
TigerAware Microservices: A Modern
Backend for Improved Platform Scalability

and Consistency

Connor Rowland
Department of Electrical Engineering and Computer Science

Prof. Yi Shang, Advisor

Contents

• Introduction
• Background and Related Works
• System Improvements
• Conclusion

2

Contents

• Introduction
• Motivation
• Existing Platform
• Proposed Improvements

• Background and Related Works
• System Improvements
• Conclusion

3

Ecological Momentary Assessment

• Popular in psychology and
medicine

• Repeated sampling in real-time
• Increased popularity due to

proliferation of smartphones
• 81% of all Americans own

smartphones
• 96% of young adults 18-29

• Smartphones allow for easy EMA
data collection

4

0

 $20 M

 $40 M

 $60 M

 $80 M

 $100 M

 $120 M

 $140 M

 $160 M

 $180 M

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

To
ta

l F
un

di
ng

Fiscal Year

Growth of Federal EMA Funding

Challenges in EMA

• Hard to develop application for a single EMA study
• Expensive to contract development work
• Long time frame

• Wide range of study needs
• Need flexible, extensible platform

5

TigerAware

• Create an EMA platform extensible enough for a
wide range of studies

• Built-in common features
• Question types
• Notification structure
• Study administration

• Modular design to easily add or extend functionality
for specific studies

6

Existing TigerAware
Architecture

• Native Mobile Applications
• ResearchKit (iOS)
• ResearchStack (Android)

• Web Dashboard
• FEAN stack

• Firebase Realtime Database

7

Proposed Changes

• Change web dashboard to lightweight, easily hostable setup
• Migrate to Angular
• Utilize Firebase Hosting

• Microservices
• Move Express/NodeJS business logic to microservices
• Utilize Firebase Cloud Functions

• Cloud Messaging
• Implement hybrid notification scheme

8

Improved
Architecture

9

Contents

• Introduction

• Background and Related Works
• MUDICL and TigerAware
• Microservices

• System Improvements
• Conclusion

10

Early EMA Studies

S. Ravi, "Development of a Wireless Body Area Sensing System for Alcohol
Craving Study," University of Missouri, Department of Computer Science, 2013.

• Created a mobile application for alcohol craving EMA study
• Set groundwork for participant-facing mobile applications

11

Enhancing EMA Capabilities

D. P. Srivatsav, "MTD: Mood Toolkit Dashboard," University of Missouri,
Department of Computer Science, 2017.

• Created integrated dashboard for researcher engagement
• Early version of TigerAware architecture

12

All-in-One EMA Functionality

W. Morrison, L. Guerdan, J. Kanugo, T. Trull and Y. Shang, "TigerAware: An
Innovative Mobile Survey and Sensor Data Collection and Analytics System," in
Third International Conference on Data Science in Cyberspace, Guangzhou, China,
2018.

• Seminal paper on the TigerAware platform

13

Other TigerAware Works

J. Kanugo, "TigerAware Dashboard: An Improved Survey Generation and
Response Visualization Dashboard," University of Missouri, Department of
Computer Science, 2018.
• Previous TigerAware dashboard implementation

W. Xia, "TigerAware Android: An Improved Survey and Notification System,"
University of Missouri, Computer Science, 2019.
• Improvements to TigerAware mobile applications

14

What are Microservices?

• Pattern for system backend
• Utilizes numerous small, standalone

services for business logic
• Massive spike in popularity recently

• Amazon, Uber, Netflix

15

0

10
20

30

40

50

60

70

80

90
100

G
oo

gl
e

Tr
en

ds
 P

op
ul

ar
ity

Growth of Microservice Popularity

Why Microservices?

• System Resiliency
• Failures are easy to identify

• System Scalability
• Individually load balanced

• Ease of Development
• Don’t require platform-wide

knowledge

16

Contents

• Introduction
• Background and Related Works

• System Improvements
• Dashboard Changes
• Microservice Implementation
• Cloud Messaging
• Server Schedule Creation

• Conclusion

17

Contents

• Introduction
• Background and Related Works

• System Improvements
• Dashboard Changes
• Microservice Implementation
• Cloud Messaging
• Server Schedule Creation

• Conclusion

18

Angular Frontend Framework

• Successor to original AngularJS framework
• Released in late 2016
• Improved Performance

• One-way change detection for bindings through Observables
• Up to 5-10 times faster than old framework

• Typescript Support
• Superset of standard JavaScript
• Statically-typed, compiled

19

Firebase Hosting

• Existing dashboards hosted on Heroku
• Automated deployments difficult for many apps
• Expensive – current TigerAware deployments $3,000+

annually on standard dynos

• Firebase Hosting
• Easy to manage many applications and deployments
• Generous free tier

20

Improved Project Structure

• Many protocols desire multiple
surveys throughout the day

• Existing architecture requires each
to be managed individually

• Data not shared between surveys
• User lists
• Admin lists
• Data downloads

21

Improved Project Structure

22

Dashboard Performance Comparison

23

Login Page Load
Time

Overview Page
Load Time

Relative Performance
Increase

Existing TigerAware
Dashboard

8.92 sec 8.83 sec -

Improved TigerAware
Dashboard

1.80 sec 2.39 sec 423.6%

• Improvements provided by Angular, hosting, and improved querying
• Experiment with cleared cache and throttled connection

Contents

• Introduction
• Background and Related Works

• System Improvements
• Dashboard Changes
• Microservice Implementation
• Cloud Messaging
• Server Schedule Creation

• Conclusion

24

Firebase Cloud Functions

• Allow remote invocation of code in the cloud
• Automatically scale to meet demand
• Very cheap

• 125k invocations free each month

• Automatically triggered from database changes
• Shared authorization environment

• Identical functions easily deployed to different
systems

25

TigerAware
Microservices

• Firebase Write
• Firebase Create
• Firebase Update
• Firebase Delete
• Scheduled
• HTTPS

26

Contents

• Introduction
• Background and Related Works

• System Improvements
• Dashboard Changes
• Microservice Implementation
• Cloud Messaging
• Server Schedule Creation

• Conclusion

27

EMA Notifications

• Notifications serve as backbone of EMA studies
• Participants receive notifications to know when to

interact with the protocol
• Scheduled reminders
• Random prompts

• TigerAware needs consistent, reliable notification
delivery

28

Local-Only Notification Delivery

29

+ High rate of deliverability
+ Support fully-offline participation
– Scheduling done on-device
– iOS maximum 64 notifications per app

• Not uncommon for protocol to have 15 or more
notifications per day

• TigerAware limits to 30 notifications per day
• Notifications stop after 2 days

Remote-Only Notification Delivery

30

+ Easy to control and modify
+ Increased transparency
+ Avoids 2-day limit
– Requires consistent strong network connection

• EMA protocols require immediate delivery (no retry)

– Device-specific delivery factors
• Battery saving
• Low priority notifications
• Application limits

Hybrid Notification Delivery

31

• Combine the strengths of local
and remote delivery

• Schedule as many notifications
as possible on-device

• Maybe more than 2 days

• Remaining notifications
delivered remotely

Cloud Messaging Microservices

32

Firebase Cloud Messaging

• Delivers cross-platform
• Allows volatile notifications
• Easy to send using FCM token
• Free

33

Contents

• Introduction
• Background and Related Works

• System Improvements
• Dashboard Changes
• Microservice Implementation
• Cloud Messaging
• Server Schedule Creation

• Conclusion

34

Benefits of Scheduling in Microservice

• Unifies scheduling between iOS and Android
• New changes only need to be implemented once
• Improved testability

• Speeds up deployment of new features
• Schedule testing no longer observational

35

Compliance Duration

• Period of time users can respond to surveys
• Notifications should not have overlapping compliance periods

• Ambiguous which notification a participant is responding to
• Can lead to missed notification

36

Random Scheduling Algorithm

• Select middle notification
• Temporarily schedule all preceding and succeeding notifications

• Schedule as early and late as possible, respectively
• Separate each notifications by a c-minute gap, where c is compliance duration

• Randomly schedule notification in remaining valid times
• Recursively schedule disjoint windows before and after notification

37

Random Notification
Scheduling

38

Random Notification
Scheduling

39

Contents

• Introduction
• Background and Related Works
• System Improvements

• Conclusion

40

Conclusion

• Greatly improved dashboard performance
• Created scalable, flexible microservice backend
• Improved user engagement through cloud messaging
• Implemented consistent notification scheduling in the cloud

41

Future Work

• Question-based survey creation
• Lowers learning curve for researchers new to the platform

• Action-based intervention
• Further extend the ways researchers can interact with participants

• True continuous integration pipeline for TigerAware microservices
• Fully-integrated testing for all functions

42

Thank You!

