

TigerAware Microservices: A Modern
Backend for Improved Platform Scalability

and Consistency

A Project

Presented to

The Faculty of the Graduate School

At the University of Missouri

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science, Computer Science

Implemented and Defended by

Connor Rowland

Prof. Yi Shang, Advisor

May 2020

ii

Table of Contents

List of Figures ... v

List of Tables ... vi

Acknowledgments .. vii

1. Abstract .. 1

2. Introduction .. 2

2.1 Problem Description .. 4

2.2 Proposed Solution ... 6

3. Background and Related Works .. 8

3.1 MUDICL and TigerAware .. 8

3.2 Microservices .. 9

4. Existing TigerAware Architecture .. 12

4.1 Native Mobile Applications ... 12

4.2 Web Dashboard ... 13

4.3 Firebase Realtime Database ... 13

4.4 Distributed Single Tenancy ... 14

5. Dashboard Changes .. 15

5.1 Angular Frontend Framework .. 15

iii

5.1.1 Improved Performance ... 16

5.1.2 TypeScript Support ... 16

5.2 Web Dashboard Hosting .. 17

5.3 Project Structure ... 18

5.4 Performance Improvement .. 20

6. Microservices ... 21

6.1 TigerAware Microservices .. 21

6.1.1 Benefits of Firebase Cloud Functions .. 21

6.1.2 Microservice API .. 23

7. Cloud Messaging .. 26

7.1 Hybrid Notifications .. 26

7.1.1 Local-Only Notifications ... 26

7.1.2 Remote-Only Notifications .. 27

7.1.3 Combining Local and Remote Notifications .. 28

7.2 Participant Messaging... 35

8. Server Schedule Creation ... 38

8.1 Benefits of a Scheduling Microservice .. 38

8.1.1 Computing Active Days ... 42

8.2 Algorithm ... 42

iv

9. Conclusion and Future Work .. 47

9.1 Future Work ... 47

10. Works Cited .. 49

v

List of Figures

Figure 1: Growth of annual funding for EMA studies ... 3

Figure 2: Existing TigerAware architecture ... 5

Figure 3: Proposed improved TigerAware architecture ... 7

Figure 4: Evolution of MUDICL EMA applications .. 9

Figure 5: Google search trends for microservices, Aug 2011 - Oct 2019 10

Figure 6: Microservice vs Monolithic application architecture [13] .. 11

Figure 7: Existing survey organization versus improved project hierarchy 19

Figure 8: Notification flow between participant devices and remote notification store 33

Figure 9: Firebase Cloud Messaging architectural overview [27] .. 34

Figure 10: Administrator messaging interface ... 36

Figure 11: Participant messaging interface ... 36

Figure 12: Notifications with overlapping compliance period .. 43

Figure 13: Example of failed notification scheduling ... 44

Figure 14: Improved random notification scheduling algorithm ... 45

Figure 15: Schedule resulting from the example in Figure 14 ... 46

vi

List of Tables

Table 1: TigerAware dashboard performance comparison .. 20

Table 2: TigerAware microservice API .. 23

Table 3: Comparison of local and remote notifications .. 29

Table 4: Hybrid notification store grammar ... 30

Table 5: Pending remote notification list grammar ... 31

Table 6: Shared message store grammar ... 37

Table 7: Definitions of schedule testing terms ... 40

Table 8: Schedule creation validation requirements ... 40

Table 9: Cases for computing survey active days .. 42

Table 10: Derived notification restrictions to guarantee schedule validity 46

vii

Acknowledgments

 First, I would like to thank my adviser, Dr. Yi Shang, for all his advice and guidance

throughout my project and academic career. I would not have become the engineer I am

today without his wisdom and generous support. I would also like to thank Dr. Tim Trull for

his insight and recommendations during my project, which were an invaluable resource.

Lastly, I would like to extend my gratitude to many wonderful people from the Mizzou

Psychology Department – especially Dr. Tom Piasecki and Dr. Denis McCarthy – for the

opportunities to work closely with them on their research projects.

 Next, I would like to thank some of the many excellent people who I have worked with

on the TigerAware platform over the last few years. Luke Guerdan and Will Morrison, who

are fellow TigerAware co-founders, have worked closely with me on the platform since I

started several years ago. I thank them not only for their leadership, engineering insight, and

continued hard work on the TigerAware platform, but also for everything I have learned

from working with them. I would also like to thank the other great engineers who have

contributed significantly to TigerAware, including Zachary Kipping, Siyang Liu, Weiliang Xia,

and Jayanth Kanugo.

 Finally, I would like to thank my family for all their love and support. First, my

parents, who have worked hard to provide me with every opportunity to succeed. I owe all

my successes to them. Next, my brothers for all the laughs and continued friendship. Finally,

my wonderful fiancée Regan. She continues to inspire me every day, and this project is

dedicated to her.

1

1. Abstract

 Smartphones have become an integral part of people’s lives in the 21st century, and

from social media to message boards smartphones have allowed a unique window into the

lives of those around us. This can be especially useful for researchers conducting Ecological

Momentary Assessments (EMA) in fields such as psychology or medicine. TigerAware is a

unique mobile application that provides a flexible, customizable interface used by

researchers to build EMA studies and deploy them to subjects. In this project, the tools

provided in the existing TigerAware platform are improved by updating the backend

technologies to a more modern microservice pattern. The existing technology stack of the

TigerAware web dashboard utilizes a monolithic FEAN stack (Firebase, Express, AngularJS,

and Node.js). Although this paradigm is suitable for smaller projects, it begins to suffer at

scale due to a more complicated hosting process and fewer options for advanced integration

with mobile platforms and other external services. Microservices are a more modern

backend pattern which utilize many decoupled standalone services to perform business

logic. By converting the existing stack to a microservice architecture, TigerAware can

provide advanced functionality that improves quality of life for researchers and enables

improved subject engagement. These improvements include upgrades to the TigerAware

web dashboard, addition of cloud messaging capabilities, and improved notification

scheduling.

2

2. Introduction

 For many years, researchers across a large array of different disciplines have looked

for ways to get insight into the lives of their subjects. With the proliferation of smartphones

in our day-to-day life, researchers now have a valuable new tool they can utilize to this end.

Smartphones have become massively prevalent in the 21st century – according to some of

the most recent statistics, more than 81% of all Americans own a smartphone [1]. This

number is even higher in younger populations, with at least 96% of young adults ages 18-29

owning smartphones. Additionally, modern smartphones come out of the box with an array

of advanced sensors – GPS location services, internet and Bluetooth connectivity, and

accelerometers just to name a few. These sensors can prove very useful to certain research

projects, providing data and insight that was difficult or impossible to obtain in the past.

This readily available technology has popularized the Ecological Momentary

Assessment (EMA), a type of study which seeks to capture the behaviors and experiences of

subjects in real-time throughout their normal day-to-day lives [2]. EMA-based studies often

rely on repeated random sampling to prompt users with a set of questions to answer at

different times throughout the day. These studies have grown in popularity along with the

availability of smartphones, and federal funding for EMA studies exceeded $165 million in

2019 [3]. Figure 1 shows the total annual funding for EMA studies since 2008. The data was

collected from the National Institute of Health’s Federal RePORTER, and includes projects

funded by the NIH, Department of Veterans Affairs, National Science Foundation, and other

federal agencies [3].

3

Figure 1: Growth of annual funding for EMA studies

Despite their growth in popularity, EMA studies can be difficult to design or

administer given the high cost and long timeframe of paying a development team to write a

custom mobile application for the study. Additionally, it is hard for a single ‘out-of-the-box’

application to cover the wide range of use cases encountered in different studies. For

example, a researcher studying alcohol use among a college population may want focused

bursts of prompts in the evening and the ability to interface with a blood alcohol sensor. A

different researcher studying phantom limb pain in amputees may instead focus on prompts

in the morning and user-initiated responses. To accommodate the innumerable possibilities

in these studies, an EMA application must provide researchers with the flexibility and

customizability to create a unique study protocol to suit their needs.

TigerAware is a new platform that allows researchers to design, build, and administer

EMA studies to their participants. TigerAware consists of two major software components:

native mobile applications which study participants use to receive prompts and respond to

surveys, and a web dashboard which researchers use to build and manage their studies.

0

 $20 M

 $40 M

 $60 M

 $80 M

 $100 M

 $120 M

 $140 M

 $160 M

 $180 M

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

To
ta

l F
un

di
ng

Fiscal Year

Growth of Federal EMA Funding

4

TigerAware includes many novel advancements that provide an edge over other software

options in the EMA field. First, TigerAware is built on a highly flexible and customizable study

framework. This allows researchers to choose from a wide variety of question types, survey

flow controls, and user notification types. New question types, external sensor integrations,

or other features can also be added to the existing platform with little time or financial

investment.

2.1 Problem Description

 TigerAware is an innovative platform that provides many new and exciting

advancements over existing applications for EMA data collection. However, the existing

technology stack used in the web dashboard and backend imposes limitations to platform

scalability. The current TigerAware dashboard is built on a monolithic FEAN (Firebase,

Express, AngularJS, Node.js) stack. This dashboard architecture requires dedicated hosting

on either an in-house managed server or a dedicated hosting service such as Heroku. This

creates issues with scalability in production since managing a monolithic web application

requires a time-consuming deployment process and limits developer mobility towards

adding new functionality or modifying existing functionality once the application is in

production.

 Currently, all the backend functionality of the TigerAware dashboard is housed within

the monolithic web application. This poses several issues. First, functionality is hard to

modify, and even a small change requires a rebuild and deploy of the entire web application

to each customer. Also, code reuse is more difficult, which causes redundancies throughout

the application. These redundancies cause problems if existing functionality needs to be

5

changed, since the same modification must be reproduced in multiple places in the codebase.

A lack of segregated functionality also makes unit and integration testing harder to

implement.

 Finally, the existing backend architecture does not allow for advanced integration

with the TigerAware mobile applications. Although the web applications are hosted for

researcher use, there is no persistent backend service to allow for continuous

communication between the ‘brain’ of the platform and mobile applications. This means that

certain functionality that would ideally be housed centrally, such as participant schedule

creation, must instead by implemented natively on each mobile application. This not only

reduces platform consistency by requiring multiple separate implementations of the same

algorithm, but also demands unnecessary computational load on the client-side applications.

Also, advanced user engagement features, such as cloud messaging, cannot be implemented

without a persistent backend service.

Figure 2: Existing TigerAware architecture

6

2.2 Proposed Solution

 To improve the scalability of the TigerAware dashboard, the underlying technology

stack is converted from the existing monolithic FEAN stack to an architecture utilizing

Angular within a Firebase app. Since Angular has the option of being compiled into a single-

page web application, rather than a full Node.js application, the new dashboard can easily be

served using Firebase hosting. This solution enables a much more scalable end product, as

well as a streamlined deploy process.

 To improve the issues caused by the monolithic design of the existing TigerAware

web application, the core functionality of the dashboard will be moved into segregated, self-

contained microservices. This allows new or existing functionality to be modified and

deployed easily, even in production. Rather than having to redeploy the entire web

application each time a change is made, only a single microservice needs to be deployed. By

reducing redundancies and encouraging code reuse, core functionality is more consistent

and can be reasonably unit tested as part of the deployment pipeline.

 To provide advanced integration with the TigerAware mobile applications, the newly

developed microservices will be employed to migrate certain crucial business logic to the

cloud and away from the mobile applications. First, the notification schedule creation logic

is improved and implemented in a single, unified microservice. New user engagement

features, such as cloud messaging, are also implemented using the new persistent backend

services.

7

Figure 3: Proposed improved TigerAware architecture

8

3. Background and Related Works

 For many years, researchers across a multitude of disciplines have sought out ways

to study human participants in their daily lives. In the fields of psychology and medicine,

Ecological Momentary Assessments (EMA) started to become the method of choice for

researchers when introduced in 1994 [4]. However, this method has seen a spike in

popularity due to the increasing availability of smartphones and other smart devices in

recent years. The practical benefits of EMA studies were already being examined by

psychology researchers at the University of Missouri as early as 2009 [5].

3.1 MUDICL and TigerAware

 In the MU Distributed and Intelligent Computing Lab (MUDICL), demand grew for

applications to aid researchers in completing EMA studies. In 2013, the lab completed an

application to aid researchers studying alcohol craving through ambulatory assessment [6].

In 2015, the previous application was extended to provide new features for additional

studies [7]. A few years later, a new web application was created for a psychological study of

mood dysregulation [8]. Although these applications set the groundwork for EMA

applications in the MUDICL, they were very inefficient – they were standalone applications

containing features specific to a single psychological study.

 Around this time a new group in the MUDICL, led by William Morrison, began work

on a new project to create a single platform for EMA studies – modular and extensible enough

that it could be applied to a wide range of different studies without the need to create a new

application each time. This project would eventually become the current TigerAware

9

platform. Several reports were published about advancements and development work on

the project, including work on the existing web dashboard [9] and development of the

TigerAware Android application [10]. In 2018, an introduction and overview of the entire

system was published [11].

Figure 4: Evolution of MUDICL EMA applications from [6], [10], and the current TigerAware iOS application

3.2 Microservices

 The microservice architecture is a relatively new paradigm in web applications, but

one that is growing in popularity quickly. Many large companies have already migrated from

monolithic applications to utilizing microservices including Amazon, Uber, and Netflix [12].

Figure 5 shows the growth of microservice popularity based on Google search trends

between 2011 and 2019. The basis of microservice architectures is to write numerous small,

standalone services rather than include business logic as part of one monolithic application

[13]. The benefits of microservices are numerous, and include system resiliency, scalability,

and fast development cycles.

10

Figure 5: Google search trends for microservices, Aug 2011 - Oct 2019

The first major benefit of microservices is system resiliency. Since each microservice

completes a single dedicated task, and is loosely coupled to other microservices, a failure in

a single microservice will not cause a system-wide failure. This is a noticeable improvement

over monolithic applications, where a failure anywhere in the system could render the entire

application unusable [12]. Bugs and system failures are also easier to diagnose since

developers can immediately narrow problems to a single microservice and identify exactly

where errors are occurring.

 Another benefit of microservices is system scalability. In a standard

monolithic web application, such as the existing TigerAware dashboard, the entire

application sits on a server and shares resources. Although load balancing and scaling can be

made easier through a Platform as a Service (PaaS) such as Heroku or Amazon’s EC2, the

resources for the entire web application must be scaled up or down as a whole [22].

Microservices, on the other hand, can be load balanced and scaled individually as they are

0
10
20
30
40
50
60
70
80
90

100

G
oo

gl
e

Tr
en

ds
 P

op
ul

ar
ity

Growth of Microservice Popularity

11

needed [23]. Additionally, since most microservice providers spin up new instances of each

service as they are invoked, microservices often require no manual scaling or partitioning

from the developer at all.

Figure 6: Microservice vs Monolithic application architecture [13]

 The final major benefit of the microservice architecture is the increased speed of

development cycles. Since microservices each service an atomic task independent of code

outside the service, it is easy for developers to understand the workflow of a single

microservice even if they are unfamiliar with the inner workings of other parts of the

application [12]. This means that the addition of new functions or modification of existing

functions is faster and easier than making changes to a monolithic application. Additionally,

microservices can be deployed individually such that small or isolated changes only require

single services to be redeployed rather than the entire application.

12

4. Existing TigerAware Architecture

 The existing TigerAware architecture consists of three major portions: (1) native

mobile applications on iOS and Android, which study participants use to receive prompts

and respond to surveys, (2) a web dashboard which researchers and other administrators

use to create, deploy, and manage their study, and (3) a Firebase database which serves as a

datastore as well as real-time connection between platforms. For this report, the specific

implementation of the mobile applications will not be covered in detail.

4.1 Native Mobile Applications

 The TigerAware mobile applications are the interface survey participants use to

interact with the surveys they are enrolled in. They consist of native applications written for

both iOS and Android. Once participants have been enrolled in a survey by the survey

administrator, they will be able to create a user account on the mobile platform of their

choice. Then, each of their surveys will be downloaded to their device and their notification

schedule will be created and stored locally. These notifications are scheduled directly with

the operating system local scheduler.

The underlying survey flow structure of the applications utilize open-source libraries

for building and displaying surveys – ResearchKit for iOS and ResearchStack for Android.

These libraries provide SDKs for creating, building, and administering surveys as well as the

UX framework for displaying them [14]. In addition to the survey SDK and UX framework,

ResearchKit includes many ‘Active Tasks’ such as the Gait and Balance and Paced Serial

13

Addition Test [15]. These tasks can be quickly and easily integrated into the iOS application

and be made available to researchers.

4.2 Web Dashboard

 The TigerAware web dashboard is the interface that researchers and administrators

use to build, deploy, and manage their surveys. It is built using Node.js, Express, and

AngularJS, and hosted using Heroku. Once researchers have created a user account, they can

use the dashboard’s survey builder to create new surveys, add questions to their surveys,

and add scheduled or random notifications to send to users. Once a new survey has been

created, researchers can use the administration page to manage their participants, including

adding new participants or removing existing participants. Also, survey responses can be

visualized directly on the dashboard or the entire set of responses for a survey can be

downloaded as a comma-separated values (CSV) file.

4.3 Firebase Realtime Database

 Firebase’s Realtime Database serves as the backend database for the TigerAware

platform. Firebase is a NoSQL database created by Google which provides capabilities for

real-time and offline functionality [16]. Their easy-to-use SDKs allow for simple integrations

on both the web dashboard and mobile applications, which communicate with each other

through the data stores in Firebase.

 The TigerAware database schema consists of several high-level data stores:

blueprints, compliance, data, and users. The blueprint store contains a list of surveys created

by researchers. Blueprints are written to Firebase when a researcher creates a survey on the

14

web dashboard and are interpreted by the mobile applications to display surveys to

participants. The compliance store contains records of user interaction with their surveys,

including when notifications are received and when surveys are initiated or completed. The

data store contains user responses for each survey, which can be visualized on the dashboard

or downloaded as a CSV. Finally, the users store contains metadata about user accounts,

including the list of surveys each user has created (in the case of researcher accounts), or the

list of surveys in which each user is enrolled as a participant.

4.4 Distributed Single Tenancy

 One important architectural feature of the TigerAware platform which sets it apart

from many other applications is the need for a distributed, single-tenant system. TigerAware

works with many different research groups from a variety of different institutions on a wide

range of different research topics. Since many of these projects involve EMA-style studies

with human subjects, data security is not only a top priority, but certain requirements must

be met before TigerAware can even be selected as a vendor in most circumstances. To

provide an additional layer of security for researchers and subjects alike, the TigerAware

system is distributed to give each research group their own single-tenant system. Each

research group has a private database, web dashboard, and mobile app configurations.

Although this structure is great for security, it also brings unique development challenges;

the technologies and design choices selected for TigerAware must be able to easily

accommodate and facilitate a distributed system.

15

5. Dashboard Changes

 The existing TigerAware dashboard consisted of a Node.js web application running

Express and AngularJS. This architecture is great for quickly standing up web applications

and can be served using a Platform as a Service (PaaS) provider such as Heroku. However,

this paradigm can begin to suffer at scale, and it is difficult to transition into a distributed

system if multitenancy is not desired. Additionally, several patterns on the existing

TigerAware dashboard complicate researcher workflows. The addition of projects and other

dashboard optimizations can help to streamline researcher workflows reduce unnecessary

redundancies.

5.1 Angular Frontend Framework

 The first improvement to the TigerAware web dashboard is upgrading the existing

technology stack to more modern and scalable technologies. The current TigerAware

dashboard operates on a FEAN (Firebase, Express, AngularJS, Node.js) stack. Although this

is a popular stack used by many web applications, newer technologies can help to optimize

scalability and performance. The new TigerAware dashboard will utilize Angular as a front-

end framework and replace the existing Node.js and Express server with a microservice

backend. By separating the frontend and backend of TigerAware’s web application,

performance and scalability can be improved.

 Released in late 2016, Angular 2 (referred to as simply Angular) is the successor to

Google’s popular AngularJS web framework. Angular has many advantages over its

predecessor, including improved performance, modularity, and TypeScript support [17].

16

5.1.1 Improved Performance

 The new versions of Angular boast significantly improved performance over their old

AngularJS counterparts. In some scenarios, the relative speedup can be as much as 5 – 10

times faster [17]. This performance increase is mainly due to more efficient binding checking

in Angular. Rather than repeatedly checking each scoped variable for changes during a Digest

Cycle, as was done in AngularJS, the new versions of Angular instead implement one-way

change detection to update bindings. This change is thanks to the Observable paradigm – the

most common asynchronous pattern used in frontend Angular applications. Observables are

subjects that maintain a list of dependent observers who are relying on information about

their internal state. When the state changes, the subject notifies each observer of the update

[18]. This streamlines the binding process because observers no longer have to repeatedly

check the subject for state changes.

5.1.2 TypeScript Support

 One of the most important features of new Angular versions is support for TypeScript.

TypeScript is a superset of standard JavaScript and provides many important improvements

that aid in development. It is trans-piled to JavaScript when built, which means that it still

benefits from all the optimizations of JavaScript and can run anywhere JavaScript can.

TypeScript can still utilize existing standalone scripts or libraries written in JavaScript.

 TypeScript also benefits from being statically typed and compiled. This allows

developers to catch errors and bugs during compile time rather than runtime – speeding up

development time and reducing bugs encountered in production. Strong typing also allows

for type and interface definitions. The new TigerAware dashboard makes extensive use of

17

type and interface definitions to enforce types throughout the application. This process helps

to enforce patterns and style throughout the application as well as improve code reusability.

5.2 Web Dashboard Hosting

 In addition to improving the efficiency of the TigerAware dashboard’s front-end

framework, the hosting strategy was also improved. The existing TigerAware web

application was hosted using Node.js dynos on Heroku, a PaaS hosting provider with support

for many different application environments. Although Heroku is relatively easy to get

started, there are several notable drawbacks: distributed applications are difficult to

manage, automated deployments can be complex, and standard dynos become expensive

with multiple hosted applications. These issues can be avoided by switching the TigerAware

Dashboard to Firebase Hosting.

 The first major issue with hosting the TigerAware web application on Heroku is the

difficulty in managing distributed applications. As discussed in the architecture overview,

the TigerAware system requires a distributed, single-tenant architecture to enhance

platform security. However, this type of paradigm is difficult to manage using Heroku. Each

web application must be created and assigned its own dyno(s). Then, every time a new

update is merged into the application, it must be configured and deployed to each Heroku

app separately. The requirement of deploying to Heroku apps through git makes this process

difficult to automate, and manual configurations and deployments are time-consuming and

error-prone.

18

 Firebase Hosting, on the other hand, makes it much easier to work with multiple

applications in a distributed pattern. Firebase configurations are easy to swap in and out,

and the Firebase CLI makes deploying to apps simple [19]. Deploying to multiple different

hosted applications with different configurations is straightforward and can be automated

with a short bash script (around 25 lines of code).

 Heroku applications can also become expensive with multiple hosted applications.

The smallest standard dyno (non-hobbyist) currently offered by Heroku costs $25 per month

– regardless of traffic or usage [20]. With the number of projects currently supported by

TigerAware, hosting one web application for each research group would cost at least $3,000

annually, not including any additional cost for scaling to meet high-traffic periods. Firebase

Hosting, however, does not base prices on different tiers of resource allocation. Instead,

prices are fixed based on usage, and sites must cross the free-tier usage thresholds before

any costs are incurred [21]. Based on the current TigerAware dashboard usage, the free tier

usage is not yet being exceeded each month – meaning the hosting for TigerAware’s web

dashboard is free using Firebase Hosting.

5.3 Project Structure

 The final modification to TigerAware’s web dashboard is the addition of an abstracted

project structure. In most research protocols that TigerAware works with, investigators

want to deploy a set of several surveys to users. Although this is possible with the existing

dashboard, the workflow for managing several surveys in the same protocol is obtuse and

not streamlined. When new users are added to the protocol, a researcher must go through

each of the surveys individually to add the user. Downloading survey responses is also only

19

possible on an individual survey level. This means that data for multiple surveys is

downloaded in separate CSV files and researchers must manually merge the files to view

data for the entire protocol.

 To streamline the researcher workflow when managing protocols with numerous

surveys, the new TigerAware dashboard includes an abstracted grouping mechanism for

surveys called projects. A project denotes a group of surveys which researchers would like

to share a common list of administrators and participants. Multiple individual surveys can

be added to the project, and when a participant is added to the project, they are automatically

enrolled in each of the individual surveys. Additionally, survey data can be downloaded for

every survey in a project at the same time, saving researchers valuable time when analyzing

their data.

Figure 7: Existing survey organization versus improved project hierarchy

20

5.4 Performance Improvement

 Following is a performance comparison between the existing TigerAware dashboard

and improved Angular implementation. These results include performance improvements

provided by upgrading the dashboard to Angular, migrating from Heroku to Firebase

Hosting, and improved querying enabled by the project structure. The tests were conducted

using a cleared cache and a throttled 3G network connection to ensure a fair comparison.

Table 1: TigerAware dashboard performance comparison

 Login Page
Load Time

Overview Page
Load Time

Relative Performance
Increase

Existing TigerAware
Dashboard

8.92 sec 8.83 sec -

Improved TigerAware
Dashboard

1.80 sec 2.39 sec 423.6%

21

6. Microservices

 The existing TigerAware backend was implemented as part of the monolithic Node.js

web application. Any backend workflow was completed through an Express API built into

the existing Node application. This paradigm not only increased the size and complexity of

the web application, but also required hosting on a persistent server environment. To

improve the flexibility, modularity, and scalability of the TigerAware backend, the existing

Express API is reworked into a brand-new microservice architecture hosted on Firebase

Cloud Functions. This microservice structure interfaces with the updated frontend web

dashboard.

6.1 TigerAware Microservices

 TigerAware’s microservice backend is designed to handle most business logic from

the web dashboard frontend as well as expose endpoints accessible directly from the mobile

applications. Each microservice is implemented using TypeScript and deployed on Google

Cloud Functions.

6.1.1 Benefits of Firebase Cloud Functions

 Firebase Cloud Functions are a service provided by Google to easily host remotely

executable code in the cloud. Cloud Functions automatically scale to meet demand without

any manual provisioning needed by developers [22]. This frees up developer time for writing

new features or maintaining existing code rather than dealing with scaling backend

resources. Cloud Functions are also priced based only on usage and include a free tier. The

first 125K function invocations are free each month, and invocations are only $0.40 per

22

million afterward. These features allow TigerAware to host persistent microservices with

minimal overhead, time investment, and cost.

 In addition to the managerial benefits, Cloud Functions also provide implementation

options that help to optimize backend performance. Functions have several options for

invocation, including HTTPS as well as Firebase triggers [22]. Firebase triggers are especially

useful since they allow for microservices to be automatically executed when database

records are modified. For example, a function that updates notification schedules can be

automatically executed when a new schedule is written into Firebase. This workflow allows

TigerAware’s microservices to automatically perform maintenance functions and reference

updates without ever needing to be invoked directly. Specific functions can also be invoked

directly over HTTPS or configured to run on a schedule.

 The final benefit of Firebase Cloud Functions is the integrated authorization

environment that function invocations are executed in. Since Firebase Cloud Functions are

packaged and deployed to a specific Firebase instance, they are automatically configured to

be triggered by, and reference, their parent instance [22]. This removes the need to provision

or configure microservices to a specific database. This is especially important for

TigerAware’s distributed single-tenant system; a unified set of microservice code can be

easily deployed to any number of distributed systems without any configuration swapping.

Each service will automatically be connected to its own system.

23

6.1.2 Microservice API

TigerAware’s microservices utilize the following invocation types:

 Firebase Write: triggers when data is created, updated, or deleted in Firebase

 Firebase Create: triggers when new data is created in Firebase

 Firebase Update: triggers when existing data is updated in Firebase

 Firebase Delete: triggers when data is deleted from Firebase

 HTTPS: triggers when an HTTPS endpoint is requested. Handles GET, POST, PUT,

DELETE, and OPTIONS requests

 Scheduled: triggers on a predefined cron-like schedule

Table 2: TigerAware microservice API

Function Invocation Description

activeParticipantUpdate
Firebase
Update

Adds references to user’s taking lists
when they are added to a new project

addAdminToProject
Firebase

Create

Updates survey administrators and
user’s survey list when they are added

as a project administrator

addParticipantToProject
Firebase

Create

Updates survey participant list and
user’s taking list when they are added as

a project participant

addUserByLink HTTPS
Adds participant to project taking list

and updates link metadata when a
participant is added via invite link

cloneProjectForUser HTTPS Creates a clone of an existing project

24

complianceResponseCreate
Firebase

Create

Cancels the next 24 hours of a user’s
remote notifications when a new

compliance event is created

downloadSurveyData HTTPS
Downloads survey responses for a

project or individual survey. Can be
invoked by researchers with API key

getProjectMetadata HTTPS
Returns certain project metadata for

unauthenticated users

notificationDelete
Firebase

Delete

Removes a pending remote notification
when the originating notification is

removed from the schedule

notificationScheduleCreate
Firebase

Create

Schedules a pending remote notification
when a new originating notification is

added to the schedule

notificationScheduleUpdate
Firebase
Update

Modifies a pending remote notification
when the originating notification is

updated

notificationSoundUpdate
Firebase

Write

Updates the alert sound on notifications
when a new sound is selected on the

project

offsetsUpdate
Firebase
Update

Updates notification offsets on each
survey when the project offsets are

modified

projectDelete
Firebase

Delete

Removes references for administrators,
participants, and surveys when a project

is deleted

25

projectDurationUpdate
Firebase
Update

Updates duration on each survey when
the project duration is modified

removeAdminFromProject
Firebase

Delete

Updates survey administrator list and
user survey list when they are removed

as a project administrator

removeParticipantFromProject
Firebase

Delete

Updates survey participant list and user
taking list when they are removed as a

project participant

retrieveNotificationsToSend Scheduled
Polls the pending notification list to

determine which hybrid notifications
should be delivered

sendHybridNotification HTTPS
Sends a hybrid notification to a

participant given the notification
contents and messaging tokens

sendMessagingNotification
Firebase

Create

Sends an admin messaging notification
to a participant given the notification

contents and messaging tokens

surveyCreate
Firebase

Create
Updates project admin and participant

lists when a new survey is created

surveyDelete
Firebase

Delete
Updates project admin and participant

lists when a survey is deleted

takingUnschedule
Firebase

Delete
Removes pending hybrid notifications
when a user is removed from a survey

validateLink HTTPS Determines if a given invite link is valid

26

7. Cloud Messaging

 In many EMA studies, researchers are interested in ways to interact with participants

remotely while they are in the field. Whether notifying participants to take surveys, checking

in with compliance, or alerting participants about updates with the study, it would be

convenient for TigerAware to include a set of built-in tools for participant engagement. The

existing TigerAware platform relies solely on local mobile notifications. Although local

notifications can have a higher rate of delivery compared to remote notifications, there are

several advantages to utilizing remote notifications in addition to local notifications.

7.1 Hybrid Notifications

 The first major benefit of adding remote notification capabilities to the TigerAware

platform is the ability to utilize a hybrid notification delivery scheme. Most study protocols

that TigerAware works with are based around a set of notifications that alert participants to

respond to different surveys throughout the day. The original TigerAware architecture

utilizes local, on-device alerts to deliver these notifications. Local notifications have the

benefit of high deliverability; they don’t require an active internet connection and are

delivered as long as the participant’s mobile device is powered on [23].

7.1.1 Local-Only Notifications

 Despite the high rate of deliverability, however, there are drawbacks to using only

local notifications. The most notable among these is that the iOS operating system enforces

a limit of 64 locally-scheduled notifications per application [24]. Although this limit would

27

be fine for most applications, TigerAware often deals with protocols with many notifications

per day. The following is an example of a common protocol structure:

 Morning Report: 1 notification per day, 2 reminders per notification

 Random Prompts: 3 notifications per day, 2 reminders per notification

 Evening Report: 1 notification per day, 2 reminders per notification

In total, this example protocol would use 15 notifications per day – local notifications would

run out in just four days. However, most protocols run for several weeks at a minimum, and

notifications need to be scheduled for the entire duration. To handle this limitation (and

protocols with even more notifications) the current TigerAware applications schedule only

the next two days’ notifications at a time. This handles protocols with up to 30 notifications

per day and works fine as long as participants open the TigerAware application at least once

every two days. However, after two days without opening the application, the notifications

stop. This poses serious issues for EMA protocols since the scientific integrity of the study

relies on user prompts being accurate and consistent.

7.1.2 Remote-Only Notifications

 The most obvious solution to the local notification limit is also the simplest: send all

of TigerAware’s notifications from the cloud. A server is always running, has no notification

limit, and could send notifications to all TigerAware users from a unified service. This is a

good solution, but still encounters the issue of notification deliverability. Remote

notifications rely on user devices having strong network connections every time a

notification needs to be delivered. Most applications can rely on notification retry

mechanisms; even if a notification cannot be delivered immediately, it will be delivered

28

eventually. TigerAware, however, works with EMA protocols with very specific notification

schedules which affect the scientific findings of studies. If these notifications can’t be

delivered immediately, they often shouldn’t be delivered at all. This doubles down on the

issues of notification deliverability, and significantly increases the number of missed

notifications.

 Another factor that can reduce the consistency of remote notifications to participant

devices is device-specific delivery factors. These can vary greatly in different operating

systems and devices. One common factor which can affect remote push notification delivery

is device battery conservation. Both iOS and Android, in an attempt to save battery life, delay

standard priority notifications when the device is in a sleeping/dozing mode [25]. Also,

applications typically have a maximum quota of ‘high priority’ messages they are allowed to

deliver within a short timeframe. Although all of TigerAware’s push notifications are high

priority (immediate delivery is necessary), the system may become locked out of sending

notifications for protocols with a high volume of prompts. Finally, devices have different

standards for push notification delivery based on application background permissions.

Overall, there are many different factors which not only reduce remote notification

deliverability, but also make them hard to predict consistently.

7.1.3 Combining Local and Remote Notifications

 The best option for balancing notification persistence and consistency is a scheme

that combines local and remote notifications. Local notifications should be prioritized when

possible, but remote notifications can pick up the slack once local notifications run out. This

29

approach combines the best of both worlds; as many notifications as possible have the high

consistency of local delivery, but it isn’t possible to ever run out of notifications.

Table 3: Comparison of local and remote notifications

High

Deliverability
(first 2 days)

Supports
Offline

Participants

Avoids 2-Day
Notification

Limit

Allows Off-
Device

Scheduling

Local-Only
Notifications

Remote-Only
Notifications

Hybrid
Notifications

The first change that needs to be added to the existing TigerAware platform to

facilitate hybrid notification delivery is a unified notification store shared between mobile

applications and the TigerAware dashboard. Notification schedules can also be created

directly in the cloud, which will be discussed in a further section. The shared notification

schedule must store all the information required for remote delivery: participant id, time of

desired delivery, survey blueprint key, notification compliance duration, and the platform

which is currently assigned to handle the delivery.

30

Table 4: Hybrid notification store grammar

〈notification-store〉
〈user-id〉 : { 〈noti ication-list〉 }
〈user-id〉 : { 〈noti ication-list〉 }, 〈notification-store〉

〈notification-list〉
〈notification-id〉 : 〈hybrid-notification〉

〈notification-id〉 : 〈hybrid-notification〉, 〈notification-list〉

〈hybrid-notification〉

{
 〈blueprint-id〉,

 〈human-date〉,

 〈compliance-duration〉,

 〈notification-id〉,

 〈handling-platform〉,

 〈unix-time〉

}

〈user-id〉 string

〈notification-id〉 string

〈blueprint-id〉 ‘bpid’ : string

〈human-date〉 ‘date’ : string

〈compliance-duration〉 ‘duration’ : number

〈notification-id〉 ‘nid’ : string

〈handling-platform〉
‘platform’ : ‘mobile’
‘platform’ : ‘unhandled’

〈unix-time〉 ‘time’ : number

31

 The main synchronization between the local and remote notification systems occurs

through the shared notification store. The 〈handling-platform〉 attribute on each notification

denotes whether or not the notifications have already been scheduled locally by the

TigerAware mobile application. When a participant’s schedule is first created, every

notification will default to remote delivery. Then, each time the mobile application is opened

and connects to Firebase, it ‘claims’ two days’ worth of notifications by changing the

〈handling-platform〉 to ‘mobile’. This change will kick off a chain of microservices in real-time

to synchronize the local and remote notifications.

Once a user’s notification schedule is written to the shared notification store, the

notificationScheduleCreate microservice is automatically triggered with the new schedule.

For each notification in the new schedule, this service will check the 〈handling-platform〉. If

the platform is marked as ‘mobile’, the server can ignore the notification since it is already

being scheduled on-device. If the platform is marked as 〈unhandled〉, then the notification

should be prepared for remote delivery. The service will transform the notification into the

correct format and push it onto the global list of pending remote notifications.

Table 5: Pending remote notification list grammar

〈pending-notifications〉
〈notification-id〉 : 〈delivery-info〉
〈notification-id〉 : 〈delivery-info〉, 〈pending-notifications〉

〈delivery-info〉

{

 〈blueprint-id〉,

 〈compliance-duration〉,

 〈notification-id〉,

 〈participant-id〉,

 〈unix-time〉

32

}

〈notification-id〉 string

〈blueprint-id〉 ‘bpid’ : string

〈compliance-duration〉 ‘duration’ : number

〈notification-id〉 ‘nid’ : string

〈participant-id〉 ‘participantId’ : string

〈unix-time〉 ‘time’ : number

 The global pending notification list stores a master list of all future notifications which

are currently expected to be delivered remotely. That is, all the future notifications for every

user which is not already scheduled directly on their mobile device. Two microservices

ensure that this list is always up-to-date: notificationDelete and notificationScheduleUpdate.

The notificationDelete service is triggered when an originating notification is deleted

from a user’s notification store. Notifications can be deleted from the notification store in a

few situations, including if a user is removed from a protocol or if a researcher wants to reset

their study participation. The notificationDelete service ensures these deleted notifications

are also removed from the pending list so they will not be delivered.

The notificationScheduleUpdate service is triggered when an originating notification

is modified. If the notification was modified to change the 〈handling-platform〉 to ‘mobile’ to

33

denote that it has been scheduled on-device, then the service will remove the notification

from the list of pending notifications to ensure it is not delivered twice. If the 〈handling-

platform〉 is still ‘unhandled’, the service will update the relevant 〈delivery-info〉 fields on the

pending notification.

The final service which interacts with the pending notification list is the

retrieveNotificationsToSend service. This survey runs automatically every 60 seconds and

queries the master pending notification list to determine which hybrid notifications, if any,

need to be delivered remotely. To perform this query efficiently, the pending notification list

is stored with a secondary index on the 〈unix-time〉 field of notification. When a notification

is found that needs to be delivered, the final step in the process is to invoke the

sendHybridNotification service.

Figure 8: Notification flow between participant devices and remote notification store

34

The sendHybridNotification service is in charge of routing and delivering hybrid

notifications to participants given the participant’s messaging token and the notification’s

parameters. TigerAware utilizes Firebase Cloud Messaging to deliver push notifications. FCM

is a great choice for notification delivery because it can handle cross-platform delivery to

both iOS and Android [26]. Messaging to Android devices can be delivered directly, and iOS

messages are passed through Apple Push Notification Service (APNs) automatically. When

sending remote push notifications, the sendHybridNotification service includes appropriate

survey information, such as the survey title and notification message, to ensure that remote

notifications appear identically as local notifications to users. This allows hybrid notification

delivery to appear seamlessly to participants, and they often won’t be able to distinguish

when the system has transitioned from local to remote delivery.

Figure 9: Firebase Cloud Messaging architectural overview [27]

 The default behavior of FCM includes automatic retry for push notifications which

cannot be delivered immediately. If a device is offline or otherwise unavailable when a

35

notification is sent, the notification will be stored and delivered when the device is next

available, up to 28 days later [25]. Although this is a helpful feature for many applications,

message retry is not desired for TigerAware notifications. Since each notification is linked to

an EMA prompt, which is very time-sensitive, TigerAware notifications need to be volatile; if

they can’t be delivered immediately when sent, they should be discarded and never

delivered. FCM provides options for creating volatile push notifications for both Android and

iOS.

7.2 Participant Messaging

 A second benefit of adding remote notification capabilities to the TigerAware

platform is the option for increased user engagement through participant messaging.

Throughout an EMA study, there are many times that researchers need to contact

participants in the field – to update them on the status of their participation, to troubleshoot

issues, or to notify them of modifications to the study. It would be convenient for researchers

to have a built-in interface directly on the TigerAware platform for communicating with their

participants.

 Through the addition of cloud messaging capabilities, it is possible to add a

participant messaging interface to the project administration dashboard on the TigerAware

dashboard. This interface allows researchers to select any participant in their study, view

previous messages with the participant, and send new messages to the participant in real-

time. Although the participant will not be able to respond to messages directly from the

TigerAware app, they will receive a push notification alerting them that they have received

36

a new message from the study administrator. They will then be able to log into a participant-

facing version of the TigerAware dashboard to view and respond to their messages.

Figure 10: Administrator messaging interface

Figure 11: Participant messaging interface

 Once an administrator sends a message to a participant, the data is stored in a shared

messages store. This store is queried to display message history between administrators and

each participant and will also automatically trigger the sendMessageNotification

microservice when new messages are written. This service will pull the relevant messaging

37

information from the shared store and send the participant a push notification through

Firebase Cloud Messaging.

Table 6: Shared message store grammar

〈messages-store〉
〈project-id〉 : { 〈participant-list〉 }
〈project-id〉 : { 〈participant-list〉 }, 〈messages-store〉

〈participant-list〉
〈participant-id〉 : { 〈messages-list〉 }

〈participant-id〉 : { 〈messages-list〉 }, 〈participant-list〉

〈messages-list〉
〈message-id〉 : { 〈message〉 }

〈message-id〉 : { 〈message〉 }, 〈messages-list〉

〈message〉

{
 〈message-body〉,

 〈from-id〉,

 〈unix-time〉

}

〈project-id〉 string

〈participant-id〉 string

〈message-id〉 string

〈message-body〉 ‘body’ : string

〈from-id〉 ‘from’ : string

〈unix-time〉 ‘timeStamp’ : number

38

8. Server Schedule Creation

 In most EMA studies, prompted surveys create the protocol structure and direct user

interaction with the study. To deliver scheduled and random prompts throughout the

duration of a study, TigerAware needs to build and store a unique notification schedule for

each participant when they begin a protocol. This process cannot be completed ahead of time

because the start date for each participant is unknown until they start the study. The current

TigerAware system creates schedules directly on the mobile application when participants

are enrolled in a study. However, the process of schedule creation can be improved by

migrating to the newly created TigerAware microservices.

8.1 Benefits of a Scheduling Microservice

 There are several benefits to migrating schedule creation to the cloud. First, it allows

all schedule creation to be completed in a single, unified service. Currently, each TigerAware

mobile application has its own version of the participant scheduling algorithm. They are

written in two different languages and hosted in separate repositories. This can be

problematic because although the scheduling algorithm should work identically on both

platforms, it is difficult to verify that this is the case in all scenarios. Also, whenever a change

or new feature needs to be added to TigerAware’s schedule creation, the change has to be

replicated on both platforms. This not only takes extra development hours to implement and

test but can potentially introduce discrepancies between the systems.

 Migrating schedule creation to the cloud helps to improve system consistency by

providing a single, unified service available to both mobile platforms. When a participant

39

first signs into a new protocol, the mobile applications invoke the scheduling service over

HTTPS. The participant’s schedule for the entire protocol is then created remotely and stored

in the shared notification store (see Table 4). As before, this will automatically trigger the

necessary services to keep remote delivery up to date.

 The second benefit of migrating scheduling functionality to the cloud is improved

testability. The current mobile implementations for scheduling are not only segregated, but

also difficult to test due to deep integration with the rest of the TigerAware mobile

application code. Adding these functions to a continuous integration (CI) pipeline would

require significant changes to the existing codebases.

Microservices, on the other hand, allow for much easier testing due to each service

already being standalone. Firebase provides a testing SDK which can easily integrate to

provide unit testing for existing Cloud Functions [28]. The Firebase Test SDK utilizes Mocha,

an open-source JavaScript testing framework, to run individual tests. Mocha allows testing

of asynchronous microservices with an expansive suite of features, including support for

both synchronous and asynchronous functions, automatic retries, and dynamically

generated tests [29]. These features allow unit tests to be easily written and applied to all of

TigerAware’s microservices, including the schedule generation functionality.

First, a set of ‘standard’ projects with survey blueprints are created. These surveys

should cover each of the possible notification functionalities provided by the TigerAware

survey builder including different notification counts, compliance durations, and reminders.

Once these projects are created, they can be stored in a development Firebase database just

as real projects would; the Firebase Test SDK includes ‘online’ testing functionality which

40

directly interacts with real data in Firebase [28]. This is especially useful as new testing data

can easily be added directly from the TigerAware dashboard when new notification features

are added.

Once the testing data has been added to Firebase, tests are written to ensure that

scheduling is working correctly. Since schedule creation is a stochastic process, there is

rarely a single ‘correct’ schedule for each survey blueprint. Rather, there is a set of assertions

that must be satisfied for a schedule to be considered ‘valid’.

Table 7: Definitions of schedule testing terms

Term Definition

Survey Active Day
A survey active day is a day in which the corresponding survey has

at least one scheduled prompt (see Computing Active Days).

Project Active

Day

A project active day is a day in which at least one of the

corresponding project’s surveys is active.

Daily Prompt

Notification

Count

The daily prompt notification count is the number of notifications in

a certain active day for a specific prompt. This value is (number of

originating notifications * number of reminders).

Table 8: Schedule creation validation requirements

Assertion Explanation

Project Schedule

Duration

The total duration of notifications for a project’s schedule should

match the difference between the first active day of the project and

the last active day of the project.

41

Survey Schedule

Duration

The total duration of notifications corresponding to a survey should

match the difference between the first active day of the survey and

the last active day of the survey.

Project Schedule

Days

The total number of days of notifications for a project’s schedule

should match the number of active project days.

Survey Schedule

Days

The total number of days of notifications corresponding to a survey

should match the number of active survey days.

Daily Survey

Notification

Count

The number of notifications corresponding to a survey on a specific

active day should match the sum of daily prompt notification counts

for all prompts in the survey.

Daily Project

Notification

Count

The number of notifications in a project’s schedule on a specific

active day should match the sum of daily survey notification count

for all surveys in the project.

Scheduled

Notification Time

The time for a scheduled prompt should match the blueprint time,

offset by the participant’s time zone, on each of the survey’s active

days.

Random

Notification Time

The time for a random prompt should be a time in between the

blueprint start and end time, offset by the participant’s time zone, on

each of the survey’s active days.

Reminder

Notification Time

The time for a reminder should match the time of its originating

notification plus (index * reminder interval) minutes, where index is

the one-based reminder number, on each of the survey’s active days.

Random

Notification Gap

The gap between every random notification for the same prompt on

the same active day should be at least c minutes, where c is the

compliance duration of the prompt.

42

8.1.1 Computing Active Days

 To compute the active days for a survey, attributes on both the survey itself as well as

the project need to be examined. The following are the cases for computing survey active

days, in order of increasing strength. Bursts are ranges of days that researchers select for

certain projects or surveys to be available to participants. The active days for a project are

the union of active days for each survey in the project.

Table 9: Cases for computing survey active days

Case Result

Base
The survey is active on every day for the duration of the

project.

The project has bursts The survey is active on every day of the project’s bursts.

The survey has overriding

bursts
The survey is active on each day of the survey’s bursts.

The survey has no prompts There are no active days for the survey.

8.2 Algorithm

 For schedule creation to be migrated to a cloud-hosted microservice, the scheduling

algorithm had to be rewritten from Swift/Java to Typescript. During this process, the

algorithm was evaluated and redesigned to work more consistently. The original scheduling

algorithm, although mostly consistent, had a few issues. First, the gap between random

notifications did not take the compliance duration into account – notifications were always

43

separated by 15-minute gaps. Although this did not cause issues generally, it made it possible

for two different notifications to have overlapping compliance durations. This is an issue

because during the overlap it is ambiguous as to which notification participants are

responding to, which could lead to a missed prompt or participants being able to respond to

the same survey twice back-to-back. In the following example, two notifications with 60-

minute compliance durations are only separated by 40 minutes, and therefore have an

overlapping compliance period (shown in red).

Figure 12: Notifications with overlapping compliance period

The second issue with the old scheduling algorithm was schedule consistency. The

algorithm used a greedy approach to scheduling to improve performance. Although this

approach was computationally efficient, it allowed for the possibility of creating invalid

schedules. The algorithm worked by selecting a random time within the prompt window and

scheduling the first notification for that time. It would then ‘block-out’ 15 minutes before and

after the notification and repeat for each notification in the prompt. However, this approach

could fail if the total prompt window was less than 15 * number of notifications minutes long.

In the following example, two notifications fail to be scheduled within a 20-minute prompt

window, though a valid schedule is possible.

44

Figure 13: Example of failed notification scheduling

 The new scheduling algorithm not only takes prompt compliance duration into

account, but also guarantees a valid schedule if one exists. The new scheduling algorithm

works recursively to schedule notification. Note: any tiebreaking is assumed to be random

unless stated otherwise.

1. To start, select the middle notification

2. Temporarily schedule all preceding and succeeding notifications at the earliest and

latest possible times, respectively

a. Each notification should be separated by a gap of c minutes, where c is the

prompt’s compliance duration

3. Randomly schedule current notification in remaining time slots. This assignment is

permanent

4. If the notification includes reminders, schedule them at i-minute intervals after the

notification, where i is the reminder interval

5. Recursively schedule the remaining notifications in the two disjoint windows before

and after the current notification, excluding the c – 1 minutes before and after the

notification

The following diagram steps through a simple example of scheduling three notifications with

30-minute compliance durations in a 3-hour window.

45

Figure 14: Improved random notification scheduling algorithm

46

Figure 15: Schedule resulting from the example in Figure 14

 The scheduling algorithm presented above not only improves on the consistency of

the old algorithm, but also allows TigerAware to derive restrictions that should be placed on

prompts during survey creation to guarantee a valid schedule is possible.

Table 10: Derived notification restrictions to guarantee schedule validity

Value Restriction

Random prompt

window

The time window for a random prompt must be at least

𝑐 ∗ (𝑛 − 1) + 1 minutes long, where 𝑛 is the number of notifications in

the prompt, and 𝑐 is the compliance duration of each notification.

Total Reminder

Duration

The total reminder duration for a notification must be at most one

minute less than the compliance duration. In other words,

𝑛 ∗ 𝑖 ≤ 𝑐 − 1, where 𝑛 is the number of reminders, 𝑖 is the interval

between reminders, and 𝑐 is the compliance duration of each

notification.

47

9. Conclusion and Future Work

 TigerAware is a revolutionary application that enables researchers across many

disciplines to collect data from their participants in real-time and is especially useful in EMA-

style studies. Although TigerAware included all the functionality needed to meet the needs

of most users, the implementations included some outdated technologies, inefficient

techniques, and complicated workflows.

 The work in this project improves the TigerAware platform through upgrades to the

existing web dashboard, implementation of a modern microservice backend, and

implementation of remote messaging capabilities. These features modernize TigerAware

and help to improve the experience of researchers and participants alike. They also improve

many existing DevOps practices of the TigerAware team, and enhance development speed,

flexibility, and consistency. Overall, these improvements will help TigerAware continue to

provide excellent momentary assessment capabilities to researchers for years to come.

9.1 Future Work

 As TigerAware moves into the future, there are always more exciting features and

topics to work on. Two projects currently in progress in the lab are question-based survey

creation and action-based intervention. Question-based survey creation, currently being

spearheaded by Charlie Hotrabhavananda, is a new interface to improve the process of

creating surveys for researchers. Building a survey on TigerAware’s current builder can be

a daunting task for researchers new to the platform. There are a plethora of different options

and configurations, and it can be difficult to tell which parts are needed for certain protocol

48

designs. By prefacing this experience with an easy to understand sequence of questions

about the survey – Will your survey have notifications? Should your survey be available all the

time? What time will participants receive prompts to take your survey? – a template can be

created to give new researchers a jump-start on their protocol and remove unneeded

complexity.

 A second feature currently in development is TigerAware’s action-based intervention

system. Currently led by Logan Harrison, this system will help to further extend researchers’

options for participant interaction. The action-based intervention system will allow

researchers to configure a set of actions on their surveys which will take place when certain

requirements are met. These actions can include a multitude of different integrations from

sending researchers an email to updating participants with a push notification to classifying

sentiment in an audio recording. This feature can be easily extended to a massive range of

use cases, and the sky is the limit for how researchers will be able to use the tool.

 Another opportunity for extending the work in this report is to examine further

enhancements to the testing capabilities of TigerAware’s microservices. The first potential

improvement is work on a fully-integrated Continuous Integration (CI) pipeline for both the

dashboard and microservices. With the help of the features provided by the Firebase Testing

SDK, it is possible to set up a CI pipeline which automatically tests each new commit to the

TigerAware repository. This feature could help to further improve system consistency, avoid

bugs in production, and decrease developer time required for manual testing and code

review.

49

10. Works Cited

[1] Pew Research Center, "Mobile Fact Sheet," 12 June 2019. [Online]. Available:

www.pewresearch.org/internet/fact-sheet/mobile. [Accessed 25 March 2020].

[2] S. Shiffman, A. A. Stone and M. R. Hufford, "Ecological Momentary Assessment," Annual

Review of Clinical Psychology, pp. 1-32, 2008.

[3] National Institute of Health, "Federal RePORTER," Star Metrics, 2019.

[4] A. A. Stone and S. Shiffman, "Ecological momentary assessment (EMA) in behavioral

medicine," Annals of Behavioral Medicine, vol. 16, no. 3, pp. 199-202, 1994.

[5] T. J. Trull and U. W. Ebner-Priemer, "Using experience sampling methods/ecological

momentary assessment (ESM/EMA) in clinical assessment and clinical research:

introduction to the special section.," Psychological Assessment, vol. 21, pp. 457-462,

2009.

[6] S. Ravi, "Development of a Wireless Body Area Sensing System for Alcohol Craving

Study," University of Missouri, Department of Computer Science, 2013.

[7] R. Shi, "An Enhanced Mobile Ambulatory Assessment System for Alcohol Craving

Studies," University of Missouri, Department of Computer Science, 2015.

[8] D. P. Srivatsav, "MTD: Mood Toolkit Dashboard," University of Missouri, Department

of Computer Science, 2017.

50

[9] J. Kanugo, "TigerAware Dashboard: An Improved Survey Generation and Response

Visualization Dashboard," University of Missouri, Department of Computer Science,

2018.

[10] W. Xia, "TigerAware Android: An Improved Survey and Notification System,"

University of Missouri, Computer Science, 2019.

[11] W. Morrison, L. Guerdan, J. Kanugo, T. Trull and Y. Shang, "TigerAware: An Innovative

Mobile Survey and Sensor Data Collection and Analytics System," in Third International

Conference on Data Science in Cyberspace, Guangzhou, China, 2018.

[12] C. Richardson, "Pattern: Microservice Architecture," 2020. [Online]. Available:

https://microservices.io/patterns/microservices.html. [Accessed 7 April 2020].

[13] Red Hat, "What are microservices?," 2020. [Online]. Available:

https://www.redhat.com/en/topics/microservices/what-are-microservices.

[Accessed 7 April 2020].

[14] ResearchStack, "ResearchStack: An SDK for building research study apps on Android,"

[Online]. Available: http://researchstack.org/. [Accessed 6 April 2019].

[15] ResearchKit, "ResearchKit Framework Programming Guide," 2018. [Online]. Available:

http://researchkit.org/docs/docs/Overview/GuideOverview.html. [Accessed 6 April

2020].

51

[16] Firebase, "Firebase Realtime Database," 28 January 2020. [Online]. Available:

https://firebase.google.com/docs/database. [Accessed 7 April 2020].

[17] Angular University, "AngularJs vs Angular - An In-Depth Comparison," 9 June 2017.

[Online]. Available: https://blog.angular-university.io/angularjs-vs-angular-an-in-

depth-comparison/. [Accessed 7 April 2020].

[18] Angular, "Observables Overview," 2020. [Online]. Available:

https://angular.io/guide/observables. [Accessed 8 April 2020].

[19] Firebase, "Test locally then deploy to your site," 7 April 2020. [Online]. Available:

https://firebase.google.com/docs/hosting/deploying. [Accessed 8 April 2020].

[20] Heroku, "Usage and Billing," 31 May 2019. [Online]. Available:

https://devcenter.heroku.com/articles/usage-and-billing. [Accessed 8 April 2020].

[21] Firebase, "Pricing plans: Start for free, then pay as you go," 2020. [Online]. Available:

https://firebase.google.com/pricing. [Accessed 8 April 2020].

[22] Firebase, "Cloud Functions for Firebase," 3 December 2019. [Online]. Available:

https://firebase.google.com/docs/functions. [Accessed 7 April 2020].

[23] Apple, "Local and Remote Notifications Overview," 2018. [Online]. Available:

https://developer.apple.com/library/archive/documentation/NetworkingInternet/

Conceptual/RemoteNotificationsPG. [Accessed 12 April 2020].

52

[24] Apple, "UILocalNotification," 2020. [Online]. Available:

https://developer.apple.com/documentation/uikit/uilocalnotification. [Accessed 12

April 2020].

[25] Firebase, "Life of a message from FCM to the device," 26 February 2019. [Online].

Available: https://firebase.googleblog.com/2019/02/life-of-a-message.html.

[Accessed 12 April 2020].

[26] Firebase, "Firebase Cloud Messaging," 10 April 2020. [Online]. Available:

https://firebase.google.com/docs/cloud-messaging. [Accessed 12 April 2020].

[27] Firebase, "FCM Architectural Overview," 25 February 2020. [Online]. Available:

https://firebase.google.com/docs/cloud-messaging/fcm-architecture. [Accessed 12

April 2020].

[28] Firebase, "Unit testing of Cloud Functions," 8 April 2020. [Online]. Available:

https://firebase.google.com/docs/functions/unit-testing. [Accessed 16 April 2020].

[29] OpenJS Foundation, "Mocha: simple, flexible, fun," 5 April 2020. [Online]. Available:

https://mochajs.org/. [Accessed 16 April 2020].

[30] Amazon Web Services, "Amazon EC2 Auto Scaling," 2020. [Online]. Available:

https://aws.amazon.com/ec2/autoscaling. [Accessed 7 April 2020].

