figure	48	Ensemble	Pipeline	testing	confusion	matrix	–	Weighted	Classifier	

	

49	
	

3. RESULTS	

	 In	 the	 implementation	 part,	 we	 use	 different	 image	 dataset	 for	 training	 on	 VGG16	 and	

ResNet50	model.	For	each	of	the	image-classifier	combinations	we	use,	we	have	the	following	accuracy	

chart.	

	

Figure	49	Image-Classifier	Accuracy	

	 By	preprocessing	the	 images	and	 letting	the	classifier	focus	on	the	fish	 instance	 itself,	we	can	

improve	the	accuracy	more	effectively.	For	all	pairs	of	image-classifier,	the	validation	accuracy	is	higher	

than	 test	 accuracy.	 Only	 considering	 the	 classifier,	 the	 Ensemble	 Pipeline	 performs	 best	 both	 on	

validation	and	test	dataset.	

Here	we	regard	each	pipeline	as	a	system	and	execute	them	on	the	test	set.	For	each	pipeline,	

we	get	the	following	confusion	matrix.	

	

50	
	

	

Figure	50	Image	Pipeline	test	accuracy	

	

Figure	51	Instance	Pipeline	test	accuracy	

	

51	
	

	

Figure	52	Instance	Rotation	Pipeline	test	accuracy	

	

Figure	53	Ensemble	Pipeline	test	accuracy	

	

52	
	

For	 each	 system,	 execution	 time	 is	 another	 standard	 for	measuring	 system	efficiency	 on	 the	

same	data.	Finally,	combined	with	all	the	information	obtained,	we	have	the	following	results.	

	

 # of Test
Image # of fish

of
detected

‘fish’

tp in
detection

correct
classificatio

n

Accuracy
correct

classification /
fish

Time (s)

Image Pipeline 479 - - - 362 75.57 % 13.16

Instance Pipeline 479 501 500 494 401 80.03 % 53.16

Instance
Rotation
Pipeline

VGG16 479 501 500 494 415 82.83 % 132.15

ResNet50 479 501 500 494 428 85.43 % 138.02

Ensemble Pipeline
479 501 500 494 437 87.22 % 140.58

Table	13	Final	test	results	

	

	 Ensemble	Pipeline	gets	highest	 classification	accuracy,	87.22%,	on	 the	 same	 test	dataset,	but	

takes	the	 longest	 time,	140.58	s.	Even	 if	Ensemble	Pipeline	spends	the	 longest	 time,	we	still	have	to	

choose	ensemble	as	the	final	model,	because	in	our	project,	accuracy	is	the	most	important.	

	

	 	

	

53	
	

4. CONCLUSION	AND	FUTURE	WORK	

4.1 Conclusion	and	Contribution	

Through	the	step-by-step	purification	of	the	images,	the	classifier	can	focus	on	the	fish	instance	

itself,	 filter	 out	 unwanted	 information	 such	 as	 background	 and	 orientation,	 and	 our	 classifier	 can	

obtain	higher	accuracy.	

In	 this	project,	we	came	up	with	 fish	classification	pipeline	on	mess	 images.	For	our	 selected	

pipeline,	 Ensemble	 Pipeline,	 given	 the	 input	 RGB	 image,	 we	 can	 return	 the	 position,	 category,	 and	

confidence	of	fish	to	the	user	as	a	system.	Finally,	we	achieved	87.22%	accuracy	for	the	classification	

task.	

4.2 Future	Work	

	 In	 the	 future,	 we	 will	 improve	 classification	 accuracy	 by	 trying	 Automatic	 Hyper-Parameter	

Adjustment.	To	more	focus	on	the	information	we	need	and	classify	the	fish	by	its	prominent	feature,	

we	are	going	to	extract	the	tail	or	fins	of	fish,	and	use	another	model	to	classify	them	for	supporting	

the	prediction	result.	For	 the	ensemble	method,	weighted	average	 is	not	 the	best,	we	could	 try	 tiny	

network	instead	of	it.	

Moreover,	we	would	like	to	use	a	data	visualization	method	to	return	the	user	an	output	image	

with	the	information	on	it	to	easily	grab	the	position,	species,	and	confidence	of	fish.	

	 	

	

54	
	

5. REFERENCES	

	

[1]	 Liu,	 Wei,	 et	 al.	 "Ssd:	 Single	 shot	 multibox	 detector."	 European	 conference	 on	 computer	 vision.	

Springer,	Cham,	2016.	

[2]	K.	Simonyan	and	A.	Zisserman.	Very	deep	convolutional	networks	for	large-scale	image	recognition.	

In	ICLR,	2015.	

[3]	 He,	 Kaiming,	 et	 al.	 "Deep	 residual	 learning	 for	 image	 recognition."	 Proceedings	 of	 the	 IEEE	

conference	on	computer	vision	and	pattern	recognition.	2016.	

[4]	Chen,	Guang,	et	al.	"Automatic	Fish	Classification	System	Using	Deep	Learning."		In	ICTAI,	2017	

[5]	He,	Kaiming,	et	 al.	 "Mask	 r-cnn."	Computer	Vision	 (ICCV),	2017	 IEEE	 International	Conference	on.	

IEEE,	2017.	

[6]	 Krizhevsky,	 Alex,	 Ilya	 Sutskever,	 and	 Geoffrey	 E.	 Hinton.	 "Imagenet	 classification	 with	 deep	

convolutional	neural	networks."	Advances	in	neural	information	processing	systems.	2012.	

[7]	Redmon,	Joseph,	et	al.	"You	only	look	once:	Unified,	real-time	object	detection."	Proceedings	of	the	

IEEE	conference	on	computer	vision	and	pattern	recognition.	2016.	

[8]	M.	Ravanbakhsh,	M.	R.	Shortis,	F.	Shafait,	A.	Mian,	E.	S.	Harvey,	and	J.	W.	Seager,	“Automated	fish	

detection	 in	 underwater	 images	using	 shape-based	 level	 sets,”	The	Photogrammetric	 Record,	

vol.	30,	no.	149,	pp.	46–62,	2015.	

	

