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ABSTRACT 

 

Historically sentiment analysis has focused on identifying moods and opinions expressed 

in texts. However, recently more research has been focused on analyzing audio sentiment. Using 

audio to identify a speaker’s general attitude has several potential use cases. For this project, audio 

sentiment analysis was applied to call center conversations between a salesperson and a customer 

to predict if the customer would set up a sales meeting based upon their sentiment during the call. 

This project contains two main contributions: (1) An end-to-end sentiment analysis pipeline for 

segmenting, performing feature extraction, and classifying conversational audio files using 

classical machine learning methods and (2) a second end-to-end sentiment analysis pipeline that 

utilizes a deep Recurrent Neural Network to predict sentiment. Both pipelines demonstrate 

performances in line with what is the current state-of-the-art and are freely available to the public. 
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1. Introduction 

 

Sentiment analysis is the process of identifying the attitude, or private state, of a person 

towards a particular topic or general context through computational methods. More specifically, 

sentiment analysis focuses on determining if a private state is positive, negative, or neutral. For 

example, someone saying, “I like that red car,” could be labeled as positive sentiment and someone 

else saying, “The blue car is ugly,” could be a negative sentiment. In practice however, analyzing 

sentiment is not this straightforward. What if someone said, “I wish the movie would have been 

more exciting or funnier.” The words “exciting” and “funnier” would most likely be considered to 

have a positive sentiment by a computational model, yet, the sentiment of the sentence as a whole 

is clearly negative. So how should a model classify the sentiment of this sentence? Additionally, 

how does the pitch of a person’s voice or their rate of speech affect sentiment? It is questions like 

these that a sentiment analysis model must answer and why sentiment analysis as a whole is not a 

trivial problem.  

Traditionally, researchers have focused on analyzing sentiments expressed through text [1, 

2, 3, 4]. Recently though more work has been done to analyze sentiments expressed in audio and 

visual modalities or even combinations of audio, visual, and textual expressions [5, 6, 7, 8]. This 

project focuses on performing sentiment analysis using only the audio (acoustic) modality. In 

particular, the goal of this project is to investigate whether machine learning models can be trained 

on acoustic features extracted from phone conversations between a salesperson and a customer to 

accurately predict whether the customer will agree to set up a sales meeting. If successful, 
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researchers would be able to use these models to determine which acoustic features (pitch, rate of 

speech, number of pauses, etc.) were most indicative of setting up a meeting with a customer.  

 In order to achieve this goal, two end-to-end sentiment analysis pipelines were developed: 

ASAP (Audio Sentiment Analysis Pipeline) and Deep ASAP. Both pipelines can take a labeled 

(positive or negative sentiment) collection of audio files and split them into utterances based on 

speaker turn, extract acoustic features from each utterance (or the entire call), train a supervised 

machine learning model from the extracted features, and perform sentiment classification with the 

trained model. ASAP can train a variety of classical machine learning methods for sentiment 

analysis including an implemented version of the Hidden Markov Model (HMM) that was 

described in [5]. On the other hand, at the core of Deep ASAP is a Long Short Term Memory 

(LSTM) network that utilizes the sequential nature of audio data to perform classification at 

accuracy rates that are on par with the current state-of-the-art in audio-only sentiment analysis. 

Both pipelines are implemented in Python so that they may run on any system and are freely 

available to the public through Github. 
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2. Related Work 

 

2.1 Audio Sentiment Analysis 

Initially, audio sentiment analysis was done by first transcribing the recorded 

speech into text and then using a classical sentiment analysis tool designed for text as seen 

in [9]. The problem with this approach as noted in [5] is that it relies on an accurate 

translation which can be hard to achieve even with newer automatic transcription solutions 

like IBM Watson and Google Voice [10, 11]. Additionally, the transcription approach 

relies on large lexicons of words annotated with their sentiment such as those found in [2] 

and [12] and loses out on valuable information associated with tone or other audible 

features expressed in spoken dialect. A more streamlined and automatic approach that does 

not rely on transcribing the audio first and instead uses acoustic features was showcased in 

[5]. Several other publications adopted this same methodology [6, 7, 13]. The basic idea 

behind these methods is to split a longer piece of audio into smaller chunks called 

utterances. Feature extraction is then performed on each utterance and a machine learning 

model is trained for classification. The acoustic features used in these approaches are 

usually low-level descriptors such as pitch or Mel-frequency Cepstral Coefficients 

(MFCC) [5, 6]. In [5] a HMM was used for sentiment classification and achieved about 

55% accuracy on their own YouTube dataset containing 280 labeled utterances from 47 

individuals. In [7] a support vector machine (SVM) with a linear kernel was used on their 

MOUD database of 498 utterances from 55 individuals and achieved only 46.75% 

classification accuracy.   
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2.2 Audio Sentiment Analysis with Deep Neural Networks 

In addition to the approaches discussed above, several researchers have applied 

deep neural networks (DNNs) to the audio sentiment analysis problem. In [13] a 

bidirectional LSTM (BLSTM) is trained with a sequence of acoustic features taken at 

intervals throughout the audio stream (instead of acoustic feature summaries across a whole 

utterance) to determine sentiment. They report a 54% classification accuracy on the 

Interactive Emotional Dyadic Motion Capture (IEMOCAP) [14] database. In [6] a 

convolutional neural network is trained on acoustic features from the MOSI [8] dataset 

containing 2199 utterances from 93 speakers and achieved 61.8% accuracy. The same 

CNN trained from MOSI was also tested on YouTube [5] and MOUD [7] databases and 

achieved 56.4% and 54.9% across-dataset accuracies respectively. 
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3. Design and Implementation 

  

3.1 Design of ASAP 

Currently, non-automated pipelines in audio sentiment analysis follow a similar design: 

1.) Divide input audio signals into smaller chunks called utterances 

2.) Extract features from each utterance 

3.) Select and train a machine learning model for classification 

4.) Test and validate the trained model for sentiment analysis 

ASAP conforms to this same general methodology but automates the entire process so that 

researchers can iterate on their models more frequently and more easily. Figure 1 shows a 

flow chart of how ASAP works from end-to-end. In the case of the call center analysis 

problem, ASAP will take as inputs audio files containing conversations between two 

speakers and train a model that’s output can be used to predict whether an unlabeled test 

call resulted in a sales meeting (positive sentiment) or no meeting (negative sentiment). It 

is a two-class classification problem.  

 

3.2 ASAP Inputs 

ASAP takes as input a collection of audio signals stored as WAV files. If the files 

are in MP3 format a helper script can be used that will convert them to WAV in batch. 

Because ASAP only works for supervised sentiment analysis, all audio files should be 

labelled with a 0 for negative sentiment or a 1 for positive sentiment. To process the files 

with ASAP, a CSV file is given as input in which the first column of the CSV contains the 

path to a WAV file and the last column contains the label for that particular WAV file. 
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Each row corresponds to a different WAV file. ASAP will load in all WAV files that are 

listed in the input CSV. 

 

 

Figure 1: ASAP pipeline flow 

 

3.2.1 Preprocessing  

Following the general best practices seen in other audio sentiment analysis papers 

the first step ASAP does is break down each input audio signal into its component 

utterances. Since this project is mostly focused on analyzing the sentiment found in call 

center conversations, ASAP must first remove any receptionist, silence, or ringtones before 

the sales conversation takes place. Unfortunately, this is a non-trivial task to automate 

because there is no standard way for these calls to begin. To attempt to remove the first 

portion of a call before the conversation between the salesperson and customer takes place, 

a custom HMM was trained to detect ringtones with the pyAudioAnalysis software [15]. 
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The ringtones are a very distinct sound within the context of a call so the HMM could be 

trained with only a handful of samples. Using the pre-trained HMM, each input audio 

stream is analyzed to determine at which points a ringtone is detected. Once these points 

are detected everything before the last ringtone is dropped and only the audio signal from 

after the last ringtone is kept. These clipped audio signals are saved to disk in case the user 

would like to examine them. 

After the rings have been successfully removed the remaining audio should only 

contain the conversation between the salesperson and the customer. It is at this point that 

ASAP breaks the audio up into utterances based upon speaker turn. This means that each 

time the speaker changes ASAP will clip the audio into an utterance. To achieve this a 

process called speaker diarization is employed. Speaker diarization is an unsupervised, 

automated process that attempts to answer the question: Who spoke when? There are many 

varying implementations of speaker diarization but for the purposes of this pipeline the 

implementation found in pyAudioAnalysis was used because it would work nicely with the 

rest of the Python components in the pipeline. The method of speaker diarization used was 

published in [16] and uses a combination of Fisher’s Linear Discriminant, K-Means, and 

Viterbi Smoothing. Again, since there are two speakers in each call it is possible to pass 

this information as a hyperparameter to pyAudioAnalysis so that it will look for only two 

distinct speakers during its clustering routines.  

The last step in the preprocessing stage is to assign labels to the generated 

utterances. For this project labels are given on a per-call basis. That means that the entirety 

of each audio file was labeled as either a success or a failure. Because it is impossible to 

know what the sentiment of the produced utterances are they are given the same label as 
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the call from which they came. For example, if a call was labeled as having positive 

sentiment and the preprocessing stage generated six utterances from that call, then all six 

utterances would be given the same positive label. Once the preprocessing stage is 

complete, all utterances are saved to disk so that the user may access them later outside of 

the pipeline. 

 

 

Figure 2: Visualization of the speaker diarization process on an audio signal [17]. Three 

utterances would be produced in this case. 

 

 

3.2.2 Feature Extraction 

Once the input audio signals have been sliced into utterance chunks, the next step 

in ASAP is to extract acoustic features from all the utterances. While the feature extraction 

stage is designed to work with utterances produced from the preprocessing stage of ASAP, 

any pre-sliced utterances generated from another outside method can be used. To perform 

the feature extraction a third-party tool called OpenSMILE is utilized [18]. OpenSMILE is 

an acoustic feature extraction tool that is commonly used throughout audio sentiment 

analysis research. It was chosen to be used in this project because it is very flexible and 

can extract a wide range of acoustic features. The installation of OpenSMILE comes with 
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numerous pre-defined configuration files that allow for the extraction of a wide variety of 

different acoustic feature sets. A number of these configuration files are designed 

specifically for extracting features from audio for emotion analysis. Additionally, users can 

define custom configuration files to extract any set of acoustic features that they desire. For 

this project OpenSMILE is used to extract the 385 features defined in the INTERSPEECH 

2009 Emotion Challenge [19]. The features selected to be used in this challenge were based 

and validated off of numerous past research works so they are a good choice to use in 

ASAP. This means that for every utterance a 385-dimensional feature vector is extracted. 

Even though the INTERSPEECH 2009 features were chosen for use in this project, because 

OpenSMILE is being used, a researcher could substitute in any different configuration file 

to extract the acoustic features that they desired. 

The last step in the feature extraction stage of ASAP is to save the features in a 

feature-file for use by the model training or deployment stage. The feature-file is saved as 

a CSV file where each row represents an utterance. The first column is the name of the 

original WAV file from which the utterance came, the columns in the middle are the 

extracted features, and the last column is the utterance’s label. 

 

3.2.3 Model Training 

Once a feature-file has been created ASAP can begin training a machine learning 

model. In order to make the pipeline more flexible, ASAP will accept feature-files for this 

stage of the pipeline that were generated by any other method as long as they are in the 

proper CSV format. 
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Since ASAP is designed to work with smaller datasets, training and validation is 

done using the leave-one-group-out approach. This means that for a dataset of 50 audio 

files, all of the utterances from one file would be held out for validation and a model would 

be trained on the utterances of the remaining 49. This process repeats 50 times so that all 

audio files are used for validation exactly once. The benefit to this method is that a large 

portion of the dataset doesn’t have to be sacrificed for validation. 

As mentioned previously, the audio files in the call center dataset have only a label 

for the entire call, not the individual utterances. So, each utterance was given the same 

sentiment label as the call it was clipped from. This means that in order to produce an 

acceptable classification accuracy on the single call that is held out for validation during 

training, a single label for the call must be assigned. To achieve this all utterances from the 

held-out call are classified with a positive or negative sentiment. Then, the whole call is 

assigned a single label based on what the majority of its utterances were classified as. For 

example, if more than half of the utterances from a call were deemed to have positive 

sentiment then the whole call would be labeled positive and vice-versa. 

 Currently, there two available machine learning methods to train during this stage. 

The first is a random forest classifier from the scikit-learn package [20] and the second is 

a HMM that was implemented in Python based upon the methods described in [5]. A user 

can select to train with one or both of the models and all hyperparameters for the models 

can be set by the user on the command-line at runtime. 

The HMM described in [5] was implemented as a Python class that adheres to all 

of the scikit-learn model guidelines. Since ASAP only deals with the two-class 

classification problem, the HMM works by training a separate HMM with Gaussian 
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mixture emissions for each class. Then, during validation or deployment, a label is assigned 

to the new audio signal based upon which trained HMM, positive or negative, has a higher 

score. 

The random forest classifier used is from the scikit-learn library. In general, it trains 

by fitting a chosen number of decision tree classifiers to subsets of the data. Then a label 

is assigned by taking the mode of the prediction from all of the individual decision trees. 

The random forest algorithm scikit-learn uses is found in [21].  

The model training stage of ASAP is designed to work with any classifier from the 

scikit-learn library. This means that with some simple additions researchers would have 

access to easy-to-use support vector machines, multi-layer perceptron, k-nearest neighbors, 

and a multitude of other classification algorithms. 

 

3.3 Design of Deep ASAP 

There are several differences between Deep ASAP and ASAP, namely, the lack of a 

preprocessing stage, a slight modification to the feature extraction procedure, and of course 

a different classification model at its core. Figure 3 shows the slightly different pipeline 

flow of Deep ASAP with the preprocessing stage removed.  

  

3.3.1 (Lack of) Preprocessing and Feature Extraction 

As mentioned previously, Deep ASAP does not contain a preprocessing stage. The 

reasoning behind this is that because Deep ASAP uses a deep recurrent net at the model 

stage that can handle long sequences of inputs, it would make more sense to use feature 

sequences extracted at a more fine-grained level like 2-5 seconds as opposed to using 
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features extracted from utterances which could be averaged over a longer time period 

(upwards of 30 seconds in some cases). This setup also makes more intuitive sense with 

the call center dataset that only provides labels at a call level instead of utterance level. 

Before, ASAP had to extrapolate the entire call’s labels to its utterances but here in Deep 

ASAP that doesn’t need to happen. 

 

 

Figure 3: Deep ASAP pipeline flow. 

 

Since Deep ASAP does not use utterances OpenSMILE is used to extract features 

in a slightly different way. The INTERSPEECH feature set is still used in this pipeline but 

this time features are extracted from a sliding 5-second window over the entire audio signal. 

This results in a sequence of acoustic features computed for the whole file. Naturally, audio 

signals with a longer duration will end up with a long feature vector. Again, as with ASAP, 

different feature sets can be extracted with OpenSMILE for use in the deep pipeline. 

Additionally, the size of the sliding window used during feature extraction and the amount 

of overlap in the sliding window can easily be changed by adjusting the OpenSMILE 
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configuration file. Just like in ASAP, the feature extraction stage of Deep ASAP outputs a 

feature-file in the same CSV format for use by the deep model. 

 

3.3.2 Model Training 

The model trained in Deep ASAP for this stage is a bidirectional long short term 

memory network (BLSTM). This network was used in [13] for audio sentiment analysis 

with some success and a similar network was used in a slightly different audio signal 

classification problem by a group that placed in the top 10 of a TopCoder competition [22]. 

LSTMs, a subclass of recurrent neural networks (RNN), were originally designed in [23] 

to utilize sequences of information. This is a big difference from a classical artificial neural 

network that treats each new input to the network as independent from the last.  

LSTMs make a lot of sense to use in language modelling and other fields because 

they can “remember” what they have previously seen. Additionally, a bidirectional LSTM 

also simultaneously processes the input in reverse order so it can also see what is coming 

in the “future”. They achieve this behavior through using what is known as hidden states 

within the network. These nodes are able to choose to remember or forget certain 

information on the fly. For example, when translating a sentence an LSTM could remember 

several words or sentences back to know what the current subject was and use the 

appropriate pronouns. This approach can be applied to audio sentiment analysis because it 

is often times how a speaker’s delivery changes over time that can impact sentiment, not 

necessarily how each part of their speech analyzed is independently. Figure 4 shows a high-

level overview of how LSTMs can work for different problems by being able to process a 

varying sequence of inputs or a fixed number of inputs, and output a sequence of nodes of 
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a fixed number of nodes. For the call center problem addressed in this project the LSTM 

will process a sequence of inputs (acoustic features) and produce only a single output 

(sentiment label). This would be a many-to-one architecture. 

 

 

Figure 4: General LSTM architecture. Red boxes represent inputs, green boxes represent hidden 

states (that remember previous inputs), and blue boxes represent outputs. 

 

The BLSTM used in this project was implemented in a Python deep learning library 

called Lasagne [24]. As stated previously, the inputs to the LSTM in this case are the 

ordered sequence of features extracted from each time step in the previous stage. However, 

since the input audio streams are of different lengths and hence have feature vector 

sequences of different lengths, any input sequences shorter than the longest sequence in a 

particular training fold must be padded with zeros. This is so that Lasagne can properly 

handle the network and is the best-practice method for most deep learning libraries. While 

this may seem like it is corrupting the input data, the LSTM will be able to learn that the 

0’s padded at the beginning of the shorter sequences do not have any meaning. 

The training process of Deep ASAP is the same as what is utilized in ASAP. A 

leave-one-out training and validation approach is used where a single call is held out and 

the LSTM is trained on the remaining calls. The difference here in validation is that since 
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the LSTM is learning the audio signals as a whole it only outputs a single sentiment label 

as opposed to having to infer the label of an audio file based upon the majority of its 

utterances.  
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4. Experiments and Results 

 

4.1 Dataset Descriptions 

The following sections describe the two datasets used in this project. One is a publicly 

released dataset from some previous audio sentiment analysis works that has been slightly 

modified to work in these pipelines. The other is the call center dataset that has been 

extensively referenced throughout this report. 

 

4.1.1 YouTube Dataset 

The first dataset used in this report was originally published in [5] and also used in 

[6]. It is a collection of 47 YouTube videos in which some opinion on a topic was being 

expressed. Each video contains only one speaker. Utterances from each video were labeled 

as positive, negative, or neutral. Additionally, each video was given a sentiment label as a 

whole. Because the original dataset was a three-class problem, all the videos which had a 

neutral sentiment label were removed for these experiments leaving just a positive-negative 

two-class problem. After this step, 27 videos were left containing 169 utterances. 12 of the 

videos were labeled with a positive sentiment and 15 were labeled negative. Of the 169 

utterances, 94 were positive and 75 were negative. 

 

4.1.2 Call Center Dataset 

The second dataset for this project was obtained from Penske through a research 

collaboration with partners in the University of Missouri Business School. It contains 

recorded audio from Penske during their sales representative’s cold calls. These recordings 
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could contain multiple speakers, but the focus of this project is a two-person conversation 

between the sales representative and the customer. The dataset contains 145 calls, most of 

which are between 2 and 5 minutes long. When broken down into speaker utterances as 

described in the ASAP sections there are 1,444 positive utterances and 1,499 negative 

utterances for a total of 2,943. At the call-level, 57 of them are positive and the remain 88 

are negative.  

 

4.2 Experiments 

In order to make sure both pipelines were functioning as intending and to compare 

which of the machine learning methods performed best, ASAP (with the HMM and random 

forest classifiers) and Deep ASAP were used on both the YouTube and the Penske dataset. 

The datasets were put through the pipelines from end-to-end as discussed in each section. 

For ASAP, utterances were used during training and validation and for Deep ASAP the 

entire audio signal was used. The same 385 INTERSPEECH 2009 features were used in 

all experiments with features being extracted from utterances in ASAP and from sliding 

windows over the entire audio signal in Deep ASAP. In all cases training and validation 

was done in a leave-one-out fashion. 

In order to ensure that results across different runs were reproducible all random 

initializations in the machine learning models were seeded. Additionally, training data was 

shuffled before passing it on to the models to ensure that they didn’t get stuck in a local 

minimum. As with the model initializations, the random shuffling of the input data was 

also seeded so that it was the same order across all experimental runs.  
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Multiple sets of hyperparameters were changed across runs of each machine learning 

model in an attempt to discover which performed best. To evaluate a model’s performance 

basic classification accuracy was used. To calculate the classification accuracy of a run of 

a model with particular hyperparameters the accuracy on the withheld validation set is 

averaged across all folds to give some estimate of overall performance.  

 

4.3 Results 

The following sections show the results of each machine learning model on the 

YouTube and call center datasets. Discussion of these results will be in the section after. 

 

4.3.1 YouTube Results 

HMM 

Parameters Chunk Accuracy Call Accuracy STD 

mix=1, states=2 62.85 59.26 0.3908 

mix=1, states=3 62.11 59.25 0.3865 

mix=1, states=4 62.11 59.25 0.3865 

mix=1, states=5 61.74 59.25 0.3862 

mix=1, states=6 61.74 59.25 0.3862 

mix=1, states=7 61.74 59.25 0.3862 

mix=2, states=2 58.03 59.25 0.334 

mix=2, states=3 56.14 51.85 0.3012 

mix=2, states=4 56.33 55.55 0.3216 

mix=2, states=5 52.84 51.85 0.3208 

mix=2, states=6 61.86 70.37 0.3175 

mix=2, states=7 59.57 66.66 0.3143 

mix=3, states=2 57.88 55.55 0.3624 

mix=3, states=3 59.53 59.25 0.3746 

mix=3, states=4 57.88 59.25 0.3868 

mix=3, states=5 49.99 48.14 0.3894 

mix=3, states=6 61.25 59.25 0.3396 

mix=3, states=7 60.67 55.55 0.3485 
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mix=4, states=2 67.1 66.66 0.3605 

mix=4, states=3 67.6 66.66 0.3605 

mix=4, states=4 62.83 59.25 0.3727 

mix=4, states=5 60.63 59.25 0.3809 

mix=4, states=6 60.42 62.96 0.3619 

mix=4, states=7 59.89 59.25 0.3634 

 

Table 1: Classification accuracy of the HMM with ASAP. First column is hyperparameters 

adjusted, number of Gaussian mixtures and number of hidden states.  

 

Random Forest 

Number of Estimators Chunk Accuracy Call Accuracy STD 

10 63.39 66.66 0.299 

20 58.26 59.25 0.3563 

30 59.6 62.96 0.3562 

40 61.37 66.66 0.369 

50 57.97 59.25 0.3639 

60 63.13 62.96 0.3639 

70 64.27 66.66 0.385 

80 66.72 70.37 0.3722 

90 64.67 70.37 0.3807 

100 61.95 66.66 0.3846 

 

Table 2: Classification accuracy of the random forest with ASAP. First column is the number of 

estimators used. 

 

LSTM 

Number of Hidden Units Train Accuracy Test Accuracy 

5 49.28 48.14 

20 47 29.62 

35 65.52 51.85 

50 63.1 48.14 

65 62.92 33.33 

80 73.5 44.44 

95 74.92 37.03 

110 75.92 40.74 

125 79.91 33.33 

 

Table 3: Classification accuracy of the LSTM with Deep ASAP. First column is number of 

hidden units in the LSTM layer. 
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4.3.2 Call Center Results 

 

HMM 

Parameters Chunk Accuracy Call Accuracy STD 

mix=1, states=2 58.76 59.72 0.3055 

mix=1, states=3 58.54 59.02 0.3052 

mix=1, states=4 58.51 59.02 0.3045 

mix=1, states=5 58.5 59.02 0.304 

mix=1, states=6 58.46 59.02 0.3037 

mix=1, states=7 58.45 59.02 0.3036 

mix=2, states=2 57.98 59.72 0.2809 

mix=2, states=3 58.01 59.72 0.2839 

mix=2, states=4 58.07 60.41 0.2838 

mix=2, states=5 58.22 60.41 0.2837 

mix=2, states=6 58.34 60.41 0.2842 

mix=2, states=7 58.35 60.41 0.2836 

mix=3, states=2 54.76 56.94 0.2258 

mix=3, states=3 55.21 57.63 0.223 

mix=3, states=4 55.32 58.33 0.2234 

mix=3, states=5 55.22 59.02 0.223 

mix=3, states=6 55.41 59.72 0.2217 

mix=3, states=7 55.43 60.41 0.2224 

mix=4, states=2 52.28 54.16 0.1515 

mix=4, states=3 52.18 56.94 0.1666 

mix=4, states=4 51.87 54.86 0.1507 

mix=4, states=5 51.95 57.63 0.1506 

mix=4, states=6 51.91 56.94 0.1541 

mix=4, states=7 51.88 56.94 0.1558 

 

Table 4: Classification accuracy of the HMM with ASAP. First column is hyperparameters 

adjusted, number of Gaussian mixtures and number of hidden states. 

 

Random Forest 

Number of Estimators Chunk Accuracy Call Accuracy STD 

10 53.23 59.02 0.2413 

20 53.89 58.33 0.2185 

30 53.26 56.25 0.2297 

40 53.47 60.41 0.2377 

50 52.85 55.55 0.2433 
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60 53.89 61.11 0.2422 

70 54.33 58.33 0.2437 

80 54.83 60.41 0.2499 

90 54.51 59.02 0.2555 

100 54.65 58.33 0.2459 

 
Table 5: Classification accuracy of the random forest with ASAP. First column is the number of 

estimators used. 

 

LSTM 

Number of Hidden Units Train Accuracy Test Accuracy 

5 58.65 53.84 

20 62.34 55.94 

35 69.67 55.94 

50 69.57 57.34 

65 70.83 61.53 

80 70.86 55.94 

95 72.74 62.93 

110 72.13 56.64 

125 78.02 62.23 

 
Table 6: Classification accuracy of the LSTM with Deep ASAP. First column is number of 

hidden units in the LSTM layer. 

 

 
4.3.3 Confusion Matrices of Best Models 
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Figure 5: Confusion matrix of best performing HMM (2 Gaussian mixtures, 6 hidden states) on 

YouTube dataset 

 

 

 
 

Figure 6: Confusion matrix of best performing random forest (80 estimators) on YouTube 

dataset 

 

 

 

 
 

Figure 7: Confusion matrix of best performing LSTM (35 hidden units) on YouTube dataset 
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Figure 8: Confusion matrix of best performing HMM (2 Gaussian mixtures, 7 hidden states) on 

call center dataset 

 

 

 

  
 

Figure 9: Confusion matrix of best performing random forest (60 estimators) on call center 

dataset  
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Figure 10: Confusion matrix of best performing LSTM (95 hidden units) on call center dataset  
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5. Discussion 

 

Overall, all pipelines were able to successfully produce results that are mostly in line 

with what can be found in the literature. On the YouTube dataset [6] was able to achieve 

between 56% and 61% accuracies. Here, machine learning models from ASAP are able to 

achieve those results on the same dataset. When looking at the classification accuracy 

tables, the random forest probably performed best overall on the YouTube dataset with the 

HMM close behind it. The LSTM from Deep ASAP performed quite poorly on the 

YouTube dataset. This is most likely because it is such a small dataset that the LSTM was 

severely overfitting. In spite of setting the random seeds so that results were reproducible 

it is tough to see any clear trends within the YouTube results tables. The HMM somewhat 

performs best with models that have a “medium” complexity but there are also good and 

bad results intermixed. A similar intermixing of good and bad results can be seen in the 

random forest and LSTM results from the YouTube experiments. 

The confusion matrices for the best models on the YouTube dataset are slightly more 

telling. From here, it is easier to tell that the random forest did a better job classifying both 

positive and negative videos correctly. On the other hand, the HMM trended towards 

classifying too many of the videos as positive and the LSTM trended towards classifying 

too many videos as negative. Because the dataset is slightly imbalanced, it would make 

sense that the LSTM favors the negative sentiment class. 

Taking a look at the accuracy tables for the call center experiments, it is noticeable that 

the LSTM had much better performance than it did on the YouTube dataset. In fact, when 

going by classification accuracies alone it achieved the highest score. The best scores from 
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the HMM and random forest were not far behind on this data though. The trend of the 

HMM performing best with models of “medium” complexity is much more apparent in the 

its accuracy table for the call cent experiments. The random forest still did not see much of 

a trend in the accuracy tables and the LSTM appeared to have better performances as the 

model became more complex.  

When looking at the confusion tables for the call center data the good performances 

become much less convincing. Because the dataset is so imbalanced all three models 

misclassified almost all of the positive samples as negative. So, even though the accuracies 

were getting better, the model performances were not as good. The LSTM was by far the 

most sensitive to this imbalance, most likely because it is the most complex network of the 

three and so it was easier to over-train. 

Ultimately, the machine learning methods were performing as intended, but because 

the datasets were so imbalanced the results were not great. Audio sentiment analysis is a 

hard problem as evidenced by the classification results of recent papers, but to improve the 

results in the case of the call center data some work should be done to ensure an equal class 

balance. 
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6. Conclusion and Future Works 

 

When setting out on this project there were two main goals. First, to create an 

automated pipeline that researchers could use when doing audio sentiment analysis studies. 

Second, to apply the pipeline and the machine learning models with it on the call center 

dataset provided by our partners in the business school. As a whole, both ASAP and Deep 

ASAP perform the automation of an end-to-end solution very well. They should no doubt 

be of great help to anyone attempting to perform audio sentiment analysis tasks. Also, 

while the sentiment analysis results on the call center dataset were slightly underwhelming, 

the machine learning models were able to perform mostly up to par with what other 

research papers had achieved on the YouTube dataset. 

There are several interesting ways for this project to continue in the future. First, in 

regard to the call center data, it is possible that better results could be achieved with 

balancing of the dataset. Second, it would be interesting to try other newer deep learning 

networks such as convolutional neural networks on this problem. These networks have had 

great success elsewhere. Another possibility would be to combine a convolution network 

with the LSTM that was implemented in Deep ASAP. 
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