

[bookmark: _GoBack]Application OF Real-time sentiment analysis on twitter using storm

A Project
Presented to
The Faculty of the Graduate School
At the University of Missouri

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science

By
Caiwei Wang
Dr. Yi Shang, Advisor
July 2014

The undersigned, appointed by the dean of the Graduate School, have examined the project entitled
Application OF sentiment analysis on twitter using storm

Presented by Caiwei Wang

A candidate for the degree of
Master of Science
And hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Yi Shang

Dr. Dong Xu

Dr. Jianlin Cheng

[bookmark: _Toc286757150][bookmark: _Toc286925725]ACKNOWLEDGEMENTS
It gives me great pleasure to acknowledge the continuous support and guidance of my advisor Dr. Yi Shang throughout the development of my master’s project. His scholarly advice, meticulous scrutiny and patient encouragement have helped me immensely in development of this project. I would also like to thank my lab mate Zhaoyu Li for his assistance and contributions to the project. I would also like to thank the members of Wireless Sensor Network Lab for insightful advice and assistance. I would like to thank Dr. Dong Xu and Dr. Jianlin Cheng for being a part of my defense committee and for their invaluable suggestions and comments on this project.

Table of Contents

1. Introduction	9
2. Related Work	11
3. Background	13
3.1 Text Classification	13
3.2 Data Format	18
3.2.1 Twitter Streaming Data	18
3.2.2 The Training Dataset	19
4. System Architecture	23
4.1 Storm Layer	24
4.1.1 Map Reduce	26
4.1.2 Sentiment Classifier	33
4.2 Redis Layer	34
4.3 Web Application Layer	36
4.4 Scalability and Extensibility	37
5. System Implementation	38
5.1 Data Flow	38
6. Results	40
7. Future Work	49
8. Summary	50
9. References	52

Table of Figures

Figure 1: The method to perform text classification	14
Figure 2: Sample return data format from Twitter Streaming API	19
Figure 3: Pre-process of tweet	21
Figure 4: The Architecture of the System	24
Figure 5: Two kinds of nodes in Storm	25
Figure 6: MapReduce implementation in this project	28
Figure 7: Twitter Spout Implementation	29
Figure 8: Analysis Bolt Implementation	30
Figure 9: Redis Publish Bolt Implementation	31
Figure 10: Redis in this system	35
Figure 11: The extensibility of the system	37
Figure 12: Data Flow	39
Figure 13: How the number of samples affects the rate of accuracy	41
Figure 14: Comparison of KNN and Naive Bayes	42
Figure 15: How dimension affects the rate of accuracy	43
Figure 16: Result for keyword "iPhone" – 1/2	45
Figure 17: Result for keyword "iPhone" – 2/2	46
Figure 18: Result for keyword "Xbox" - 1/2	47
Figure 19: Result for keyword "Xbox" - 2/2	47
Figure 20: Result for keyword "KFC" - 1/2	48
Figure 21: Result for keyword "KFC" -2/2	48

Table of Tables
Table 1: A snippet of the training data set	19
Table 2: Comparison between Storm and Hadoop	25
Table 3: JSON format from Storm cluster	35
Table 4: How to de-serialized data	37

Abstract
Sentiment analysis aims to determine the attitude of a speaker or a writer with respect to some topic or the overall contextual polarity of a document. Twitter is a micro-blogging site enabling users to send updates (tweets) in the form of messages to a group of friends (followers). With the huge increase in popularity of Twitter in recent years, the ability to draw information regarding public sentiment from Twitter has become an area of interest. Methods of determining the sentiment of a tweet have been developed, but most of them are for batch data processing. There is an urgent need for applications that can draw sentiment information from real-time streaming tweets. To fill this need, a real time sentiment analysis project using MapReduce was developed. In this project, tweets are classified into negative and positive. Different sentiment analysis algorithms on tweets are compared and this project uses Naive Bayes Multinomial document model. Storm, a streaming data processing framework is used to perform real time information extraction from streaming tweets on a specific product, brand or public topic. A web portal is built to receive real time results from Storm through Redis Pub/Sub channel feature and to present real-time visualized results to users. This project provides a general solution to draw public sentiment in regard to a specific topic in real time.

[bookmark: _Toc267222029]1. Introduction
When a company releases its new products, the product manager of this company must want to know what people’s reactions or opinions about their products are, or how their customers feel when they use the products. Feedback is the most important factor that can lead the future direction of the product. And also, the quicker they can get people’s reaction, the better decisions they can make onwards. Here is a real case: when Apple released its new mobile operating system iOS 7 last year, people had different attitudes towards it because the graphic user interface of this version was very different from the previous versions. Some people thought the new version were the most beautiful one ever, however some others thought it was not that perfect. But people often do not give feedback directly to Apple, so in what way would Apple be able to know the market reaction quickly and accurate so that they can make improvements onwards?

Nowadays, thanks to the development of social network, this quick sentiment analysis of customer’s reviews becomes true. Twitter has become one of the most important sources of public sentiment on various topics about brand, products, movies and many others. Twitter allows people to post several sentences less than 140 characters. If one follows another one’s twitter, one can see another one’s tweets online and even re-tweet it. People tweet their emotions, feelings, status, locations and share interesting things with their friends. When customers use a product, they probably have some feelings, such as satisfaction or un-satisfaction. If they were not satisfied with the product, they would have negative opinions; otherwise they would have positive opinions. In old days, they just communicated with people around them. The spread of information is limited. However, in recent years, they share their opinions on Twitter, and instantly their friends who are online can see it, no matter how far they are from each other. After that maybe some of their friends have the same feelings and they re-post it, then more people will see it. In this way, people’s opinions spread quickly on the Internet. The social network changes the way information is shared and leads us to a new era of information.

Many sentiment analysis techniques have arisen in recent years for determining the sentiment of tweets. Most of them are for batch processing, which is a dump file of all tweets. The batch file can be processed using MapReduce, which is a way of parallelization. For example, we can use the web crawler to get all the tweets about a specific topic in May 2014, and after that if the dataset is too large we can use Hadoop to perform sentiment analysis for each tweet. This is historical analysis method, in which all the results are for the past. However, the most valuable information is from the real time streaming data. This information can reflect the most updated feedback so that companies can make improvements in time. Sometimes the streaming data from Twitter are very large and hard to analyze. According to Twitter’s IPO filing, there are approximately 500 million tweets daily worldwide. Even for a single key word, the streaming data could be very large. Therefore it is necessary to develop methods by which twitter sentiment can be determined both quickly and accurately.

This project is to give a solution of real-time sentiment analysis on the streaming tweets and use big data analytics technologies to evaluate this massive amount of data quickly. It is able to collect data in regard of a specific topic or keyword from Twitter. It uses Storm platform to perform Map Reduce analysis on streaming data. Besides, tweets are short, limited and unstructured data, it is important to find a proper algorithm to extract feature vectors and perform the classification. After comparison, Naïve Bayes Multinomial document model is used in this project. A real time visualized graph of the results are given to users to monitor the trend online, which makes the company is able to see the marketing reactions without delay. It can also help companies to provide better customer services in the future. For the investors, they can use this information to help them make decisions on future investment. What is more, people can even make stock price prediction based on the trends of market’s reaction and determine whether to buy their stocks or not.

[bookmark: _Toc267222030]2. Related Work
Many sentiment analysis techniques have been developed in recent years for classify the sentiment of tweets into either a positive or a negative sentiment for the tweet as a whole. Here are some related works in regard of sentiment analysis. The basic approach is lexicon-based [4, 5, 6], which is to analyze tweets according to the words that they contain. Tweets are scanned and checked if some specific words are contained. Some words are positive and some are negative and each of them is assigned a sentiment score. The whole tweets will be determined to be positive if the total score of positive words are bigger than the total score of negative words.

Some supervised and unsupervised algorithms are used for text classification [1, 3, 7], such as Naive Bayes [1], maximum entropy classification [1], and support vector machines [2]. It is difficult to maintain a dictionary of key words to calculate the sentiment score. For this reason, these algorithms using machine-learning techniques are developed. In order to do the classification, we need first to feed the classifier sufficient labeled data to train the classifier. Based on the training dataset, the classifier will build a model to be able to process new text. Besides, sentiment analysis can also be performed on document level [8] and sentence level [7, 9, 10, 11]. In addition, not only for the customer’s reaction to the product, sentiment analysis has been used in multiple domains, such as election [12], news and blogs [13].

Now although there are some products that are to analysis the emotion on twitter, they are not in real-time [5, 7, 8, 9, 10]. When they want to analyze people’s reactions towards a specific topic, they need to dump the related tweets of one time period into a batch file, which is the process of data collection, and then feed the data files into the classifier to get the results. The data collection process usually takes a lot of time. This is batch processing. However, the real-time reactions of people are the most valuable information. Company should be very sensitive to the changes in the market and customers. Data should be kept up-to-date so that the information would be more trustful and useful.

Twitter provides Streaming API to people who need to analyze the public tweets in real-time. Works have been done with Streaming API [14, 15, 16]. However, the streaming data may be so large that it is not the best way to analyze them in regular ways. If the processing or classification is slow, there will be a big latency. So the combination of real-time data processing and Big Data processing is necessary. Big data is a term for any collection of data sets that are so large and complex that it becomes difficult to process [17, 18, 19]. It is used for batch data processing. However, the point is Big Data is also another method of parallelization, which is called MapReduce [18]. If MapReduce can be combined with real-time streaming data processing, the performance will not be bottleneck any more. Storm [20] is such a platform that is designed for real-time data processing, and also provides us a platform to implement MapReduce algorithms. And also the most important thing is to build a solution or a structure of that scheme.

[bookmark: _Toc267222031]3. Background
[bookmark: _Toc267222032]3.1 Text Classification
The main part of the project is to classify the tweet; so actually, it is doing supervised text classification. Text classification is to classify text based on the content of it. Usually it is about sentiment classification, which is to decide what feeling or attitude the text is trying to express. Just like other supervised classification, it has two stages: training, and prediction. I use labeled tweets dataset to train the classifier and then use it to predict un-labeled tweet. The general method to perform text classification is shown below in the following figure:

[image:]
[bookmark: _Toc267221923]Figure 1: The method to perform text classification

In this project, two methods are implemented: Naïve Bayes – Bernoulli and Naïve Bayes – Multinomial. The main difference between them is the way in which features are extracted from the documents. The feature vector is term vector, which is the most important structure during the training and classification process. All tweet texts will be transformed to term vectors to be processed by classifier. Usually, term vector is generated based on a unique vocabulary, which is generated from the training dataset, and there are no duplicate words in the vocabulary. The size of the term vector is the size of the vocabulary. For example, let us assume we use the Bernoulli document model first, which will be introduced later. For a sentence, like a tweet, a term vector will initialized with all elements equal to zero. Then check each word in the vocabulary to see if the word exists in the tweet. If it exists, then mark the corresponding element in the term vector to 1, if not, mark the corresponding element in the term vector to 0. In that way, if the vocabulary is big enough, every single tweet can be represented using a term vector with 0s and 1s.

Generally, in text classification, I will ignore the order of words in the document. Instead, I only consider the presence or absence of the single word, for instance, whether a word in the vocabulary is included in the document or not. This model is called a bag of words. It is like we throw all words in a bag and they could be in any order in the bag.

The element of term vector does not only represent the presence or absence of a word, it can also represent the frequency of the word.

Sentiment analysis is one of the methods in text classification. The attitudes are the categories, like positive or negative. Every tweet can be represented using a term vector, and we can think every term vector as an n-dimension point in an n-dimension coordinate system, where n is the size of the vocabulary. For the training data, we can treat it as several classes of a bunch of n-dimension points. Then the text classification problem becomes traditional points classification problem, though the dimension might be very large. That gives us a chance to use machine learning classification algorithms.

Also, besides considering text classification as traditional points classification in high dimension space, we can understand it for Naive Bayes in another way. For example, if we have a document D, and we have classes C, which contains some classes. Then in order to get which class that the document D belongs to, we just need to compute the posterior probability P(C|D), and choose the largest one. P(C|D) can be computed by Bayes’ Theorem:

where the prior probability and likelihood can be computed from the labeled dataset.

There are two probabilistic models of documents, the Bernoulli model and Multinomial model. So I use two kinds of implementation of Naive Bayes in my project. This is easy to understand, the Bernoulli document model is using a binary term vector, in which the value of each element is either 0 or 1, and 0 means absence while 1 means presence of the corresponding word. The Multinomial model, however, does not use the absence or presence; it uses the frequency of the corresponding word. To help to understand, let us have an example. If we have a vocabulary V:

V = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’}

Then we have sentence S = “bcceg”. Then the term vector using Bernoulli document model would be

T (Bernoulli) = [0, 1, 1, 0, 1, 0, 1]

and the term vector using Multinomial document model would be

T (Multinomial) = [0, 0.2, 0.4, 0, 0.2, 0, 0.2]

Here is how these two algorithms work. Every class is equal probable, so we can easily get the prior probability . Let V be the vocabulary, and is the j-th word in V, so from the training data, we can get the probability of belongs to class , i.e. .

Then assume that is the i-th tweet in my test dataset, and T is the term vector for this tweet. As we have known, T contains 0s and 1s that mean if the corresponding word in the vocabulary exists in tweet . Then the probability of tweet belongs to class is

This equation is easy to understand, it means the multiplication of the probabilities that this tweet is composed by words in the vocabulary.

Here is another way to build a term vector, using the term frequency, that method is called Multinomial document model. That is because in this model, the posterior probability will be proportional to the multiplication of to the power of the number of word in tweet, that is

That is also easy to understand, since we care about the frequency, so we need to take the number of that word appears into account.

[bookmark: _Toc267222033]3.2 Data Format
[bookmark: _Toc267222034]3.2.1 Twitter Streaming Data
The input streaming data is from Twitter’s Streaming API, which is offered by Twitter to give developers low latency access to Twitter's global stream of Tweet data. We can get all the global public tweets by passing keywords. The data we receive is in JSON format. Every tweet is in JSON format including all the information about this tweet. Once we connect to the streaming API, the data will flow to us constantly with long connection.

Here is an example returned data format in the following Figure, which has been visualized. In the circle, the center represents a tweet, and the points around the center are attributes for this tweet we can get, such as username, location, date, and so on.

[image:]
[bookmark: _Toc267221924]Figure 2: Sample return data format from Twitter Streaming API

As we can see from above, basically we can get the content of tweet and the information of user who publishes this tweet, even the location where the tweet was published. Some unimportant fields in the data are replaced with apostrophes.

[bookmark: _Toc267222035]3.2.2 The Training Dataset
This project uses Naïve Bayes Classifier to judge sentiment status of a tweet. The classifier is trained first, and then distributed to each node on the cluster.

The dataset used in this project is from Sentiment 140 [21]. This dataset contains 1,600,000 number of labeled tweet. It is a character-separated values file that contains 6 columns, but for my project, I just need to use the class and text data. Also, I only use a portion of the data to be able to test the system quickly. Here is a snippet of the dataset in the following table:

	Class
	Id
	Date
	Query
	User
	Text

	0
	1467811184
	Mon Apr 06 22:19:57 PDT 2009
	NO_QUERY
	ElleCTF
	my whole body feels itchy and like its on fire

	0
	1467812723
	Mon Apr 06 22:20:19 PDT 2009
	NO_QUERY
	TLeC
	@caregiving I couldn't bear to watch it. And I thought the UA loss was embarrassing

	4
	2193251771
	Tue Jun 16 08:12:11 PDT 2009
	NO_QUERY
	KPKC
	@AC_1 Happy Birthday, I hope something exciting happens

	4
	2193251990
	Tue Jun 16 08:12:12 PDT 2009
	NO_QUERY
	Wealthy23
	@AmongstStars Goodmorning miss mcflurry lol

[bookmark: _Toc267222061]Table 1: A snippet of the training data set

The first column is either integer 0 or 4, and 0 means it is negative, 4 means it is positive. The last column is the tweet text, in which the emoticons have been removed.

Before the data is fed into the classifier, it should be pre-processed first. As we know, tweet is not formal text. It has a limitation of 140 characters, so people use a lot of abbreviations, slangs, emoticons etc. to try to use the least words to express as much as their feelings. Also, Twitter allows us to post URL links in the text, use ‘@’ to refer somebody, and use ‘#’ to give tags. This information is not very useful for the sentiment classification. So the following preprocess is performed to each tweet at the very beginning.

[image:]
[bookmark: _Toc267221925]Figure 3: Pre-process of tweet

· URLs and ‘@’ Removal
The first step is to remove URLs and the word starts with ‘@’ symbol. We will not track the content of the web links, so the URLs are deleted. The ‘@’ symbol always has a username followed, which is useless, so the entire word starts with ‘@’ could be removed.

· ‘#’ Hashtag Removal
The word starts with ‘#’ is hashtag. Hashtag is different from other words; it gives a tag, or a topic to the tweet. Usually, the tag is talking about the topic people saying about in this tweet, not about people’s attitudes. This word might provide some information but not that important. So I decided not to remove the entire word, but to just remove the ‘#’ symbol, and treat the tag as a normal word in tweet.

· Punctuations Removal
We do not need punctuations as features, they are just symbols to separate some sentences, so they should be removed.

· Stopwords Removal
There is a kind of word called stopword [22]. They are some common function words in a sentence, like ‘a’, ‘the’, ‘and’, ‘to’, ‘at’, etc. These words seem to be useless for sentiment analysis, and also these words appears a lot of time in English, if we use term frequency to determine if a word is informative, these words will account for a large proportion. So these words should be removed.

· Digital words Removal
Some words start with a digit, like ‘1990’, ‘4:00pm’ etc. These words also have no relationship with attitudes or feelings. So these words should be removed.

After the pre-process of dataset, all tweets will only have some plain words. Through this pre-process, noises are removed so that we can build better vocabulary and have smaller dimension of the term vector.

Weka [23] is one of the popular machine learning libraries. It provides a lot of methods to perform classification. After the data is pre-processed, data should be transformed to an ARFF file that is readable to Weka. ARFF format is very easy to understand. For each line, it uses comma delimiter. In the head of the file, it adds some attributes and configurations so Weka can know what structure the data file is. Two kinds of classification algorithms are used, provide by Weka, one is Naïve Bayes – Bernoulli, and the other one is Naïve Bayes Multinomial, as described before.

[bookmark: _Toc267222036]4. System Architecture
In the whole, the project has three layers: Storm layer, Redis layer, and Web Application layer. The figure below shows the organization and basic structure of these three layers:

[image:]
[bookmark: _Toc267221926]Figure 4: The Architecture of the System

[bookmark: _Toc267222037]4.1 Storm Layer
This layer is the core layer because the data processing happens here. It reads the Twitter’s Streaming data regarding of one or more tracking words constantly and processes the streaming data using Map-Reduce in real-time. In every worker, there is a trained Naïve Bayes classifier to classify the emotion status of every coming tweet.

Storm has some its own defined terminologies. First, in order to be familiar with the process, let us have a look at some terminologies.

Master Node and Worker Node
As we all know, Hadoop has two kinds of nodes. Similarly, Storm also has two kinds of nodes: master node and worker node as the following Figure shows.

[image:]
[bookmark: _Toc267221927]Figure 5: Two kinds of nodes in Storm

For master node, there is a daemon process running named Nimbus. It plays the same role as JobTracker in Hadoop. The Nimbus will distribute the codes, tasks to the worker nodes, and monitor the whole system for failures.

For worker node, there is a daemon process running named Supervisor. It plays the same role as TaskTracker in Hadoop. The Supervisor will receive data from master node and manage workers on worker node.

Storm vs. Hadoop
We can see that Storm and Hadoop are very similar. We can see the comparison between them in Table (3).

	Hadoop
	Storm

	JobTracker
	Nimbus

	TaskTracker
	Supervisor

	Child
	Worker

	Job
	Topology

	Mapper/Reducer
	Spout/Bolt

[bookmark: _Toc267222062]Table 2: Comparison between Storm and Hadoop

[bookmark: _Toc267222038]4.1.1 Map Reduce
Map-Reduce model was used to process the data. A MapReduce job usually splits the input dataset into independent chunks, each of which is processed by one of the map task. It is more like a kind of parallelization. In this project, if the streaming data is too large, the classifier is no t fast enough to process, there will be a big latency. The real-time Twitter sentiment analysis will not be in real-time. That is why I use MapReduce pattern to process the streaming data.

There are two important components in Storm named Spout and Bolt. These two components are the key to implement MapReduce. Since Storm is designed to process streaming data, all the components are about streaming flow. The Spout is the source of streaming data. Spout can receive data from any other data sources, such as a file, API, or database. In my project, Spout receives constant data from Twitter Streaming API, once there is data coming to Spout, Spout will start to emit tuples into the system. Then Bolt receives the data emitted from Spout and does pre-processing on tweet. Bolt is like a processing component, it takes tuples as input, and outputs the processed tuples to another Bolt. We can write different kinds of Bolt to do different jobs. One Bolt can receive data from multiple Bolts and also, multiple Bolts can receive data from one Bolt. This feature gives us a chance to implement a MapReduce algorithm using Spout and Bolt. The Spout can emit data to multiple Bolts, and for each Bolt, we can get a partial result, finally, these Bolts will give their partial results to another Bolt, which will merge all the results and output a final result. This is the typical MapReduce Pattern.

First, as for this project, let us have a look at the diagram showing how I implement the map and reduce processes in the following figure.

[image:]
[bookmark: _Toc267221928]Figure 6: MapReduce implementation in this project

There are three kinds of units: TwitterSpout, AnalysisBolt, and RedisPublishBolt.

TwitterSpout

The TwitterSpout is responsible to communicate with the data source. It gives keywords to Twitter, and receives the streaming data regarding to the keywords constantly, and after pre-processing the data, it emits tweet to multiple AnalysisBolt. It contains a Twitter collector module and a Redis pool to buffer the tweets, as following figure shows.

[image:]
[bookmark: _Toc267221929]Figure 7: Twitter Spout Implementation

Because the streaming tweet data could be very large, so a message pool system is used. Redis provides a message queue, in which tweets are saved and the TwitterSpout will read tweets from the pool every second and empty the pool. This method decreases the workload of TwitterSpout and also makes the process faster by using buffer instead of processing each tweet immediately.

AnalysisBolt

AnalysisBolt receives data from TwitterSpout. In this procedure, the TwitterSpout will random choose which AnalysisBolt to send, and try to balance the whole system. The dynamic balance feature will ensure every bolt is treated equally in real-time process; no Bolt is left ideal for a long time period. This is the process of map. Then after AnalysisBolt finishes its work, it will send the partial result to another RedisPublishBolt and tells the TwitterSpout it has finished its work so that TwitterSpout can assign a new task to it.

When the system starts, the AnalysisBolt will train the classifier first. After the training, it will be ready to accept new tweets. Within the AnalysisBolt, tweet will be pre-processed to remove noises. The pre-processing is the same as the pre-processing for corpus. After that, it will be filtered into a word vector and passed to the classifier; the classifier will give the results. Finally, results are wrapped up in JSON format and emitted to next bolt. This process is shown in the following figure.

[image:]
[bookmark: _Toc267221930]Figure 8: Analysis Bolt Implementation

RedisPublishBolt

The RedisPublishBolt will collect all the partial results from all AnalysisBolts and publish them to a Redis channel, which is subscribed by the web application layer. This is the process of reduce.

[image:]
[bookmark: _Toc267221931]Figure 9: Redis Publish Bolt Implementation

As we can see from the above figure, there are two parts in the RedisPublishBolt; the first one is the reducing part. It receives all the results from AnalysisBolts and merges them together. Another important part is the KeywordListener, which has a channel subscribed to the channel of keywords. When user inputs a new keyword, the KeywordListener will get the new keyword and terminate the current streaming and processing thread. A new Spout will be created to receive the streaming data with the new keyword.

In general, other Hadoop systems work like this: we need to store the data into HDFS at first, start the mapper and reducer, then the data is loaded and processed, and after the work finishes, the workers will quit. If we have some new data to be processed using the same program, we have to again put the data into HDFS and then restart the whole process. Usually, starting a cluster job is very time consuming. If the data comes constantly, we will not be able process them in time.

The drawback of this traditional process is that we need to restart the process every time we have new data to be processed. It cannot load data automatically and constantly. It is used mainly for batch data processing. If the data is in real-time, like the Twitter streaming data, we need to run a crawler first to dump the streaming data into a file and then feed the data file into system.

In this project, all workers will keep alive all the time and have great fault-tolerant features supported by Storm. We do not need to save the data into a batch file first and when new data comes, it will be processed instantly without delay. We also do not need to worry about the stability of the system because Storm has implanted a great fault-tolerant mechanism. When workers die, Storm will automatically restart them or re-allocate their jobs to others. If a node dies, the jobs on this node will be restarted on another node.

[bookmark: _Toc267222039]4.1.2 Sentiment Classifier
There is something different for tweets sentiment classification verses traditional sentiment classification, such as movie review. That is because of some special factors of Twitter:

· Every tweet can only have up to 140 characters, which limit the total capacity of information. The tweet is isolated, without any context. That makes it harder to classify them.
· Tweet is not using formal language. It may contain a lot of abbreviations, slangs, misspellings, special characters, emoticons, etc. And plus the 140 length limitation, that makes it have less capacity of information.
· Tweet is more general; it is not focus on a specific area, like movie review. People can use it to say something about anything.

All of these factors of Twitter itself make it harder to classify tweets. And the results I got are affected by these factors.

After a comparison of different methods including Naïve Bayes Bernoulli, Naïve Bayes Multinomial and K-Nearest-Neighbors, I conclude that Naive Bayes is good for tweets classification. Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong independence assumptions. And also, there are two document model for text classification: Bernoulli and Multinomial. This project uses these two kinds of documents models of Naïve Bayes classifier from Weka in my project to judge emotion status.

On every AnalysisBolt, there is a Naïve Bayes classifier. It will be trained when the whole system starts. After every classifier is trained, the Spout will start to work and be ready to receive streaming data.

[bookmark: _Toc267222040]4.2 Redis Layer
Redis is an advanced in-memory Key Value Store with support for persistence [24]. This layer is like a connection, and it is more like a channel between the other two layers. Channel is one of the greatest features of Redis. It is like a pipeline, we can push (we will use the terminology ‘publish’ in the future) data from one side, and receive data (we will use the terminology ‘subscribe’ in the future) on the other side. We can see the function of it in the following figure:

[image:]
[bookmark: _Toc267221932]Figure 10: Redis in this system

As the above diagram shows, this layer builds two channels between Web Application layer and Storm layer. The Redis is used to store the following information:

· User’s keywords
· JSON data from Storm cluster

The table below shows the JSON format from Storm cluster:

	{
 "name":"tweets",
"args": [
 {
 "username": "jacob blankenship",
 "wordsCount": 1,
 "text": "@4jstudios i bought mc for xbox 360 on my old account but i deleted it on accident and made a new profile will i still get it for 5$",
 "emotionValue": -1
 }
]
}

[bookmark: _Toc267222063]Table 3: JSON format from Storm cluster

It is hard to let Web Application layer to communicate with Storm layer directly. There should be a middleware between them to pass the data, and they both can communicate with the middleware. Redis’s channel is the middleware. When users input a new tracking word, Web Application layer will wrap the data and publish it into ‘input’ channel, then the Storm layer can read the data instantly from that channel and know the user wants to track a new word. And also, when new data is generated, the Storm layer will publish results data into ‘output’ channel, and then the Web Application can get the real-time results constantly.

[bookmark: _Toc267222041]4.3 Web Application Layer
This layer is responsible to interact with users. It provides a user-friendly web based interface and accepts inputs from users. When new request received, this application layer will pass the inputs into the ‘input’ Redis channel to let Storm know there is a new job to do. It will also receive results from ‘output’ Redis channel from Storm layer using JSON format. When new data received, it will dynamically give the results to users without refreshing the web page. Actually, the Storm layer is the core of the project; this web application layer is to make the Storm process operable and readable by common users. Or a user could only use terminal command line to control the system and read the results.

After the Web Application receives data from Storm, in order to be able to push data to the web front end, I used Express Framework and Socket.io Framework to push updates to the browser. These packages will create a Web Socket [25] connection between the front end and the server. Web Socket is a kind of long connection between two points, and it allows two-direction communication between them.

[bookmark: _Toc267222042]4.4 Scalability and Extensibility
I use Spout and Bolt in the project to build the structure to process data. Spout is in master node and it is like the input data file in Hadoop. Bolt is in worker node and it is like the worker in Hadoop. In this project, the Spout is to read Twitter Streaming data and send it to several Bolts, which is the process of mapper. And Bolt can send data to another Bolt. So it is like a chain. Whenever we want to add some new features into the system, you just need to write a new Bolt and add it into the processing chain, as Figure shows below.

[image:]
[bookmark: _Toc267221933]Figure 11: The extensibility of the system

In this project, there are two kinds of Bolts. Plus the Spout they form a chain to process the streaming data in proper order. The first kind of Bolt is to classify the tweet, extract the useful information and add the emotion value. Then the data will be wrapped up and sent to the next Bolt, which is responsible to collect and gather the partial results from several source Bolts and publish them into a Redis channel.

So here comes the scalability and extensibility. For the tweet analysis, if later we also want to analyze the hashtag as well, all we need to do is to add a new Bolt class in the processing chain. Then you can either send the partial results to the reducer or just send the results into another Redis channel.

[bookmark: _Toc267222043]5. System Implementation
[bookmark: _Toc267222044]5.1 Data Flow
The most commonly used data structure in this project is Tuple. It is the basic data structure used to pack and unpack data between different Spouts and Bolts. In the project, there is an interface named Status as the tuple container. I put the JSON format value into a Status instance and it will be serialized to transfer. Then on the receiver, we can get data from the de-serialized data. Here is an example showing how to de-serialized data to get data in Table (4).

	Status status = (Status) tuple.getValue(0);

[bookmark: _Toc267222064]Table 4: How to de-serialized data

Now let us have a look at how data flows in the project to have a clear view in the following figure.

[image:]
[bookmark: _Toc267221934]Figure 12: Data Flow

So here is the basic data flow in the project. When use enters a keyword, the Web Application gives the keyword to a channel, Storm layer reads this keyword from the channel and start to read related data from Twitter Streaming API. When data is coming, the TwitterSpout emits data to AnalysisBolt at the same time. Finally, the AnalysisBolt will give the results to RedisPublishBolt and RedisPublishBolt will put results in output channel. By this way, the Web Application layer will receive the data and then pass the data to the front end using Web Socket. The final visualized results will be shown on the web page to users.

[bookmark: _Toc267222045]6. Results
First, I have a comparison between different sentiment analysis algorithms and methodologies in order to find a proper method to classify tweet. I intend to find how the number of samples and dimension i.e. the vocabulary size, affects the rate of accuracy for tweets classification. So I have two variables in the comparison experiment, the number of samples and the dimension. For the number of samples, I use 2000, 4000, 8000, 16000, and 30000. For the dimension, I use 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, and 1800. Ten-fold cross validation is used to get the rate of accuracy.

Firstly, let us see how the number of samples affects the rate of accuracy. I got the results for both Naive Bayes and K-Nearest-Neighbors, they are very similar. Here I will take Bernoulli Naive Bayes as example to show the results, in the following figure:

[image:]
[bookmark: _Toc267221935]Figure 13: How the number of samples affects the rate of accuracy

As the above Figure shows, in the legend the number means dimension, for x-axis, B-NB means using Bernoulli Naive Bayes. The number of samples does not have a big impact on the rate of accuracy. In my expectation, as the number of samples increases, the rate of accuracy should increase, too. But the experiment shows that it is not true for tweet classification. As for the reasons, I think it is because of the tweets itself. As I mentioned, tweets has some length limitations, so the words used in tweet is not as much as in other materials. The smallest number of samples I used is 2000, so 2000 is enough to provide the information needed to select the most informative features, and to build the classifier. When the number of samples increases, although the word amount increases, but after feature selection, the most informative words will not change a lot. So that is why the number of samples is not thus important in tweet sentiment classification.

Here is the comparison between K-Nearest-Neighbors and Naive Bayes. For this experiment, I choose 2000 samples.

[image:]
[bookmark: _Toc267221936]Figure 14: Comparison of KNN and Naive Bayes

As the above Figure shows, in the legend, 2000 means using 2000 samples, KNN K=5 means using K-Nearest-Neighbors with k=5, and KNN K=1 means the same thing with k=1. So the result is, with the increase of dimension, the rate of accuracies for both Naive Bayes and KNN are increased. But the Naive Bayes seems always better than KNN no mater what the k value is. And also, the rate of accuracy for Naive Bayes is more stable and smoother than KNN. So generally, we can say Naive Bayes is a better model than KNN to perform tweet sentiment classification. The reason I think is that K-Nearest-Neighbor is mainly based on the limited number of samples around the test tweet, not based on the area of class. If the samples in two classes have many overlaps, KNN will not be accurate. Also, KNN will take more time to classify, because for every new tweet, it needs to be compared to all the samples.

Here is the comparison of how dimensions affect the rate of accuracy. For this experiment, I use Bernoulli Naive Bayes.

[image:]
[bookmark: _Toc267221937]Figure 15: How dimension affects the rate of accuracy

As the above Figure shows, in the legend, the number means how many samples are used. The results are very clearly: as the dimension increases, the rate of accuracy increases no matter how many samples are used. And finally, the rate of accuracy will stay around 70%-75%. We can see that when dimension is too small, like <200, the rate of accuracy is lower than 50%, then when the dimension reaches 500, the rate of accuracy become stable. As we know, the dimension represents the capacity of information. If we have a very small dimension, we can not guarantee that the features in it have all information we need to classify new tweet. Some other strong related features are not included. From this experiment we can also get that, the most informative words that people uses in Twitter is about 500. It is also mainly because of the character limitation. We can use these 500 features to classify almost every tweet. In addition, we can see from this experiment that again, the number of samples have almost no impact on the rate of accuracy, which is because when the number of samples reaches a value, like 2000, the most 500 informative words have already been included.

We have known that tweet sentiment classification is not the same as other text sentiment classification, as previous section mentioned, because of some factors of Twitter itself, like the character limitation, commonly used slangs, abbreviations, misspellings, varieties, etc. This experiment concludes that K-Nearest-Neighbors is not good at classifying tweet data and Naive Bayes is a relative good choice because the dimension is so large that there may be a lot of overlaps between classes. The vector dimension is not the bigger the better, 500 is enough for this project. Also, the size of training samples is not the bigger the better. The features we use for tweet classification are limited, so there is no need to increase the size of samples if the samples can provide enough information to select these features.

As for the real time sentiment analysis tool, here I will take several keywords to generate some results. The keywords tested are “iPhone”, “Xbox”, and “KFC”. Only English tweets will be received. Each keyword will be kept tracking for 5 minutes and the two graphs will be generated for each keyword. One is the real time amount of tweets published about this keyword per second. Another one is the pie graph showing the percentage of positive tweets and negative tweets.

Keyword: iPhone

[image:]
[bookmark: _Toc267221938]Figure 16: Result for keyword "iPhone" – 1/2

[image:]
[bookmark: _Toc267221939]Figure 17: Result for keyword "iPhone" – 2/2

We can see from the result for keyword “iPhone” that in 300 seconds, we received 5584 tweets, and the ratio of positive to negative is about 3:1, from which we can get people are more positive towards iPhone. People tweet about 12 to 24 tweets every second, which indicates that iPhone is a hot topic.

Keyword: Xbox

[image:]
[bookmark: _Toc267221940]Figure 18: Result for keyword "Xbox" - 1/2

[image:]
[bookmark: _Toc267221941]Figure 19: Result for keyword "Xbox" - 2/2

We can see from the result for keyword “Xbox” that in 300 seconds, we received 416 tweets, and the ratio of positive to negative is about 5:1, from which we can get people are more positive towards Xbox. People tweet about 1 tweet every second. We receive more positive tweets towards Xbox, however people talk much less about it than about iPhone.

Keyword: KFC

[image:]
[bookmark: _Toc267221942]Figure 20: Result for keyword "KFC" - 1/2

[image:]
[bookmark: _Toc267221943]Figure 21: Result for keyword "KFC" -2/2

We can see from the result for keyword “KFC” that in 300 seconds, we received 104 tweets, and the ratio of positive to negative is about 1.7:1, from which we can get people are not very positive about KFC. People tweet about 1 tweet every 3 second.

[bookmark: _Toc267222046]7. Future Work
There is a problem that we should know: doing tweet sentiment classification is different from the traditional text classification, such as classifying movie review. That is because of some special factors of tweet itself:

· Every tweet can only contains up to 140 characters, which limits the total capacity of information in each tweet. Since tweet can be posted anytime and about anything, tweet is isolated, without any context. That makes it harder to classify them.

· Tweet is not using formal language. It may contain a lot of abbreviations, slangs, misspellings, special characters, emoticons, etc. And plus the 140 length limitation, that makes it have less capacity of information.

· Tweet is more general; it is not focus on a specific area, like just for movie review. People can use it to say something about anything at anytime.

All of these factors of Twitter itself make it harder to classify tweets. So in order to have a more accurate real-time sentiment analysis system, a method that is better for short, topic-less sentences classification should be investigated and applied to this project to make the results more accurate.

Also, in this project, only one kind of bolt has been implemented to analyze the emotion status of a tweet. In the future, more bolts should be added to make the system more powerful, such as the bolt to analyze the hashtag, bolt to analyze URL links and pictures in tweet, and bolt to analyze how different countries or different areas react to one topic because tweet has geographic information included.

[bookmark: _Toc267222047]8. Summary
This project is trying to combine the real-time streaming processing with Map-Reduce processing so that we can process large amount of streaming data in real-time. The solution will be easy to extended and scaled. In this project, the system will be able to judge the emotion of tweets about a specific product, brand or topic using some machine learning tools and algorithms. More importantly, it will be made real-time. The system will analyze the data constantly and give real-time visualized results to users.

· It is an efficient way to get information about people’s reaction and emotion.

Obviously, we can get people’s reaction to a specific topic like a product or a brand in real-time. We do not need to first collect people’s opinions and then analyze the dumped data file to get the results, in which situation the results are usually out-of-date.

· It also provides a solution of the combination of the real-time processing and big data processing.

Originally, a large amount of batch data can be analyzed using Map-Reduce or the real-time streaming data can be analyzed in common way. The project combines some useful tools and frameworks to make the process of analyzing real-time streaming data using Map-Reduce available. It can even interact with user using a friendly web user interface.

· The real-time features can bring us a lot.

Data changes very fast now. The most useful and valuable data are all in real-time. If we use the out-of-date data, the result will not be accurate. If we can make the data into information in real-time, we can get more than the information itself.

[bookmark: _Toc267222048][bookmark: _Ref267167455]9. References
1. Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?: sentiment classification using machine learning techniques." Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10. Association for Computational Linguistics, 2002.

2. Gamon, Michael. "Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis." Proceedings of the 20th international conference on Computational Linguistics. Association for Computational Linguistics, 2004.

3. Turney, Peter D. "Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews." Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002.

4. T. Carpenter and T. Way, “Tracking Sentiment Analysis through Twitter,” Proceedings of the 2012 International Conference on Information and Knowledge Engineering (IKE 2012), Las Vegas, 16-19 July 2012.

5. M. Hao, C. Rohrdantz, H. Janetzko, U. Dayal, D. A. Keim, L.-E. Haug and M.-C. Hsu. “Visual Sentiment Analysis on Twitter Data Streams,” IEEE Symposium on Visual Analytics Science and Technology, Providence, 23-28 October 2011.

6. L. Zhang, R. Ghosh, M. Dekhil, M. C. Hsu and B. Liu. “Combining Lexicon-based and Learning-based Methods for Twitter Sentiment Analysis,” HP Laboratories, 2011, HPL-2011-89. http://www.hpl.hp.com/techreports/2011/HPL-2011-89.html

7. M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Proceedings of the 10th ACM SIGKDD. New York, NY, USA: ACM, 2004, pp. 168–177.

8. Pang, Bo, and Lillian Lee. "A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts." Proceedings of the 42nd annual meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2004.

9. Zhu, Linhong, et al. "Graph-based informative-sentence selection for opinion summarization." Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ACM, 2013.

10. Khuc, Vinh Ngoc, et al. "Graph-based informative-sentence selection for opinion summarization." Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, 2012.

11. Liu, Yang, et al. "Sentence-Level Sentiment Analysis in the Presence of Modalities." Computational Linguistics and Intelligent Text Processing. Springer Berlin Heidelberg, 2014. 1-16.

12. Tumasjan, Andranik, et al. "Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment." ICWSM 10 (2010): 178-185.

13. Godbole, Namrata, Manja Srinivasaiah, and Steven Skiena. "Large-Scale Sentiment Analysis for News and Blogs." ICWSM 7 (2007).

14. Bifet, Albert, and Eibe Frank. "Sentiment knowledge discovery in twitter streaming data." Discovery Science. Springer Berlin Heidelberg, 2010.

15. Bifet, Albert, et al. "Detecting sentiment change in Twitter streaming data." (2011).

16. Benhardus, James, and Jugal Kalita. "Streaming trend detection in twitter." International Journal of Web Based Communities 9.1 (2013): 122-139.

17. Manyika, James, et al. "Big data: The next frontier for innovation, competition, and productivity." (2011).

18. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters." Communications of the ACM 51.1 (2008): 107-113.

19. Shvachko, Konstantin, et al. "The hadoop distributed file system." Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010.

20. Storm Project - http://storm-project.net

21. Go, Alec, Richa Bhayani, and Lei Huang. "Twitter sentiment classification using distant supervision." CS224N Project Report, Stanford (2009): 1-12.

22. Fox, Christopher. "A stop list for general text." ACM SIGIR Forum. Vol. 24. No. 1-2. ACM, 1989.

23. Holmes, Geoffrey, Andrew Donkin, and Ian H. Witten. "Weka: A machine learning workbench." Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand Conference on. IEEE, 1994.

24. Sanfilippo, Salvatore, and Pieter Noordhuis. "Redis." 2011-03-19]. http://redis. io (2009).

25. Pimentel, Victoria, and Bradford G. Nickerson. "Communicating and displaying real-time data with WebSocket." Internet Computing, IEEE 16.4 (2012): 45-53.

Class Diagrams
[image:]

[image:]

[image:]
14

image2.png
s 4§ 3
2y ber koo
= ! = k)
SN LIS FIE T P XY
2, .
% 3% 1% e4o58 £f R85 T Jedsy g
B ,...\eo %\ &/@m w;muOOOOOO @ OOOOb %Wt \%% M
s, Avnmww W@&AW@\O N P [sF0) .Mh%\
v &% %50 05 €8 & &
% g OO OO %
b, g @ z e s Fo 8
2 Yo R Po0.¢ & ’
ﬁ/o,\/ .Qevo@o N o} »%%%\ &
Pl QP00 % 1 P S
R o o SR
g 73, %, 0 R
O O & 0 P n £7.872
%% O 0 " ¢
% O o (SN RN
(o] L O o &
46 (o} o »ov.r om
L 4 O W7 et
! Ay O s, O o™ w0
Popgg %oy P O o 0
Uxg O o] o 499\ 6004\
n O 0N ™
Yo %o o/oo o cod®
Hnysa, 0¥ B
Aso;”\ o 0\3 (e} To) 180~
n
(o] o
T Py o o JRpRTE Ly
Ped Ixey O™ url
B7prxew o o profile iM%
_ Pixewo O source
urpaje|dwos o O text
since_id_str O O to_user.id
since_id O O synsa; O to_user_id_str
results_per_page © B
O e pajesn
o o O sengue
uOlcmonl_n!m:, 4 w
vo_user .wv % 198n" Loy
text P iasn
s (o] o o ..«ulEanEO&
oo © o o " Ooeg " oy
(e ™ 066%6 o © O p
° o & O 45,
! 0 © ob&oﬁ 86,
\o% « © o (o] oq, LT
ooo%% 8550 R (W oy
/@0\/ X o @ Ox\ Sey
X s° % O o5, %6,
0550 o 0 o,
ok a@b o & (o} 0 M S T Sy,
SIS o : % O
s _,,Qo&% - zoo, o) a/b\/hs o
N Oawwo./ﬁo é@v
o fo)] o,
Wy, P8, 7
& wm,%oo R o, OOO@«weopeea %
L' $ o 0 % 0°0.%5,%,%,
& % > o] .oo&, PN
& F 8/ § $ % 0pn | w,
& $ $504 Ry Y,
F T FL0 4 o 8 o %,
Y s fe%% o ° OOOO S, P v
7 o £ <%]
A & g50g200 99 955 o %3BRY R
& W.\ 5 - WWHW -0 .m.mm \ d_@m. 2. >\
o Ry (] 2 T L P %
g ¢ P 3 58 % g
& 7 a W B %
Q 2 2 [
§ i 3! s

image3.emf
Buissaoo.id-aid

@jack, hi, check this link http://example.com it is an interesting
game, I've reached 5 levels :) #game

URL and @

Punctuations

Stopwords

Digital words

, hi, check this link it is an interesting game, I've
reached 5 levels :) #game

, hi, check this link it is an interesting game, I've
reached 5 levels :)

hi check this link it is an interesting game Ive reached
5 levels

check link interesting game reached 5 levels

check link interesting game reached levels

P

r

e

-

p

r

o

c

e

s

s

i

n

g

Raw tweet

@jack, hi, check this link http://example.com it is an interesting

game, I’ve reached 5 levels :) #game

URL and @

Hashtag

Punctuations

Stopwords

Digital words

, hi, check this link it is an interesting game, I’ve

reached 5 levels :) #game

, hi, check this link it is an interesting game, I’ve

reached 5 levels :)

hi check this link it is an interesting game Ive reached

5 levels

check link interesting game reached 5 levels

check link interesting game reached levels

image4.emf
no d e Web Application Layer

Ry, —_

Web
Socket

e redis Redis Layer

keyword

Storm Layer

Web Application Layer

Brwoser

Server

Subscriber

Web

Socket

Redis Layer

Publisher

keyword tweet

Storm Layer

Subscriber

Processing and

classification

Twitter

Spount

keyword tweet

Data Channel

Publisher

image5.emf
Master Node

Worker
— N
|

Worker Node

Master Node Worker Node

ZooKeeper

Nimbus Supervisor

Worker

ZeroMQ

image6.emf
tweet,label

tweet,label .

single
tweet

tweet,label

Reduce
Process

Map
Process

single

tweet

Twitter

Spout

RedisPublishBolt

AnalysisBolt

AnalysisBolt

AnalysisBolt

Map

Process

Reduce

Process

single

tweet

single

tweet

tweet,label

tweet,label

tweet,label

image7.emf
TwitterSpout
reads tweets
from the pool
every second

TwitterSpout

Twitter collector module

Redis Pool

(buffering)

TwitterSpout

reads tweets

from the pool

every second

TwitterSpout

Analysis

Bolt

image8.emf
AnalysisBolt

AnalysisBolt

Initialization

Training Weka

RedisPub

lishBolt

New Tweet

Pre-process

Feature

extractor (filter)

Classifier (Naive Bayes)

image9.emf
Reduce

RedisPublishBolt

RedisPublishBolt

Redis

Channel

Analysis

Bolt

Reduce

Keyword

Listener

Restart a new

spout with the new

keyword

Subscriber

To the web

application

Publisher

image10.emf
13sn 0} w.io}S wou4

From user to Storm

(2]
.
Q
]
(/2]
=
(&)

F

r

o

m

u

s

e

r

t

o

S

t

o

r

m

F

r

o

m

S

t

o

r

m

t

o

u

s

e

r

Web Server Layer

Storm Cluster Layer

User’s input

Cluster’s

output

image11.emf
-—>->->->-

Spout Bolt Bolt

Bolt

Bolt

image12.emf
Browser

Input Show the
keyword result

Data
Source

Twitter

Streaming API

Redis
Channel

Browser

Twitter

Spout

RedisPublishBolt

AnalysisBolt

Twitter

Streaming API

Input

keyword

Show the

result

Redis

Channel

Data

Source

image13.png
~ 50 — 100 — 200 — 400 — 600 — BOO — 1000 — 1200 — 1400
- 1600

800000

os0000

oas0000

200000
Z00BNE A00GNBCHI | OGNS TG0DBNB 30000 5B

Number of samples.

image14.png
Accuracy

800000

as0000

o3s0000

200000

~ 2000 B-NB

— MNB -~ KNNK=5

~ KNNK=1

EY

w20 40

50 B0 1000 7200 1400
Number of dimensions

1000

1800 3000 4000

image15.png
‘Accuracy

800000

75000

ass0000

425000

300000

— 2000B-NB — 4000B-NB -~ BOOOB-NB — 16000 B-NB
~ 0000 BB
5 100 200 400 600 B0 1000 1200 1400 1600 180D 3000 4000

Number of dimensions

image16.png
27

24

21

18

15

12

290

292

294

296

298

300

302

304

306

image17.png
Positive Negative

image18.png
338

336

332

330

328

326

324

322

image19.png
Positive Negative

image20.png
2.1

1.8

1.5

1.2

0.9

0.6

0.3

290

292

294

296

298

300

302

304

306

image21.png
Positive Negative

image22.png
cluster.spout. TwitterSpou'

ALL —5 o— oy > —b b

:FF Logger loc

SpoutOutputCollector _collectc
LinkedBlockingQueue<Status> queu
i Cluster.Topolog, TwitterStream twitterStream

ALL — o¢— -3 oy — - ConfigurationBuilder twitterCon'

StatusListener listener

;

& ~ void main(String[] args String configChanne

JedisPool poc
ConfigListenerThread configListenerThreac

String[] keyworc
void open(Map confMap, TopologyContext context, SpoutOutputCollector collec

void nextTuple(

®@ ®0lc ¢ ¢ ¢ o

void declareOutputFields(OutputFieldsDeclarer declarer’

image23.png
cluster.bolt. TwitterAnalysisBolt_NB

ALL —5 o— oy ey —b D

cluster.bolt. TwitterAnalysisBolt_NBM
ALL —5 o— -3 o3 —D D

&QST Logger loc

HashMap < String, Integer> semanticDic
Tokenizer tokenizer

NaiveBayes nb

StringToWordVector stv

Instances data

Instances filteredData

String[] option:

OutputCollector collector

0 OST Logger log

P& & & & O ¢ ¢

HashMap<String, Integer> semanticDic
Tokenizer tokenizer
NaiveBayesMultinomial nbrr
StringToWordVector sty

Instances data

Instances filteredData

String[] option

OutputCollector collectol

&
&
&
&
&
&
&
'

i»
o
&)

i»
=

void execute(Tuple tuple

void cleanup(

void declareOutputFields(OutputFieldsDeclarer declarer’
void prepare(Map stormConf, TopologyContext context, OutputCollector collectc

Instance makelnstance(String text, Instances data)

void execute(Tuple tuple

void cleanup(

void declareOutputFields(OutputFieldsDeclarer declarer
void prepare(Map stormConf, TopologyContext context, OutputCollector collectc

Instance makelnstance(String text, Instances data)

image24.png
<
<
<
<
<
<
<
<

¢ 00 0 0O

*

cluster.bolt.RedisPublisherBolt

String channel

RedisPublisherBolt(String channel)

void setupNonSerializableAttributes()
List<Object> filter(JSONObject status)

void onConfigurationChange(String conf)
Map<String,Object> getComponentConfiguratio

" cluster.bolt.RedisBolt
ALL — o— -3 > —D D

String channel

String configChannel

OutputCollector collector

Tuple currentTuple

Logger log

JedisPool pool

ConfigListenerThread configListenerThread

RedisBolt(String channel)

void prepare(Map stormConf, TopologyContext context, OutputCollector collector
void execute(Tuple tuple)

void cleanup()

void declareOutputFields(OutputFieldsDeclarer declarer)

List<Object> filter(JSONObject status)

void publish(String msg)

void setupNonSerializableAttributes()

void setupDynamicConfiguration(OnDynamicConfigurationListener listener)

cluster.bolt.RedisBolt$OnDynamicConfigurationListene:
ALL — o— -3 oy — -

cluster.bolt.RedisBolt$ConfigListenerThread
ALL—} O— o) ooy —D -

& 0 Jedis jedis
OnDynamicConfigurationListener listener

@ ConfigListenerThread(OnDynamicConfigurationListener |
@ void run()
@ void end()

C . Utils TOARFF

image1.emf
Training

Prediction

Training Prediction

Labeles

Text

New Text

Feature Vector

Feature Extractor

Estimated

label

Machine Learning Algorithms

